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Intersection properties for cones
of nondecreasing concave functions

by

Inna Kozlov (Haifa)

Abstract. We prove that the basic facts of the real interpolation method remain
true for couples of cones obtained by intersection of the cone of concave functions with
rearrangement invariant spaces.

1. Introduction. The interpolation theory of operators acting in Ba-
nach cones is a new branch of Interpolation Space Theory whose develop-
ment has been partly motivated by inner requirements of the theory and
partially by application to Harmonic Analysis, Operator Theory and Ap-
proximation Theory; see, in particular, [14], [12], [15] and references therein.
Unfortunately, the basic facts of the real and complex methods are untrue
or hard to achieve in the cone setting (in the case of the complex method,
even a judicious definition is unknown for the Banach cone case). There-
fore it is important for applications to single out classes of cones for which
the basic results of the real method are true. It is easily seen that the first
fundamental result of the theory, the interpolation theorem, holds in this sit-
uation (for linear operators preserving the cone structure). Unfortunately,
the second fundamental result, the reiteration theorem, does not generally
hold. This leads to the study of a certain subclass of triples (X,Q) having
the so-called intersection property. It can be shown (see, e.g., [9]) that the
reiteration theorem does hold for triples with this property. The correspond-
ing notion was first introduced by Y. Sagher [13] in the case of the couple
(fm∩ lp, fm∩ lq), where fm denotes the cone generated by the Fourier coeffi-
cients of 2π-periodic integrable functions with nonincreasing Fourier coeffi-
cients. In general, the property introduced in [13] can be defined as follows.

Definition 1.1. A cone Q has the intersection property (IP) with re-
spect to a Banach couple X = (X0,X1) if for all t > 0,

(X0 + tX1) ∩Q = (X0 ∩Q) + t(X1 ∩Q),(1.1)

where the norms are equivalent up to constants independent of t.
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Here the norm of (X0 + tX1) ∩ Q is the restriction to Q of the natural
norm (K-functional) on X0 + tX1, and the norm on (X0 ∩Q) + t(X1 ∩Q)
is taken to be

K(f, t;X ∩Q) = inf{‖f0‖X0 + t‖f1‖X1 : f = f0 + f1, fi ∈ Xi ∩Q},
i.e., it is the K-functional of the couple of cones X ∩Q := (X0∩Q,X1∩Q).

Hence the intersection property (1.1) is equivalent to the two-sided in-
equality

K(f, t;X ∩Q) ≈ K(f, t;X) (f ∈ Q, t > 0).(1.2)

Since the right hand side is evidently majorized by the left one, the main
point is to prove the inequality

K(t, f ;X0 ∩Q,X1 ∩Q) ≤ cK(t, f ;X) (f ∈ Q, t > 0)(1.3)

with c independent of f and t.
Several couples of Banach cones with the IP, important in applications,

were discovered in [13], [14], [1], [5], [6], [8], [9]. Applications of these re-
sults to several problems of analysis were presented, in particular, in [8], [3]
and [7].

In this paper we investigate this property for a couple of rearrangement
invariant (r.i.) spaces of a special kind (see definition below) and the cone
C of nonnegative nondecreasing concave functions of R+; for the role of this
cone in Interpolation Space Theory see [4, Ch. 3] and [11, Ch. 2]. Since
C contains functions on an unbounded interval that do not belong to any
Lp(R+) with 0 < p < ∞, it is natural to use a modified definition of r.i.
spaces.

Definition 1.2. A Banach latticeX of (classes of) measurable functions
on R+ is said to be a generalized rearrangement invariant space (g.r.i.) if

(a) X has the Fatou property;
(b) any two compactly supported equimeasurable functions have equal

norms.

Let us recall that X has the Fatou property if each nondecreasing se-
quence {fj} ⊂ X uniformly bounded in X satisfies

‖sup
j
fj‖X = sup

j
‖fj‖X .

From this it immediately follows that

‖f‖X = sup
N>0
‖f∗N‖X ,(1.4)

where fN := fχ(0,N) and h∗ is a nonincreasing rearrangement of h.
In order to formulate our main result, let us recall
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Definition 1.3. The cone C consists of nonnegative nondecreasing con-
cave functions defined on R+.

