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Boundedness of higher order commutators of oscillatory
singular integrals with rough kernels

by

HuoxionGg Wu (Xiamen)

Abstract. The author studies the commutators generated by a suitable function a(z)
on R™ and the oscillatory singular integral with rough kernel 2(z)|z|™ and polynomial
phase, where (2 is homogeneous of degree zero on R", and a(x) is a BMO function or
a Lipschitz function. Some mapping properties of these higher order commutators on
LP(R™), which are essential improvements of some well known results, are given.

1. Introduction. We will work on R™, n > 2. Let {2 be a function
homogeneous of degree zero with mean value zero on the unit sphere S
Define the oscillatory singular integral operator 1" by

Ta) = oy | eiPan & =Y) 0y
(1) fz)=p Rﬂn prRlOOLL

where P(z,y) is a real-valued polynomial on R™ x R™. Let k be a positive
integer and a(x) a suitable function on R™. Define the kth order commutator
T, 1 generated by T" and a by

(2) Topf(z) =pv. | P (a(z)-a(y))
Rn

g 20z —y)

d Co(R™).

The operators (1) and (2) are called the oscillatory operators with poly-
nomial phase. As is well known, operators of this type are very useful in the
study of Hilbert transforms along curves, singular integrals supported on
lower dimensional varieties, singular Radon transforms etc. There has been
a considerable amount of relevant research since Ricci and Stein’s pioneering
paper [20] (see e.g. [3, 15, 10, 7, 13]). In this paper, we will focus on the
operator (2) in two cases described below.

1.1. Commutators generated by a BMO function. For a € BMO(R})
(the radial BMO function class), Ding and Lu [7] (resp., Lu and Wu [13])
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proved the weighted LP-boundedness of T, . (1 <p<o0) if 2€ Llogt L(S"1)
(resp., 2 € Bg’D(S"_I), where BS’O denotes the block space introduced by
Jiang and Lu [12]). For general a € BMO(R"), Ding [5] showed that Ty, j, is
bounded on LP(R™) (1 < p < oo) with bound CHaH]]%MO(R”) independent of
the coefficients of P(z,y) (also see [9]) if £2 € [J,~; L"(S™!). Recently, Ma
and Hu [16] extended the result in [5] to the case of £2 € L(log™ L)k+1(Sn~1)
for p = 2.

Obviously, the condition that £2 € L(log™L)*+1(S"~1) greatly depends
on the order k of T, ;. Moreover, for p # 2, 1 < p < oo, Ma and Hu [16]
did not obtain the corresponding result. It is natural to ask whether there
exists a condition on {2, which is strictly weaker than 2 € J,-, L"(S"1)
and independent of k, such that T, j is bounded on LP(R™) for 1 < p < occ.
In this paper, we will give a positive answer to the above problem. Before
stating the main result, we introduce some concepts (see [12]).

DEFINITION 1. A g-block on S" ! is an L¢ (1 < g < oo) function b(-)
that satisfies

(i) supp(d) € Q,  (ii) [Ib]l pasn-1) < QY4
where Q = S" 1N {y € R": |y —¢| < g for some ¢ € "1 and g € (0,1]}.
DEFINITION 2. The block spaces BO’O on S"~! are defined by

BYO(Sm ) = {QeLl(S” b ZCb MOD({C})<oo}

where each (s is a complex number, each b, is a g-block supported in Qs,

and
MOO({Cs}) = Z|C|{1—l—log a. |}

It should be pointed out that the method of block decomposition for func-
tions was invented by Taibleson and Weiss [21] in the study of convergence
of Fourier series. Later on, many applications of the block decomposition to
harmonic analysis were discovered (see e.g. [1, 11, 12, 13, 14]). For further
background and information about spaces generated by blocks and their ap-
plications to harmonic analysis, one can consult the book [12]. In particular,
Keitoku and Sato [11] showed that for any ¢ > 1,

U Lr(sn—l) C B([J),O(Sn—l)’
r>1

which is a proper inclusion. And we easily see from [11] that BS’O(S”_I) is
not contained in L(log™L)!*¢(S"~1) for any e > 0 although the relationship
between BS’O(S”_I) and Llog™L(S™ 1) remains open.
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DEFINITION 3 (see [4]). A locally integrable function a(z) will be said
to belong to BLO(R™) if there is a constant C' such that for any cube Q,

— inf <C
mq(a) ;gQa(x) <C,

where mg(a) = |Q|™* §galz)da.
If a € BLO(R"), then we define ||al|gr,orn) =supg{mq(a)—infieq a(z)}.
Obviously, L®(R") ¢ BLO(R") ¢ BMO(R™), and if a € BLO(R™), then

(3) lallBMmo®n) < 2|lallBLo(®n)-

Now let us formulate our main result as follows.

