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Pseudodifferential operators on non-quasianalytic classes
of Beurling type

by

C. FERNANDEZ, A. GALBIS and D. JORNET (Valencia)

Abstract. We introduce pseudodifferential operators (of infinite order) in the frame-
work of non-quasianalytic classes of Beurling type. We prove that such an operator with
(distributional) kernel in a given Beurling class D(,, is pseudo-local and can be locally
decomposed, modulo a smoothing operator, as the composition of a pseudodifferential
operator of finite order and an ultradifferential operator with constant coefficients in the
sense of Komatsu, both operators with kernel in the same class DEW). We also develop the
corresponding symbolic calculus.

0. Introduction. The theory of pseudodifferential operators grew out
of the study of singular integral operators, and developed after 1965 with
the systematic studies of Kohn—Nirenberg [18], Hormander [14] and others.

The study of several problems in classes of (non-quasianalytic) ultradif-
ferentiable functions has also received much attention recently. These are in-
termediate classes between real analytic functions and C'* functions. There
are essentially two ways to introduce them: the theory of Komatsu [16],
in which one looks at the growth of the derivatives on compact sets, and
the theory developed by Bjork [2] in 1966, following the ideas previously
announced by Beurling, in which one pays attention to the growth of the
Fourier transforms. We will work with ultradifferentiable functions as de-
fined by Braun, Meise and Taylor [8]. Their point of view permits a unified
treatment of both theories, contains the most relevant cases of Komatsu’s
theory and is strictly broader than Beurling—Bjork’s.

Pseudodifferential operators (of finite or infinite order) on Gevrey classes
have been extensively studied by many authors ([5], [6], [15], [20], [25] among
others). We refer to [23] for an excellent introduction to this topic. For more
general classes of ultradifferentiable functions, following the approach of

2000 Mathematics Subject Classification: 46F05, 47G30, 35505, 46E10.

Key words and phrases: pseudodifferential operator, ultradistribution, mnon-
quasianalytic.

This research was supported by MCYT and FEDER proyecto n. BFM 2001-2670 and
it is part of the Ph.D. thesis of D. Jornet.

[99]



100 C. Ferndndez et al.

Komatsu, we refer to [21]. All of them deal with spaces of Roumieu type.
These are spaces with a topological structure similar to that of the space of
real analytic functions.

The purpose of this paper is to introduce pseudodifferential operators
(p.d.o.) in the framework of ultradifferentiable functions of Beurling type,
that is, spaces whose topology looks like the one of C'°°. Our aim is to
establish the basic theory in order to be able to face in the future topics
like for instance hypoellipticity, Fourier integral operators, etc. As in [9],
the pseudodifferential operators of (w)-class are defined as limits of oper-
ators with kernel in &,)(£2 x £2). With this point of view, it is immedi-
ate that the class of pseudodifferential operators is closed under taking ad-
joints and that every p.d.o. of (w)-class admits a continuous linear extension
A: Séw)(ﬂ) — Dzw)(ﬂ). We prove that such an operator shrinks (w)-singular
supports (Theorem 2.18). Many operators are pseudodifferential operators
according to our definition. In particular, we mention the linear partial dif-
ferential operators with variable coefficients in a suitable class of functions,
the (w)-smoothing operators and the ultradifferential operators in the sense
of Komatsu. The convolution operator with an elementary solution of a
given elliptic ultradifferential operator with constant coefficients is also a
pseudodifferential operator. However, not every convolution operator is a
p.d.o.

Since the class of p.d.o. also has to be closed under products of operators,
and we need to express this property in terms of symbols, we develop the
symbolic calculus.

The class of pseudodifferential operators of (w)-class contains the (w)-
smoothing operators, operators of finite order and ultradifferential operators
of (w)-class, and, as a consequence of 2.14 and 3.13, every pseudodifferential
operator of (w)-class can be locally expressed, up to an (w)-smoothing op-
erator, as the composition of an ultradifferential operator of (w)-class with
constant coefficients and a p.d.o. of (w)-class and finite order. As far as we
know there is no similar result in the Gevrey (Roumieu) setting.

1. Notation and preliminaries. In this section we introduce the rele-
vant classes of functions and classes of amplitudes/symbols, and we establish
some preliminary lemmata.

