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Position dependent random maps in one
and higher dimensions

by

Wael Bahsoun (Victoria) and Paweł Góra (Montreal)

Abstract. A random map is a discrete-time dynamical system in which one of a
number of transformations is randomly selected and applied on each iteration of the
process. We study random maps with position dependent probabilities on the interval
and on a bounded domain of Rn. Sufficient conditions for the existence of an absolutely
continuous invariant measure for a random map with position dependent probabilities on
the interval and on a bounded domain of Rn are the main results.

1. Introduction. Let τ1, . . . , τK be a collection of transformations from
X to X. Usually, the random map T is defined by choosing τk with constant
probability pk, pk > 0,

∑K
k=1 pk = 1. The ergodic theory of such dynamical

systems was studied in [9] and in [8] (see also [7]).
There is a rich literature on random maps with position dependent prob-

abilities with τ1, . . . , τK being continuous contracting transformations (see
[10]).

In this paper, we deal with piecewise monotone transformations τ1, . . . , τK
and position dependent probabilities pk(x), k = 1, . . . ,K, where pk(x) > 0,∑K

k=1 pk(x) = 1, i.e., the pk’s are functions of position. We point out that
studying such dynamical systems was begun in [5], where sufficient conditions
for the existence of an absolutely continuous invariant measure were given.
The conditions in [5] are applicable only when τ1, . . . , τK are C2 expanding
transformations (see [5] for details). In this paper, we prove the existence
of an absolutely continuous invariant measure for a random map T on [a, b]
under milder conditions (see Section 4, Conditions (A) and (B)). Moreover,
we prove the existence of an absolutely continuous invariant measure for a
random map T on a bounded domain of Rn (see Section 6, Condition (C)).
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The paper is organized in the following way: In Section 2, following the
ideas of [5], we formulate the definition of a random map T with position de-
pendent probabilities and introduce its Perron–Frobenius operator. In Sec-
tion 3, we prove some properties of the Perron–Frobenius operator of T .
In Section 4, we prove the existence of an absolutely continuous invariant
measure for T on [a, b]. In Section 5, we give an example of a random map
T which does not satisfy the conditions of [5]; yet, it preserves an absolutely
continuous invariant measure under conditions (A) and (B). In Section 6,
we prove the existence of an absolutely continuous invariant measure for T
on a bounded domain of Rn. In Section 7, we give an example of a random
map in Rn that preserves an absolutely continuous invariant measure.

2. Preliminaries. Let (X,B, λ) be a measure space, where λ is an
underlying measure. Let τk : X → X, k = 1, . . . ,K, be piecewise one-
to-one, non-singular transformations on a common partition P of X: P =
{I1, . . . , Iq} and τk,i = τk|Ii , i = 1, . . . , q, k = 1, . . . ,K (P can be found
by considering finer partitions). We define the transition function for the
random map T = {τ1, . . . τK ; p1(x), . . . , pK(x)} as follows:

P(x,A) =
K∑

k=1

pk(x)χA(τk(x)),

where A is any measurable set and {pk(x)}Kk=1 is a set of position dependent
measurable probabilities, i.e.,

∑K
k=1 pk(x) = 1, pk(x) ≥ 0 for any x ∈ X, and

χA denotes the characteristic function of the set A. We define T (x) = τk(x)
with probability pk(x) and TN (x) = τkN ◦τkN−1 ◦· · ·◦τk1(x) with probability
pkN (τkN−1 ◦ · · · ◦ τk1(x)) · pkN−1(τkN−2 ◦ · · · ◦ τk1(x)) · · · pk1(x). The transition
function P induces an operator P∗ on measures on (X,B) defined by

P∗µ(A) =
�
P(x,A) dµ(x) =

K∑

k=1

�
pk(x)χA(τk(x)) dµ(x)

=
K∑

k=1

�

τ−1
k (A)

pk(x) dµ(x) =
K∑

k=1

q∑

i=1

�

τ−1
k,i (A)

pk(x) dµ(x).

We say that the measure µ is T -invariant iff P∗µ = µ, i.e.,

µ(A) =
K∑

k=1

�

τ−1
k (A)

pk(x) dµ(x), A ∈ B.