Theorem 1.4. Let X := (X0,X1) be a couple of g.r.i. spaces on R+.
Then the cone C has the IP with respect to this couple.

Remark 1.5. Note that the result is trivial if the extreme functions
fs(t) := min(1, t/s), t ∈ R+, s > 0, of the cone C do not belong to X0 ∩X1,
since in this case Xi ∩ C = {0} for i = 0 or 1. Nevertheless, our proof does
not use this membership.

Remark 1.6. A typical example of a space of Definition 1.2 is a gener-
alization Lαpq(R+) of the Lorentz space defined by the quasinorm

‖f‖Lαpq := sup
N>0

{∞�

0

|t1/pf∗N |q
dt

t(1 + t)α

}1/q

,(1.5)

where α ≥ 0 and 1 ≤ p, q ≤ ∞. By the Hardy inequality, (1.5) is equivalent
to a norm if p > 1. Note that L0

pq = Lpq, and the extreme functions fs are
in Lαpq iff α ≥ q/p, but they do not belong to Lpq.

2. Proof of the main result. Let (X0,X1) be a couple of g.r.i. spaces.
It is well known (see, for example, [4, p. 599]) that for any function f ∈ Σ(X)
and for each t > 0 there exists a measurable subset At such that

‖fχAt‖X0 + t‖fχAc
t
‖X1 ≤ γK(f, t;X).(2.6)

Here Ac
t is the complement to At in R+ and we can take, e.g., γ = 11.

It is sufficient to prove that for f ∈ C and every t > 0,

K(f, t;X ∩ C) ≤ c(‖fχAt‖X0 + t‖fχAc
t
‖X1),(2.7)

where c is an absolute constant.
It is clear that if µ(At) < ∞ then there exists a subset A of Ac

t with
µ(A) = µ(At), which lies to the right of At. Since f is nondecreasing and
X1 is a Banach lattice we have

‖fχAt‖X1 ≤ ‖fχA‖X1 ≤ ‖fχAc
t
‖X1 .

From (2.6) we then get

K(f, t;X ∩ C) ≤ t‖f‖X1 ≤ 2t‖fχAc
t
‖X1 ≤ 2γK(f, t;X).(2.8)

If µ(Ac
t) <∞, then in the same way we first obtain

‖fχAc
t
‖X0 ≤ ‖fχAt‖X0

and this leads to

K(f, t;X ∩ C) ≤ ‖f‖X0 ≤ 2‖fχAt‖X0 ≤ 2γK(f, t;X).(2.9)

It remains to consider the case µ(At) = ∞ and µ(Ac
t) = ∞. As follows

from the proof of (2.6), given in [4], the sets At and Ac
t can be represented
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in the following form:

At =
∞⋃

i=0

[x2i, x2i+1), Ac
t =

∞⋃

i=0

[x2i+1, x2i+2),

where x0 = 0 and xi < xi+1. Since
∑∞

i=1(x2i−1 − x2i−2) = ∞ we can find
for every x > 0 an index i0 = i0(x) and a number a = a(x), 0 ≤ a <
x2i0+1 − x2i0 , such that

x =
i0∑

i=1

(x2i−1 − x2i−2) + a = x2i0 + a−
i0∑

j=1

(x2j − x2j−1).(2.10)

Similarly we can represent x as

x =
i1∑

i=1

(x2i − x2i−1) + b = x2i1+1 + b−
i1∑

j=0

(x2j+1 − x2j)(2.11)

for some i1 = i1(x) and b = b(x), where 0 ≤ b < x2i1+2 − x2i1+1. For every
x ∈ [xi, xi+1) we define the functions g, h : R+ → R+ by

g(x) = f(x2i0 + a)−
i0∑

j=1

(f(x2j)− f(x2j−1)),(2.12)

h(x) = f(x2i1+1 + b)−
i1∑

j=1

(f(x2j+1)− f(x2j)),(2.13)

where i0 = i0(x), i1 = i1(x) and a = a(x), b = b(x).
Let us check that g and h belong to C. We will show this for g; the case

of h is similar.
We prove, first, that g is continuous. It suffices to check that g is contin-

uous at every point xi, where

xi :=
i∑

j=1

(x2j−1 − x2j−2).