DEFINITION 1.1 ([8]). A weight function is an increasing continuous
function w : [0, co[ — [0, co[ with the following properties:

() there exists L > 0 with w(2t) < L(w(t) + 1) for all ¢t > 0,

(8) §7(w(t)/2%) dt < oo,

(7) log(t) = o(w(t)) as t tends to oo,

(0) ¢ : t — w(e?) is convex.
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For z € CP we put w(z) := w(|z|), where |z| := sup|zx|. The Young
conjugate ¢* : [0,00[ — R of ¢ is given by ¢*(s) := sup{st — ¢(t) : t > 0}.
Here ¢ is related to w via Definition 1.1(4).

There is no loss of generality to assume that w vanishes on [0, 1]. Then
©* has only non-negative values, it is convex, ¢*(t)/t is increasing and tends
to 0o as t — oo, and ¢** = . We refer to [8] for properties of ¢*. Moreover,
we assume that logt < w(t) for all £ > 0.

DEFINITION 1.2 ([8]). Let w be a weight function. For an open set 2 C
R?P we let
Ew(2) :={f € C(2) : | flr.x < oo for every A >0,
and every K C {2 compact},
where

K\ i= Sup sup |f(0‘)(ZE)|€XP(—>\<P*(|04|/)‘))-
reK aeNg

f

E(w)(£2) carries the metric locally convex topology given by the sequence of
seminorms |f|g, x,, where (K,) is any compact exhaustion of {2 and (Ay)
is any increasing and unbounded sequence of positive numbers.

For K C {2 compact, we denote &, ({2) N D(K) by D, (K). For f €
D(w)(K) we put | f]y := |f|K7/\. Then D(w)(ﬁ) = ind,, D(w)(Kn), where (K,)
is any compact exhaustion of (2. The elements of Dzw)(()) are called ultra-
distributions of Beurling type.

The space Dy, (.,)(RP) is the set of all C*° functions f on RP such that
I fll1n < oo for each n € N, where

1f 10 = sup [If ] exp(=ne*(Jal/n).

P
a€Ny

The inclusions D, (RP) C Dr,, () (R?) C &,)(RP) are continuous and have
dense range.

We start with some elementary but useful properties of ¢* that follow
from the convexity of ¢* and the fact that ¢*(0) = 0.

LEMMA 1.3. (1) For every A, s,t > 0 we have

s+t «f S 1 R
2A<p<2)\>§)\<p (X>+Atp (X>§)\ap( 3 )

(2) Let L € N be such that w(et) < L(1 + w(t)). Then

k
t .
=1

for allt >0 and k € N.
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Let L € N be such that w(et) < L(1+w(t)). Then |a|+nLe*(|a|/nL) <
nL + np*(|a|/n). Therefore, if

qin(f) = sup sup e 1| £ (@) |exp(—ne*(|a| /n))
zeK aeNj

then
arcn(f) < |flem < € arnn(f),
so the topology of £(,,)(§2) can also be described by the system of seminorms
{QK,n}'
LEMMA 1.4. For everyn,k € N andt > 1 we have
(1) tF < e (k/n) gnw(t)
(2) infjen, t=ieke™(i/k) < g—kw(t)+Hogt

The following result permits us to split R into intervals in which the
infimum in 1.4 is attained in a finite set.

LEMMA 1.5. Fiz k, N € N and assume
k (N k +(N+1
W(z)fk’g“mﬁ( g >
Then

(1) manS]SN t—jeksO*(j/k:) < e—kw(t)-HOgt’
(2) t_Nezk@*(N/Qk) < e—kw(t)—l—logt'

Proof. (1) Since ¢*(t)/t is increasing, we have logt < (k/j)¢*(j/k) (and
so t~Ieke"U/k) > 1) for every j > N + 1. Now the conclusion follows from
Lemma 1.4.

(2) We already know that t~(N=0ehe"(N=0/k) < o—hw(®)+logt o1 some
[1=0,1,..., N (see 1.4). Then, using the inequality (k/l)¢*(I/k) < logt, we
obtain

=N 2k (N/2k) o y=(N=1) 4=l k@™ (N=1)/k) ko* (I/k) < o—kw(t)Hlogt o

The definition of symbol in [13, 23, 25] motivates our next definition.
As we will check in 2.11, for the limit case w(t) = log(1 + t) we recover the
symbols in [13], whereas for the Gevrey weights w(t) = t¢, 0 < d < 1, our
definition is what can be reasonably expected if one translates to the Beurl-
ing setting the definition of symbol of Gevrey class (Roumieu setting) in
[23, 25]. The introduction of symbols of type (o, d) perhaps makes the read-
ing of the paper uncomfortable but it seems convenient for the construction
of parametrices of hypoelliptic operators. See Proposition 2.12.