THEOREM 1. Suppose that {2 is homogeneous of degree zero on R"™ and
belongs to BY°(S"1) for some q > 1 with mean value zero on S"', a €

BMO(R"™), and P(z,y) is a real-valued polynomial. If a € BLO(R™) and a
is subharmonic, then for 1 < p < oo,

ITusfl < Cllallsr o |1l
where C' is independent of the coefficients of P(x,y).

REMARK 1. A typical example of a BMO function a satisfying the re-
strictive conditions of Theorem 1 is log|z|.

1.2. Commutators generated by a Lipschitz function. Let AB(R”) denote
the Lipschitz space defined by

Bl+1
A7 £ @) }
Ag(R™) = : . = su —r " <00y,
s(R") {f HfHA" x,heR’P;h;éO )P
where A} f(z) = f(z + h) — f(m), AMFLf(z) = A} (AFTLF) (2). Tt is easy to
see that if 0 < 3 < 1 and f € Ag, then

(4) f@) = FWI < |z =91l 4, Y,y €R™

For a € Ag(R™) and k € N, M. Paluszyiiski [19] considered the following
commutators related to singular integrals:

= 2r—y
Touf(2) = . § T ata) ~ )0
Rn
and proved that if £2 € Lip;(S™ '), then T is bounded from LP(R™) to
L"(R™), where 1/r =1/p — 3/n with 0 < 3 < 1.

This result indicates that T’y ) enjoys the same mapping properties on
the Lebesgue spaces as the fractional integral operators T, 3 defined by (see
e.g. [17, 18, 8])
2z —y
©=9) t(y) ay.

|z —y|™

TQﬂf(J}) = p.v. S
R™
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This naturally leads to the question whether T, 1 has the same boundedness
properties as the fractional oscillatory integral operator. This problem will
be resolved by our next Theorem 2.

For fractional oscillatory singular integral operators with smooth kernel,
Ricci and Stein [20] showed the following result.

THEOREM A. For each d > 2, there exists an aq > 0 such that whenever
(i) P(x,y) is a real polynomial of total degree < d, which is nontrivial in the
sense that it cannot be written as Py(x)+P1(y), and (i) K(z,y) is a function
which satisfies | K (z,y)| < Clz—y| ™", [VK (2,7)| < Clz—y|™" 7L then
the operator Ty defined by

Tsf(x) = | VK (2, y)f(y) dy
Rn
is bounded on LP(R™), where 0 < < aq(1/2 — |1/p — 1/2|), and the LP
norm of the operator does depend on the polynomial P(x,y).

In 1996, Y. Ding [6] improved the above result as follows.

THEOREM B. Suppose that {2 is homogeneous of degree zero on R™ and
belongs to LI(S™ 1), and P(z,y) = Z‘§|<T7|n|<l c§nx§y77 is a nontrivial poly-
nomial on R™ x R™. Consider the fractional oscillatory singular integral
operator

Tosf(@) = | ePen 229 )y,
o [z =y

(i) If 0 < B <min{(l+7r)/2r, (I4+7)/2l} andq > 1/(1 = B), then T 3
is bounded on L*(R™).

() Ifl<p<oo(p#2),0<p <min{(l+7r)/2r, (I+r)/20}{1/2 -
11/p —1/2|} and ¢ > 1/(1 — ), then T is bounded on LP(R™).
Here the LP norm of T g depends on the value of ZKI:T, In|=1 |cenls
but not on the other coefficients of P(x,y).

In this paper, we will establish the following theorem.

THEOREM 2. Suppose that {2 is homogeneous of degree zero on R™ and
belongs to LI(S™ ') with ¢ > 1, a € Ag(R™), 0 < 8 < 1, and P(x,y) =
Z\EIST, Inl<i 05773053/7 1s a nontrivial polynomial on R™ x R™, that is, it cannot
be written as Py(x) + P1(y).