If µ has density f with respect to λ, then P∗µ also has a density which
we denote by PT f . By change of variables, we obtain
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�

A

PT f(x) dλ(x) =
K∑

k=1

q∑

i=1

�

τ−1
k,i (A)

pk(x)f(x) dλ(x)

=
K∑

k=1

q∑

i=1

�

A

pk(τ
−1
k,i x)f(τ−1

k,i x)
1

Jk,i(τ
−1
k,i )

dλ(x),

where Jk,i is the Jacobian of τk,i with respect to λ. Since this holds for any
measurable set A we obtain an a.e. equality

(PT f)(x) =
K∑

k=1

q∑

i=1

pk(τ
−1
k,i x)f(τ−1

k,i x)
1

Jk,i(τ
−1
k,i )

χτk(Ii)(x)

or

(PT f)(x) =
K∑

k=1

Pτk(pkf)(x),

where Pτk is the Perron–Frobenius operator corresponding to the transfor-
mation τk (see [1] for details). We call PT the Perron–Frobenius operator of
the random map T . It is main tool in this paper, with very useful properties.

3. Properties of the Perron–Frobenius operator of T . The prop-
erties of PT resemble the properties of the classical Perron–Frobenius oper-
ator of a single transformation.

Lemma 3.1. PT has the following properties:

(i) PT is linear ;
(ii) PT is non-negative; i.e., f ≥ 0⇒ PT f ≥ 0;
(iii) PT f = f ⇔ µ = f · λ is T -invariant ;
(iv) ‖PT f‖1 ≤ ‖f‖1, where ‖ · ‖1 denotes the L1 norm;
(v) PT◦R = PR ◦ PT . In particular , PNT f = PTN f .

Proof. The proofs of (i)–(iv) are analogous to those for a single transfor-
mation. For the proof of (v), let T and R be two random maps corresponding
to {τ1, . . . , τK ; p1, . . . , pK} and {ζ1, . . . , ζL; r1, . . . , rL} respectively. We de-
fine {τk}Kk=1 and {ζl}Ll=1 on a common partition P. We have

PR(PT f) = PR

( K∑

k=1

Pτk(pkf)
)

=
L∑

l=1

K∑

k=1

Pζl(rlPτk(pkf))

=
L∑

l=1

K∑

k=1

q∑

i=1

rl(ζ
−1
l,i )[Pτk(pkf)](ζ−1

l,i )
1

Jζ,l,i(ζ
−1
l,i )

χζl,i(Ii)
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=
K∑

k=1

L∑

l=1

q∑

j=1

q∑

i=1

rl(ζ
−1
l,i )pk(τ

−1
k,j ◦ ζ−1

l,i )f(τ−1
k,j ◦ ζ−1

l,i )

× 1

Jτ,k,j(τ
−1
k,j ◦ ζ−1

l,i )

1

Jζ,l,i(ζ
−1
l,i )

χτk(Ij)(ζ
−1
l,i )χζl,i(Ii)

=
K∑

k=1

L∑

l=1

Pτk◦ζl (pk(ζl)rlf) = PT◦Rf.

4. The existence of an absolutely continuous invariant measure
on [a, b]. Let (I,B, λ) be a measure space, where λ is normalized Lebesgue
measure on I = [a, b]. Let τk : I → I, k = 1, . . . ,K, be piecewise one-to-
one and differentiable, non-singular transformations on a partition P of I:
P = {I1, . . . , Iq} and τk,i = τk|Ii , i = 1, . . . , q, k = 1, . . . ,K. Denote by
V (·) the standard one-dimensional variation of a function, and by BV(I)
the space of functions of bounded variation on I equipped with the norm
‖ · ‖BV = V (·) + ‖ · ‖1.

Let gk(x) = pk(x)/|τ ′k(x)|, k = 1, . . . ,K. We assume the following con-
ditions:

Condition (A).
∑K

k=1 gk(x) < α < 1, x ∈ I.

Condition (B). gk ∈ BV(I), k = 1, . . . ,K.

Under the above conditions our goal is to prove

VIP
n
T f ≤ AVIf +B‖f‖1(4.1)

for some n ≥ 1, where 0 < A < 1 and B > 0. The inequality (4.1) guarantees
the existence of a T -invariant measure absolutely continuous with respect
to Lebesgue measure and the quasi-compactness of the operator PT with all
the consequences of this fact (see [1]). We will need a number of lemmas:

Lemma 4.1. Let f ∈ BV(I). Suppose τ : I → J is differentiable and
τ ′(x) 6= 0, x ∈ I. Set φ = τ−1 and let g(x) = p(x)/|τ ′(x)| ∈ BV(I). Then

VJ(f(φ)g(φ)) ≤ (VIf + sup
I
f)(VIg + sup

I
g).