Note that if x is close to xi then i0 = i − 1 if x < xi and i0 = i if x ≥ xi.
Moreover,

lim
x→xi−0

a(x) = x2i−1 − x2i−2, lim
x→xi+0

a(x) = 0.

So, we have

lim
x→xi−0

g(x) = lim
x→xi−0

{
f(x2i−2 + a)−

i−1∑

j=1

(f(x2j)− f(x2j−1))
}

= f(x2i−1)−
i−1∑

j=1

(f(x2j)− f(x2j−1)).
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On the other hand,

lim
x→xi+0

g(x) =
i∑

j=1

(f(x2j−1)− f(x2j−2)) = lim
x→xi−0

g(x).

So, g is continuous.
To prove that g is concave, first note that according to the definition

of g, there are constants ai and bi such that for xi < x < xi+1,

g(x) = f(x− ai)− bi.
Thus g is concave on (xi, xi+1). It remains to check that

g′left(xi − 0) ≥ g′right(xi + 0).(2.14)

Since g is concave on every interval (xi, xi+1), the one-sided derivatives exist.
But by the definition

g′left(xi − 0) = f ′(x2i−1 − 0), g′right(xi + 0) = f ′(x2i + 0).

Since x2i−1 < x2i and f is concave, f ′(x2i−1− 0) ≥ f ′(x2i + 0). Thus, (2.14)
is proved.

We now check that

g(x) + h(x) ≥ f(x) for every x ∈ R+.(2.15)

By (2.12) and (2.13) we get

g(x) + h(x) = f(x2i0 + a)−
i0∑

j=1

(f(x2j)− f(x2j−1))(2.16)

+ f(x2i1+1 + b)−
i1∑

j=1

(f(x2j+1)− f(x2j)).

Suppose first that 2i0 < 2i1 + 1. Since f is nondecreasing, the intervals
[f(x2j+1), f(x2j)), i0 < j ≤ i1, are pairwise disjoint, and are contained in
[f(x2i0+1)− f(0), f(x2i1+1) + b]. Hence

(2.17) f(x2i1+1 + b)−
i1∑

j=1

(f(x2j+1)− f(x2j))−
i0∑

j=1

(f(x2j)− f(x2j−1))

= f(x2i1+1 + b)− (f(x2i0+1)− f(0))−
i1∑

j=i0+1

(f(x2j+1)− f(x2j)) ≥ 0.

By (2.16), (2.17), and (2.10), we conclude that

g(x) + h(x) ≥ f(x2i0 + a) ≥ f(x).

In the same way we get (2.15) for 2i0 > 2i1 + 1.
Thus we have constructed two concave functions satisfying (2.15).
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Let us now prove that

‖g‖X0 ≤ ‖fχAt‖X0 , s‖h‖X1 ≤ ‖fχAc
t
‖X1 .(2.18)

Fix i > 0 and set

N :=
i∑

j=0

(x2j+1 − x2j), M := x2j+1.

Then from the definition of g it follows that

(gN )∗ ≤ ((fχAt)M )∗.

Recall that hN := hχ(0,N). The monotonicity of the norm leads to

‖(gN)∗‖X0 ≤ ‖((fχAt)M )∗‖X0 ≤ ‖fχAt‖X0

(see (1.4)). Taking the supremum over i > 0 (and therefore N), one gets by
(1.4) the first inequality of (2.18). The proof of the second is similar.

To complete the proof we need the following decomposition lemma:

Lemma 2.1 (Asekritova [1], see also [4, p. 316]). Let f, g, h ∈ C satisfy
f ≤ g + h. Then there exists a decomposition f = f0 + f1 with fj ∈ C such
that f0 ≤ g and f1 ≤ h.

Applying this lemma to our functions f , g, h we conclude that

K(f, t;X ∩ C) ≤ ‖f0‖X0 + t‖f1‖X1 ≤ ‖g‖X0 + t‖h‖X1(2.19)

≤ ‖fχAt‖X0 + t‖fχAc
t
‖X1 ≤ γK(f, t;X).
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