(i) If 0 < B <min{(l +r)/2rk,(l+r)/2lk} and g > 1/(1 — [3), then
| Tokfllz < C(n, k, A, deg P)lall§ [ £]l2-
(i) Ifl<p<oo (p#2),0< B <min{(l+7r)/2rk, (I +71)/20k}{1/2—
11/p—1/2|} and ¢ > 1/(1 — 3), then
| Tokfllp < Cn, b, A, deg P)lall§ [ £llp-
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Here A= (3 ¢\, )= lcen)Y/ ") and deg P denotes the total degree

of P(z,y).
REMARK 2. We remark that the bound of the fractional oscillatory inte-
gral operator in Theorem A does depend on the coefficients of P(zx,y), but

the bound of 7T}, ;, in our theorem, as those of T(; 3 in Theorem B, depend
only on the value of }° .\ [cey|, but not on the other coefficients of
P(z,y).

This paper is organized as follows. In Section 2, we will give some pre-
liminary lemmas. Next we will prove Theorem 1 in Section 3. Finally, the
proof of Theorem 2 will be given in Section 4. Some ideas in the proofs of
our theorems are taken from [20, 15, 6]. Throughout the rest of this paper,
C always denotes positive constants that are independent of the essential
variables but whose value may vary at each occurrence.

2. Some lemmas. Let us first give some lemmas, which are crucial in
the proof of our main results.

LEMMA 1 (see [14]). Let £2, a, k be as in Theorem 1. Then for 1 < p
< 00, the maximal operator Mfk defined by

1
M f(z) = sup o | la(@) —a@)f12( —y) f(v)| dy

r>0 lo—y|<r
satisfies

1M Fllp < Cllalifrogn £l

LEMMA 2 (see [14]). Let a, k be as in Theorem 1, {2y be homogeneous

of degree zero on R™, and 1 < p < oo. For A > 1, if 2y € LN(S™™1), then
the operator

1
Mpf@) =suwp= | @) —a@)"I2(z =y /()| dy
" |z—y|<r
satisfies

M2 £l < Clallfogm 19200 sty £ llp-

LEMMA 3 (see [14]). Let {2, a, k be as in Theorem 1. Then the commu-
tator of the singular operator T', ;. defined by

Ta,kf(x> = p.v. S (a(m) — a(y))k M
R"

f(y)dy

is bounded on LP(R™), for 1 < p < oo, with norm bounded by CH&HI]%LO(R”)‘

LEMMA 4. Let §2, a, k be as in Theorem 1, ¢ > 0, and 1 < p < .
Suppose that P(x, y) is any real-valued polynomial on R™ x R™. If Tg, 1, is
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bounded on LP(R™) with norm bounded by CHaH’éLO(Rn), then its truncation
defined by

Teapf(@) =pv. | @V (a(z) - aly))
lz—yl<e

k Q@C — y)
|z —y|™

fly)dy

is also bounded on LP(R™) with norm bounded by C’||a|]]’“3LO(Rn).

Proof. Decompose R™ as R" = | J,; I4, where each I is a cube having side
length €/8n and the cubes I; have disjoint interiors. Set f; = fxi,. Since
the support of T , 1. f4 is contained in a fixed multiple of I, the supports of
the various terms T 4 1 fq have bounded overlaps and so we have

T f 15 < C Y Tz fallh.
d

Thus we may assume that supp(f) C I for some cube I with side length
£/8n and center at xg. Write

| arf@Pae=( § + |+ | )Tusf@Pde
R™ le—zo|<e/dn e/dn<|z—x0|<3e 3Be<|r—xz0]

Since |xr — o] < ¢/4n and |y — xo| < &/8n imply |x — z9| < &, we have
Teonf(x) = Tyrf(x). Thus, for the first term, by the LP-boundedness of
Ty, i, the desired estimate holds. When e/4n < |z —xo| < 3¢, since |y —zo| <
£/8n, we have cpe < |z — y| < c1¢ for some constants ¢y and ¢;. Therefore

2(x —
Toaf@ < § o) =)l T )l dy < CME (@)
coe<|z—y|<cie J
By Lemma 1, we get
Tei o < CUMESll < Cllall o/l

which is the estimate for the second term. When 3z < |z — x|, we get
T..orf(z) = 0 and complete the proof of Lemma 4. w

LEMMA 5 (see [19]). Let 0 < < 1,1 <t < oo. We have
171l : 15\ (z) (NI "
Il zsup—(— flx) —mo(f da;) ,

g IRP\Q ¢

where mq(f) = (1/|Q]) SQf(:c) dz. For q = oo, the formula should be inter-
preted appropriately.