Proof. First, note that we have dropped all the k, i indices to simplify
the notation. The proof follows in the same way as in Lemma 3 of [9].

Lemma 4.2. Let T satisfy conditions (A) and (B). Then for any f ∈
BV(I),

VIPT f ≤ AVIf +B‖f‖1,
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where

A = 3α+ max
1≤i≤q

K∑

k=1

VIigk, B = 2βα+ β max
1≤i≤q

K∑

k=1

VIigk,

with β = max1≤i≤q(λ(Ii))−1.

Proof. First, we will refine the partition P to satisfy an additional con-
dition. Let η > 0 be such that

∑K
k=1(gk(x) + εk) < α whenever |εk| < η,

k = 1, . . . ,K. Since gk, k = 1, . . . ,K, are of bounded variation we can find
a finite partition K such that for any k = 1, . . . ,K,

|gk(x)− gk(y)| < η

for x, y in the same element of K. Without loss of generality, we can assume
that our original partition is the join P ∨ K. Then

max
1≤i≤q

K∑

k=1

sup
x∈Ii

gk(x) < α.

We have VI(PT f) = VI(
∑K

k=1 Pτk(pkf)). We will estimate this variation.
Let φk,i = τ−1

k,i , k = 1, . . . ,K, i = 1, . . . , q. We have

VI

( K∑

k=1

Pτk(pkf)
)

= VI

( K∑

k=1

q∑

i=1

f(φk,i)gk(φk,i)χτk(Ii)

)
(4.2)

≤
K∑

k=1

q∑

i=1

[|f(ai−1)| |gk(ai−1)|+ |f(ai)| |gk(ai)|]

+
K∑

k=1

q∑

i=1

Vτk(Ii)[f(φk,i)gk(φk,i)].

First, we estimate the first sum on the right hand side of (4.2):

(4.3)
K∑

k=1

q∑

i=1

[|f(ai−1)| |gk(ai−1)|+ |f(ai)|‖gk(ai)|]

=
q∑

i=1

[
|f(ai−1)|

( K∑

k=1

|gk(ai−1)|
)

+ |f(ai)|
( K∑

k=1

|gk(ai)|
)]

≤ α
( q∑

i=1

(|f(ai−1)|+ |f(ai)|)
)

≤ α
( q∑

i=1

(
VIif + (λ(Ii))−1

�

Ii

f dλ
))

= α(VIf + β‖f‖1).
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We now estimate the second term on the right hand side of (4.2). Using
Lemma 4.1 we obtain

(4.4)
K∑

k=1

q∑

i=1

Vτk(Ii)[f(φk,i)gk(φk,i)]

≤
K∑

k=1

q∑

i=1

(VIif + sup
Ii

f)(VIigk + sup
Ii

gk)

≤
q∑

i=1

(
2VIif + β

�

Ii

f dλ
)(

max
1≤i≤q

K∑

k=1

(VIigk + sup
Ii

gk)
)

≤ (2VIf + β‖f‖1)
(

max
1≤i≤q

K∑

k=1

VIigk + α
)
.

Thus, using (4.3) and (4.4), we obtain

VIPT f ≤
(

3α+ max
1≤i≤q

K∑

k=1

VIigk

)
VIf +

(
2βα+ β max

1≤i≤q

K∑

k=1

VIigk

)
‖f‖1.

In the following two lemmas we show that the constants α as well as
max1≤i≤q

∑K
k=1 VIigk decrease when we consider higher iterations T n instead

of T . The constant β obviously increases, but this is not important.

Lemma 4.3. Let T be a random map which satisfies condition (A). Then,
for x ∈ I, ∑

w∈{1,...,K}N

pw(x)
|T ′w(x)| < αN ,(4.5)

where Tw(x) = τkN ◦τkN−1 ◦· · ·◦τk1(x) and pw(x) = pkN (τkN−1 ◦· · ·◦τk1(x)) ·
pkN−1(τkN−2 ◦ · · · ◦ τk1(x)) · · · pk1(x) define the random map TN .