LEMMA 6 (see [19]). Let Q* C Q, g € /15 (0< B <1). Then
Ima-(9) = ma(9)l < CIRI gl ,-

3. Proof of Theorem 1. The argument is by double induction on
the degrees in x and y of the polynomial P(z,y) as follows. If P(z,y) is



Commutators of oscillatory singular integrals 35

trivial, it is obvious that the assertion follows from Lemma 3. For the general
polynomial P(x,y), let r and [ be two strictly positive integers and write

P(x,y) = Z cen®y".
§l<r, [nl<t

By dilation invariance, we may assume that > _, . [cey| = 1. Now we
assume the theorem is known for all polynomials which are sums of mono-
mials of degree less than r in z times polynomials of any degree in y, and of
monomials which are of degree r in x times monomials which are of degree
less than [ in y. Rewrite

(5) P(l‘, y) = Z anxﬁyn + P0($7 y)7
[€l=r, |nl=l

where Py(x,y) satisfies the inductive hypothesis. Decompose Ty, as

Tof@ = | e 28D 0y o)) siy)ay

lz—y|<1 ’1' B y‘n
+ | e % (a(z) = a(y)* f(y) dy
|[z—y|>1 Y

=Ty f (@) + To5.f ().

It suffices to show that the estimate of the theorem holds for TL? i and T25.
Write

1@ = § e ) (ale) - at) ) dy
lz—y[<1

2z —vy)

iP(Iyy) _ iPO(Ivy)
+ S (e e ) p—

(a(@) —a(y)*f(y) dy
lz—y[<1

=Ty f (@) + Tpiof ().

By the inductive hypothesis and Lemma 4, we get

(6) 1o fllp < Cllalrogn I fllp-

On the other hand, note that if |x| < 1 and |z — y| < 1, then by (5),

€PE0) — PE <0 ST el o =yl = Cle — ol
€=, In|=l

Set fo(y) = f(y)x{jy|<2} (v)- Then Ty f(x) = T fo(x) if |z < 1. Thus

12ra@i<e | 2w ) o) dy < CMG ().

n—1
|$_y‘<1! Yl
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It follows from Lemma 1 that
0,2
VT8 f() P da < CHallBLo ay | F @) dy.
lz|<1 ly|<2
Using the same argument as in [20, p. 189], we obtain
0,2
| i f@)pde < CHallBLo ay ) F@)IPdy.
lz—t|<1 ly—t|<2

Integrating the above inequality with respect to ¢, we have

(7) 1728 llp < Cllaligrogn 171
Putting (6) and (7) together shows that
(8) ITakfllp < Cllallromm |1 £1lp-

Next we turn to 7% By the block decomposition of {2,

2(z') =) Cubs(a),

we have
- X 2[3” S et 20D (4a) — aty))* 1 (0)
=26 Z Jef ()
So

(9) Towfllp < Z |Cs !Z I35 -

By Lemma 2, for any A > 1 we have
(10) 1T, Zf”p < C|M, Skap < C[bs|| pa(gn-1 HGHBLO gy [ fllp-

Below, we shall give a more refined estimate on HTIf > fll2. Precisely, we
shall show that for any A > 1,

(11) I35 fll2 < CA27|[bg]l (s llal oGy I £z

uniformly for § € (0, 1] such that § < min{r/2l,r/(r +1)\'}, where C, A
depend only on n and, in the latter case, deg P. B o

By the dilation invariance again, we turn to the operators 77 and T[ZZ
defined by

~i Diod . oda Ds (T —
T],Sf(x) _ S ezP(2J:,;,2Jy) H f(y) dy
1<]|z—y|<2 4
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and

~ i P(2d .27 bs(x —
i@ = | el - a) Y f)
1<]z—y[<2 y

To prove (11), it suffices to prove that
~ S8
(12) 1723 fll2 < CA27|lbs|l o gsny llal Lo 1 Fll2.

where ¢, C and A are as in (11).

As in the proof of Lemma 4, split R" into cubes I; having side length 1
and disjoint interiors. Set fg = fxr,. Similarly to the proof of Lemma 4, we
have

IT22f1I5 < CY T fall3-
d

Thus we may assume that supp(f) C I for a cube I with side length 1.
Choose ¢ € Cg°(R™), 0 < ¢ < 1, ¢ is identically one on 50n/ and vanishes
outside 100nl. Write I = 100nI and a(z) = (a(x) — mz(a))p(z), where
mj(a) is the mean value of a on I. When y € I and z is in the support of
Tiz f, we have

and
Tl (@) = 3 (~1)F e @) @ ) (@).
m=0
For each fixed integer m, 0 < m < k, notice that supp(fj’s(ak*mf)) C 20nd.
We first claim that for any A > 1,
(13) |75 fll2 < CA°27%1bs | pr g1y 1 ]2,

where C, A and 0 are as in (11).
In fact, consider the operator

. : bs(x —
T f(z) = S P (@y) Hf(y) dy.
V< |z—y| <2/t Y

By Propositions 2 and 3 in [13], carefully inspecting the proof in [15, pp. 209
213] and making a minor modification, we easily obtain

179 fll2 < CAT27 by | (51 | £ 2

where C, A and ¢ are as in (13). So (13) follows by dilation invariance.
Now recalling that a(z) is subharmonic, we have

l[a]loc =sup [a(x) —my(a)|=sup{m(a) —a(x)} <m;—inf a(z) < |al[sLoEn)-
el xel zel
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Therefore, by (13) we get
@ 7@ f)llz < @™ oo |77 (1@ f1)12
< CA°27 |lallgpo @ 1bsl (s 1T f |12
< CA°27%7||al| B o 105l 2 (snn) @ lloo 1 fI2
< CA%2 _§jHaHBLO(R")HbSHL*(S"*l)HfH?'
Summing over m, we obtain (12) and complete the proof of (11).
Therefore, interpolation between (10) and (11) shows that
(14) I35 f Nl < CA27% 1oy o (51 Il oy | f 1

for 1 < p < oo, where 0 < 6 < 1.
Now we return to the estimate of |75 f|l,- Recall that for each by,

supp(bs) C Qs and [|bs|lpa(sn-1) < Qs |1/q LI Q] > e/(179) | we take
A = ¢. Then it follows from (14) that
125 fllp < CA°277 allfyy o zm 105 Lagsn—1) | 1l < C27% all o I Fllp-

So
Z IT; Zf”p < 022 “Ialfo @ Lfllp < CHGHBLO gy [ fllp-

7>0 7>0

If |Qs| < e?/(179) we take A = log |Qs|/(1+1log |Qs|) and choose § = /N <
min{r/2l, r/(r + )X}, where o is a positive constant depending only on r
and [. Then (14) leads again to

1752 flly < CATY 273X b ]| snny lall o 111

< 020771981941 Q 1A lal |y 6 ey 1

< €218 1@ a0 e £ -

So
YT Al < Cllalfromn ZQJea/log‘Qs‘HfH
320 7>0
< CHQHBLO(R" log — | N 1 1lp-

Therefore, by (9) we obtain

. 1
) ISl < oYl (1 T log" @) lallpoqee 11

< Clalllgogn 171

This completes the proof of Theorem 1. m
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4. Proof of Theorem 2. Similarly to the proof of Theorem 1, we write

16) Tt = | e L )~ al) Fo) dy
lz—y|<1
o] eren S (o) - at) ) dy
lz—y|>1

= T, (@) + T35S ().
We will establish the LP-boundedness of T}, ;. in the following two cases:

CASE 1. 3 i¢/=y, jpi=t |Cen| = 1. First, we estimate HTg’kap, 1 <p<oo.

7, |0
By (4), we have
2z —y
o< | P o) Ul dy
lz—y|<1
> 2x —
> B - awliswl
J=02-i-1<|g—y|<2—7 y
< Or —
<oy, § B
j=0 2-i—1<|g—y|<2— y
< Clally, S22 | (0~ )| 1)l dy
7=0 |lz—y|<2—3