Proof. We have

TN (x) = τkN ◦ τkN−1 ◦ · · · ◦ τk1(x)

with probability

pkN (τkN−1 ◦ · · · ◦ τk1(x)) · pkN−1(τkN−2 ◦ · · · ◦ τk1(x)) · · · pk1(x).

The maps defining TN may be indexed by w ∈ {1, . . . ,K}N . Set

Tw(x) = τkN ◦ τkN−1 ◦ · · · ◦ τk1(x),

where w = (k1, . . . , kN ), and

pw(x) = pkN (τkN−1 ◦ · · · ◦ τk1(x)) · pkN−1(τkN−2 ◦ · · · ◦ τk1(x)) · · · pk1(x).

Then

T ′w(x) = τ ′kN (τkN−1 ◦ · · · ◦ τk1(x))τ ′kN−1
(τkN−2 ◦ · · · ◦ τk1(x)) · · · τ ′k1

(x).
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Suppose that T satisfies condition (A). We will prove (4.5) using induction
on N . For N = 1, we have

∑

w∈{1,...,K}

pw(x)
|T ′w(x)| < α

by condition (A). Assume (4.5) is true for N − 1. Then

∑

w∈{1,...,K}N

pw(x)
|T ′w(x)| =

∑

w∈{1,...,K}N−1

K∑

k=1

pk(x)pw(τk(x))
|τ ′k(x)| |T ′w(τk(x))|

≤
( K∑

k=1

pk(x)
|τ ′k(x)|

)( ∑

w∈{1,...,K}N−1

pw(τk(x))
|T ′w(τk(x))|

)
< α · αN−1 = αN .

Lemma 4.4. Let gw = pw/|T ′w|, where Tw and pw are defined in Lem-
ma 4.3 and w ∈ {1, . . . ,K}n. Define

W1 ≡ max
1≤i≤q

K∑

k=1

VIigk, Wn ≡ max
J∈P(n)

∑

w∈{1,...,K}n
VJgw,

where P(n) is the common monotonicity partition for all Tw. Then, for all
n ≥ 1,

Wn ≤ nαn−1W1,

where α is defined in condition (A).

Proof. We prove the lemma by induction on n. For n = 1 the assertion
is true by definition of Wn. Assume that it is true for n, i.e.,

Wn ≤ nαn−1W1.

Let J ∈ P(n+1) and x0 < x1 < · · · < xl be a sequence of points in J . Then

∑

w

l−1∑

j=0

|gw(xj+1)− gw(xj)| =
l−1∑

j=0

∑

w∈{1,...,K}n+1

|gw(xj+1)− gw(xj)|

≤
l−1∑

j=0

∑

w∈{1,...,K}n

K∑

k=1

|gw(τk(xj+1))gk(xj+1)− gw(τk(xj))gk(xj)|

≤
l−1∑

j=0

∑

w∈{1,...,K}n

K∑

k=1

|gw(τk(xj+1))gk(xj+1)− gw(τk(xj+1))gk(xj)|

+
l−1∑

j=0

∑

w∈{1,...,K}n

K∑

k=1

|gw(τk(xj+1))gk(xj)− gw(τk(xj))gk(xj)|
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≤
l−1∑

j=0

K∑

k=1

|gk(xj+1)− gk(xj)|
∑

w∈{1,...,K}n
gw(τk(xj+1))

+
l−1∑

j=0

K∑

k=1

gk(xj)
∑

w∈{1,...,K}n
|gw(τk(xj+1))− gw(τk(xj))|

≤ αn
l−1∑

j=0

K∑

k=1

|gk(xj+1)− gk(xj)|

+ α

l−1∑

j=0

∑

w∈{1,...,K}n
|gw(τk(xj+1))− gw(τk(xj))|

≤ αnW1 + αWn ≤ αnW1 + nαnW1 = (n+ 1)αnW1.

We used condition (A) and Lemma 4.3.

Theorem 4.5. Let T be a random map which satisfies conditions (A)
and (B). Then T preserves a measure which is absolutely continuous with
respect to Lebesgue measure. The operator PT is quasi-compact on BV(I)
(see [1]).

Proof. Let N be such that AN = 3αN +WN < 1. Then, by Lemma 4.3,
∑

w∈{1,...,K}N
gw(x) < αN , x ∈ I.

We refine the partition P (N) as in the proof of Lemma 4.2, to have

max
J∈PN

∑

w∈{1,...,K}N
sup
J
gw < αN .

Then, by Lemma 4.2, we get

‖PNT f‖BV ≤ AN‖f‖BV +BN‖f‖1,
where BN = βN (2αN +WN ), βN = maxJ∈PN (λ(J))−1. The theorem follows
by the standard technique (see [1]).

Remark 4.6. It is enough to assume that condition (A) is satisfied for
some iterate Tm,m ≥ 1.

Remark 4.7. The number of absolutely continuous invariant measures
for random maps has been studied in [4]. The proof of [4], which uses graph
theoretic methods, goes through analogously in our case, i.e., when T is a
random map with position dependent probabilities.
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5. Example. We present an example of a random map T which does
not satisfy the conditions of [5], yet it preserves an absolutely continuous
invariant measure under conditions (A) and (B).

Example 5.1. Let T be a random map which is given by {τ1, τ2; p1(x),
p2(x)}, where

τ1(x) =
{

2x for 0 ≤ x ≤ 1/2,

x for 1/2 < x ≤ 1,
p1(x) =

{
2/3 for 0 ≤ x ≤ 1/2,

1/3 for 1/2 < x ≤ 1,

τ2(x) =
{
x+ 1/2 for 0 ≤ x ≤ 1/2,

2x− 1 for 1/2 < x ≤ 1,
p2(x) =

{
1/3 for 0 ≤ x ≤ 1/2,

2/3 for 1/2 < x ≤ 1.

Then
∑2

k=1 gk(x) = 2/3 < 1. Therefore, T satisfies conditions (A) and (B).
Consequently, by Theorem 4.5, T preserves an invariant measure abso-
lutely continuous with respect to Lebesgue measure. Notice that τ1, τ2 are
piecewise linear Markov maps defined on the same Markov partition P:
{[0, 1/2], [1/2, 1]}. For such maps the Perron–Frobenius operator reduces to
a matrix (see [1]). The corresponding matrices are:

Pτ1 =
(

1/2 1/2

0 1

)
, Pτ2 =

(
0 1

1/2 1/2

)
.

Their invariant densities are fτ1 = [0, 2] and fτ2 = [2/3, 4/3]. The Perron–
Frobenius operator of the random map T is given by

PT =
(

2/3 0

0 1/3

)(
1/2 1/2

0 1

)
+
(

1/3 0

0 2/3

)(
0 1

1/2 1/2

)
=
(

1/3 2/3

1/3 2/3

)
.

If the invariant density of T is f = [f1, f2], normalized by f1 + f2 = 2 and
satisfying the equation fPT = f , then f1 = 2/3 and f2 = 4/3.

6. The existence of an absolutely continuous invariant measure
in Rn. Let S be a bounded region in Rn and λn be Lebesgue measure on S.
Let τk : S → S, k = 1, . . . ,K, be piecewise one-to-one and C2, non-singular
transformations on a partition P of S, P = {S1, . . . , Sq} and τk,i = τk|Si ,
i = 1, . . . , q, k = 1, . . . ,K. Suppose each Si is a bounded closed domain
having a piecewise C2 boundary of finite (n− 1)-dimensional measure. We
assume that the faces of ∂Si meet at angles bounded uniformly away from 0.
We will also assume that the probabilities pk(x) are piecewise C1 functions
on the partition P. Let Dτ−1

k,i (x) be the derivative matrix of τ−1
k,i at x. We

assume:



280 W. Bahsoun and P. Góra

Condition (C).

max
1≤i≤q

K∑

k=1

pk(x)‖Dτ−1
k,i (τk,i(x))‖ < σ < 1.

Let supx∈τk,i(Si) ‖Dτ
−1
k,i (x)‖ =: σk,i and supx∈Si pk(x) =: πk,i. Using the

smoothness of Dτ−1
k,i ’s and pk’s we can refine the partition P to satisfy

Condition (C′).
K∑

k=1

max
1≤i≤q

σk,iπk,i < σ < 1.