< Claly > 27" Maf(2) < Clall§y Maf(w),
j=0

where My, is the maximal operator with rough kernel defined by
1
Mof(z)=sup o | |20z —y)|[f(y)ldy.
R>0
lz—y|<R
Since 2 € LY(S" 1) (¢ > 1), from [2] we get
[Mofllp < Cllfllp, 1<p<oo.
Thus
(17) 1T f 1l < Cllallﬁﬁlanpr < Cl\allﬁﬁllfllp,

where C is independent of the coefficients of P(z,y). It remains to show
that

(18) 125 £l < Clall, £l
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Set

27 <|z—y|<29+L

Then
T35 f()=> 19, f(x).
=0

So we only need to prove that there exists a constant § > 0 such that for
every 0 < j < oo,

(19) 1T, fllp < Cllall, 27 I1f .

where C' is independent of f and j.
As in the proof of (11), we turn our attention to the operator

- . i i 2 —

T @ =% [ e D ) ) (y) dy
1<|o—y|<2 7=y
It is easy to observe that the proof of (19) can be reduced to showing that
(20) IT2 4 fllp < Cllall, 271 £ -

As in the proof of Theorem 1, we split R™ into cubes Qg having side
length 1 and disjoint interiors. Set f; = fxq,. Similarly to the arguments
in Lemma 4, we have

IT2 . fl5 < C Y NTL  fall.
d

Thus we may assume that supp(f) C @ for a cube @ with side length 1.
Choose ¢ € C5°(R™) such that 0 < ¢ <1, ¢ is identically one on 50nQ and
vanishes outside 100n@. Define @ = 100nQ and a(z) = (a(z) —mg(a))¢(z),
where ma(a) is the mean value of a on Q. It is easy to deduce from Lemmas
5-6 that

Jlloe < CIQIP"al i, < Cllall,-

When y € Q and z is in the support of Tg wJ» we have

k

(a(z) —a(y)* = Y (=DFmopram(z)a " (y)
m=0
and
(21) T (@) = (=)Fmepam (@) T @™ f)(x),

m=0
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where T7 is defined by

Tin(z) = 2N [ (PEm2) % h(y) dy.
I<|z—y|<2
We claim that there exists a positive constant 6 > 0 such that
(22) TR, < C279||h]l,, 1<p< oo
In fact, we consider the following operator:
Tih(z) = 27K8 X P (@) 2z —y) h(y) dy.
27 < |e—y|<27+1

Carefully inspecting the arguments of Ding in [6, pp. 73-79], under the as-
sumptions of Theorem 2 we can deduce that there exists a positive constant
0 = d(n,deg P) such that

(i) B—0—0l/r <0 and 6 < min{r/2kl,r/kq'(r +1)} and

(23) TRz < C2O=2700 |k y;
(ii) B — 00 — dol/r < 0 and 6 < min{l/2k,r/2lk,r/kq'c(r +1)} and
(24) IT9R]|, < C200=07=00UnI | p,,

where 1 <p<oo (p#2),0=1/2—|1/p—1/2|. Here C is independent of
the coefficients of P(z,y).

Therefore, by dilation invariance we obtain

TRl < C277°)|Rlp,

where 0 = §+0l/r—3>0forp=2,and § =0(1/2—|1/p—1/2|)+6(1/2—
|1/p—1/2)l/r —3>0for 1 <p<oo (p#2). This proves (22).

Now we estimate ||T”, f||,. For each fixed integer m, 0 < m < k, noticing
that supp(T7(a*™f)) C 20nQ and ||d]le < C’Ha||/iﬁ, by (22) we get

~mAj (k— ~ i (ke — —j0~k—
[ @ llp < @ oo |17 @) < Cllall 272
—30 || ~5k— k o—j0
< Claly 27" |l < Cllalls 271l

From (21), summing the above inequality over m, we obtain (20). This
completes the proof of Theorem 2 in the case 3y, |, [cen| = 1.

CASE 2. > ¢y, |yt lcen| # 1. Letting A be as in Theorem 2, we can
write P(z,y) as follows,

c Azx A
P = 5 5% G+ o 21 20) = Qlas )
€=, In|=
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Then
Tofa) = § @9 ala) — alu))* 2 o) dy
R’ﬂ
. Az F Az — y)
— [ eiQUzy) (o 25 _ o ¥ Y (Y
-y (o(5) () T (n)
Consequently,

Tt (5) = 9 aaa) = ata ) = 1) an

R™ ’1’ - y’n
Since ||a(A_1')HAB = A‘BHaHAﬁ, by the result proved in Case 1, we obtain
| Tk fllp < CATall [1fllp = C(n, k. A, degP)lall [ £]lp-
Theorem 2 is proved. =
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