Under this condition, our goal is to prove the existence of an a.c.i.m. for
the random map T = {τ1, . . . , τK ; p1, . . . , pK}. The main tool of this section
is the multidimensional notion of variation defined using derivatives in the
distributional sense (see [3]):

V (f) =
�

Rn
‖Df‖ = sup

{ �

Rn
f div(g) dλn : g = (g1, . . . , gn) ∈ C1

0(Rn,Rn)
}
,

where f ∈ L1(Rn) has bounded support, Df denotes the gradient of f
in the distributional sense, and C1

0(Rn,Rn) is the space of continuously
differentiable functions from Rn into Rn having a compact support. We will
use the following property of variation which is derived from [3, Remark
2.14]: If f = 0 outside a closed domain A whose boundary is Lipschitz
continuous, f |A is continuous, f |int(A) is C1, then

V (f) =
�

int(A)

‖Df‖ dλn +
�

∂A

|f | dλn−1,

where λn−1 is the n− 1-dimensional measure on the boundary of A. In this
section we shall consider the Banach space (see [3, Remark 1.12])

BV(S) = {f ∈ L1(S) : V (f) <∞},
with the norm ‖f‖BV = V (f) + ‖f‖1. We adapt the following two lemmas
from [6]. Their proofs are exactly the same as in [6].

Lemma 6.1. Consider Si ∈ P. Let x be a point in ∂Si and y = τk(x)
a point in ∂(τk(Si)). Let Jk,i be the Jacobian of τk|Si at x and J0

k,i be the
Jacobian of τk|∂Si at x. Then

J0
k,i

Jk,i
≤ σk,i.

Fix 1 ≤ i ≤ q. Let Z denote the set of singular points of ∂Si. Let us
construct for any x ∈ Z the largest cone with vertex at x and which lies
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completely in Si. Let θ(x) denote the vertex angle of this cone. Then define

β(Si) = min
x∈Z

θ(x).

Since the faces of ∂Si meet at angles bounded away from 0, we have β(Si)
> 0. Let α(Si) = π/2 + β(Si) and

a(Si) = |cos(α(Si))|.
Now we will construct a C1 field of segments Ly, y ∈ ∂Si, every Ly being

a central ray of a regular cone contained in Si, with vertex angle at y greater
than or equal to β(Si).

We start at points y ∈ Z where the minimal angle β(Si) is attained,
defining Ly to be central rays of the largest regular cones contained in Si.
Then we extend this field of segments to the C1 field we want, making Ly
short enough to avoid overlapping. Let δ(y) be the length of Ly, y ∈ ∂Si.
By the compactness of ∂Si we have

δ(Si) = inf
y∈∂Si

δ(y) > 0.

Now, we shorten the Ly of our field, making them all of length δ(Si).

Lemma 6.2. For any Si, i = 1, . . . , q, if f is a C1 function on Si, then
�

∂Si

f(y) dλn−1(y) ≤ 1
a(Si)

(
1

δ(Si)

�

Si

f dλn + Vint(Si)(f)
)
.

Our main technical result is the following:

Theorem 6.3. If T is a random map which satisfies condition (C), then

V (PT f) ≤ σ(1 + 1/a)V (f) +
(
M +

σ

aδ

)
‖f‖1,

where a = min{a(Si) : i = 1, . . . , q} > 0, δ = min{δ(Si) : i = 1, . . . , q} > 0,
and

Mk,i = sup
x∈Si

(
Dpk(x)− DJk,i

Jk,i
pk(x)

)
, M =

K∑

k=1

max
1≤i≤q

Mk,i.

Proof. We have V (PT f) ≤∑K
k=1 V (Pτk(pkf)). To estimate V (Pτk(pkf)),

let

Fk,i =
f(τ−1

k,i )pk(τ
−1
k,i )

Jk,i(τ
−1
k,i )

, Rk,i = τk,i(Si), i = 1, . . . , q, k = 1, . . . ,K.

Then
�

Rn
‖DPτk(pkf)‖ dλn ≤

q∑

i=1

�

Rn
‖D(Fk,iχRi)‖ dλn

≤
q∑

i=1

( �

Rn
‖D(Fk,i)χRi‖ dλn +

�

Rn
‖Fk,i(DχRi)‖ dλn

)
.
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Now, for the first integral we have
�

Rn
‖D(Fk,i)χRi‖ dλn =

�

Ri

‖D(Fk,ipk)‖ dλn

≤
�

Ri

∥∥∥∥D(f(τ−1
k,i ))

pk(τ
−1
k,i )

Jk,i(τ
−1
k,i )

∥∥∥∥ dλn +
�

Ri

∥∥∥∥f(τ−1
k,i )D

(
pk(τ

−1
k,i )

Jk,i(τ
−1
k,i )

)∥∥∥∥ dλn

≤
�

Ri

‖Df(τ−1
k,i )‖ ‖Dτ−1

k,i ‖
pk(τ

−1
k,i )

Jk,i(τ
−1
k,i )

dλn +
�

Ri

‖f(τ−1
k,i )‖ Mk

Jk,i(τ
−1
k,i )

dλn

≤ σk,iπk,i
�

Si

‖Df‖ dλn +Mk

�

Si

‖f‖ dλn.

For the second integral we have

�

Rn
‖Fk,i(DχRi)‖ dλn =

�

∂Ri

|f(τ−1
k,i ))|

pk(τ
−1
k,i )

Jk,i(τ
−1
k,i )

dλn−1 =
�

∂Si

|f |pk
J0
k,i

Jk,i
dλn−1.

By Lemma 4.3, J0
k,i/Jk,i ≤ σk,i. Using Lemma 4.2, we get

�

Rn
‖Fk,i(DχRi)‖ dλn ≤ σk,iπk,i

�

∂Si

|f | dλn−1

≤ σk,iπk,i
a

VSi(f) +
σk,iπk,i
aδ

�

Si

|f | dλn.

Using Condition (C′), summing first over i, we obtain

V (Pτk(pkf)) ≤ ( max
1≤i≤q

σk,iπk,i)(1 + 1/a)V (f)

+
(

max
1≤i≤q

Mk,i +
max1≤i≤q σk,iπk,i

aδ

)
‖f‖1.

Then summing over k yields the assertion.

Theorem 6.4. Let T be a random map which satisfies condition (C).
If σ(1 + 1/a) < 1, then T preserves a measure which is absolutely continu-
ous with respect to Lebesgue measure. The operator PT is quasi-compact on
BV(S) (see [1]).

Proof. This follows by the standard technique (see [1]).

7. Example in R2. In this section, we present an example of a random
map which satisfies condition (C) of Theorem 6.3 and thus it preserves an
absolutely continuous invariant measure.
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Example 7.1. Let T be a random map given by {τ1, τ2; p1(x), p2(x)},
where τ1, τ2 : I2 → I2 are defined by

τ1(x1, x2)

=





(3x1, 2x2) for (x1, x2) ∈ S1 = {0 ≤ x1, x2 ≤ 1/3},
(3x1 − 1, 2x2) for (x1, x2) ∈ S2 = {1/3 < x1 ≤ 2/3; 0 ≤ x2 ≤ 1/3},
(3x1 − 2, 2x2) for (x1, x2) ∈ S3 = {2/3 < x1 ≤ 1; 0 ≤ x2 ≤ 1/3},
(3x1, 3x2 − 1) for (x1, x2) ∈ S4 = {0 < x1 ≤ 1/3; 1/3 < x2 ≤ 2/3},
(3x1 − 1, 3x2 − 1) for (x1, x2) ∈ S5 = {1/3 < x1, x2 ≤ 2/3},
(3x1 − 2, 3x2 − 1) for (x1, x2) ∈ S6 = {2/3 < x1 ≤ 1; 1/3 < x2 ≤ 2/3},
(3x1, 3x2 − 2) for (x1, x2) ∈ S7 = {0 ≤ x1 ≤ 1/3; 2/3 < x2 ≤ 1},
(3x1 − 1, 3x2 − 2) for (x1, x2) ∈ S8 = {1/3 < x1 ≤ 2/3; 2/3 < x2 ≤ 1},
(3x1 − 2, 3x2 − 2) for (x1, x2) ∈ S9 = {2/3 < x1 ≤ 1; 2/3 < x2 ≤ 1},

τ2(x1, x2) =





(3x1, 3x2) for (x1, x2) ∈ S1,

(2− 3x1, 3x2) for (x1, x2) ∈ S2,

(3x1 − 2, 3x2) for (x1, x2) ∈ S3,

(3x1, 3x2 − 1) for (x1, x2) ∈ S4,

(2− 3x1, 3x2 − 1) for (x1, x2) ∈ S5,

(3x1 − 2, 3x2 − 1) for (x1, x2) ∈ S6,

(3x1, 3x2 − 2) for (x1, x2) ∈ S7,

(2− 3x1, 3x2 − 2) for (x1, x2) ∈ S8,

(3x1 − 2, 3x2 − 2) for (x1, x2) ∈ S9,,

and

p1(x) =





0.215 for (x1, x2) ∈ S1,

0.216 for (x1, x2) ∈ S2,

0.216 for (x1, x2) ∈ S3,

0.216 for (x1, x2) ∈ S4,

0.215 for (x1, x2) ∈ S5,

0.216 for (x1, x2) ∈ S6,

0.216 for (x1, x2) ∈ S7,

0.216 for (x1, x2) ∈ S8,

0.215 for (x1, x2) ∈ S9,

p2(x) =





0.785 for (x1, x2) ∈ S1,

0.784 for (x1, x2) ∈ S2,

0.784 for (x1, x2) ∈ S3,

0.784 for (x1, x2) ∈ S4,

0.785 for (x1, x2) ∈ S5,

0.784 for (x1, x2) ∈ S6,

0.784 for (x1, x2) ∈ S7,

0.784 for (x1, x2) ∈ S8,

0.785 for (x1, x2) ∈ S9.

The derivative matrix of τ−1
1,i is

(
1/3 0

0 1/3

)
or

(
1/3 0

0 1/2

)
,
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and the derivative matrix of τ−1
2,i is

(
1/3 0

0 1/3

)
or

( −1/3 0

0 1/3

)
.

Therefore, the Euclidean matrix norm ‖Dτ−1
1,i ‖ is

√
2/3 or

√
13/6, and the

Euclidean matrix norm ‖Dτ−1
2,i ‖ is

√
2/3. Then

max
1≤i≤q

K∑

k=1

pk(x)‖Dτ−1
k,i (τk,i(x))‖ ≤ 0.216

√
13
6

+ 0.785

√
2

3
.

For this partition P, we have a = 1, which implies

σ(1 + 1/a) = 2
(

0.216

√
13
6

+ 0.785

√
2

3

)
≈ 0.9998 < 1.

Therefore, by Theorem 6.4, the random map T admits an absolutely contin-
uous invariant measure. Notice that τ1, τ2 are piecewise linear Markov maps
defined on the same Markov partition P = {S1, . . . , S9}. For such maps the
Perron–Frobenius operator reduces to a matrix and the invariant density is
constant on the elements of the partition (see [1]). The Perron–Frobenius
operator of T is represented by the matrix

M = Π1M1 +Π2M2,

where M1, M2 are the matrices of Pτ1 and Pτ2 respectively, and Π1, Π2 are
the diagonal matrices of p1(x) and p2(x) respectively. Then M is given by

M = p1 Id9 ·




1/6 1/6 1/6 1/6 1/6 1/6 0 0 0

1/6 1/6 1/6 1/6 1/6 1/6 0 0 0

1/6 1/6 1/6 1/6 1/6 1/6 0 0 0

1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9

1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9

1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9

1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9

1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9

1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9
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+ p2 Id9 ·




1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9

1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9

1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9

1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9

1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9

1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9

1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9

1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9

1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9




=




a a a a a a b b b

c c c c c c d d d

c c c c c c d d d

e e e e e e e e e

e e e e e e e e e

e e e e e e e e e

e e e e e e e e e

e e e e e e e e e

e e e e e e e e e




,

where

p1 = (0.215, 0.216, 0.216, 0.216, 0.215, 0.216, 0.216, 0.216, 0.215),

p2 = (0.785, 0.784, 0.784, 0.784, 0.785, 0.784, 0.784, 0.784, 0.785),

Id9 is the 9× 9 identity matrix and

a = 0.12306, b = 0.087222, c = 0.12311,

d = 0.087111, e = 0.11111.

The invariant density of T is

f = (f1, f2, f3, f4, f5, f6, f7, f8, f9), fi = f|Si , i = 1, . . . , 9,

normalized by

f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8 + f9 = 9,

and satisfying the equation fM = f . Then

f1 = f2 = f3 = f4 = f5 = f6 =
9

6.29739
, f7 = f8 = f9 =

0.29739
3

f1.
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