DEFINITION 1.6. Let 2 be anopenset in RP, 0<d<p<1,d:=p—90
and assume that w(t) = o(t?) as t — oo. An amplitude in Sp30(£2) is a
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function a(z,y,&) in C®°(2 x 2 x RP) such that for every compact set
Q C {2 x {2 there are R > 1 and a sequence C,, > 0, n € N, with

(%) |D§D;D?a(x,y,§)| < Cpele=0ne(jotftal/n) gmew() (1 4 |¢])letvIo=IBle

for every n € N, (2,y) € @, and & with log([¢]/R) > (n/|B8])¢*(18]/n).
For |B| = 0 the estimate holds for every £ € RP.

In the case a(z,y,&) = p(x,§), the function p(z,&) is usually called a
symbol.

Since the function ¢* is convex, we may replace e(e~0)n¢"(latf+vl/n) i
(%) by ele=0ne"(latl/m)+(e=0)ne™(161/7) (see Lemma 1.3).

Some examples will be given in 2.11.

REMARK 1.7. We make some comments on the requirement w(t) = o(t9)
in the definition of amplitude.

(1) If p =1 and § = 0, this does not mean any restriction on w. For other
values of ¢ and/or 4, this extra assumption means that &,({2) contains, as
a continuously and densely embedded subspace, the Gevrey class {1/ d}(Q)
and it ensures that j! = O(ele=9)m" (/M) as j — oo for every n € N. As
shown in [22], if w is a weight function for which an extension of the classical
Borel theorem holds, then &) ({2) contains {5} () for some s > 1.

(2) If w(t) = (log(1+1))*, s > 1, for ¢ large enough then w(t) = o(t?) for
every 0 < d < 1, whereas if w(t) = t(log?)™® (a > 1), then &, ({2) does not
contain any Gevrey class.

LEMMA 1.8. Let a(x,y,&) be an amplitude in Sglgw(ﬁ). Then for every
compact set Q) C 2 x §2 there exists a sequence Cy, > 0, n € N, such that

|DYDJa(z,y,€)| < Cpele=0ne™(lal/n) gle=0)ne™ (Il/n) | ¢ dlatnl gmew ()
for every (z,y) € Q and [§| > 1.

Proof. We put B := (2°)'/(¢=9) and we take k € N with B < e* and
L € N such that w(et) < L(1 4+ w(t)) for all ¢ > 0. Finally, we fix n € N and
we take [ := 2nL*. According to Definition 1.6 there is C' > 0 such that for
all (z,y) € @Q and [£| > 1 we have

|DEDa(z,y,€)| < Celemde (atal/D (g lat] gmete)

An application of Lemma 1.3 gives k|a+7|+1o*(Ja+7]/1) < A+ne*(|a|/n)
+ ne*(|y|/n) for some constant A > 0. Since 20107 < ekle=dlatal e
conclude that

|DSD}a(z,y,£)| < CeAe(@—é)w*(\al/n)e(@—&nw*(lvl/N)|£’5\a+7|emw(§)‘ .

PROPOSITION 1.9. Let a(z,y,§) be an amplitude in S, ;°(£2) and let
[ € Dy (£2). For every compact set K C {2 and n, A € N there is a constant
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C > 0 such that
HDga(w’ y, &) f(y)e ¥ dy| < Ce et (lal/n)
for every x € K, £ € RP. Moreover, a similar estimate holds if we replace
a(w,y,€) by b(w,y,€) := a(x,y,E)e™™.
Proof. For every s,n € N there is C' > 0 such that
DD a(z,y,&)| < Cele=0)sne(jal/sn) gle=d)sne™ (1l/sn) | ¢ Platal gmw(€)
for every x € K, y € supp f and [£| > 1. Since ¢*(t)/t is increasing we

get (0 — 9)sne*(Jal/sn) < (o — §)ne*(Ja|/n). From 1.4 we deduce that
£ [0lele=one™(lel/n) < endw(©) which implies

|DSDJa(z,y,€)| < Ce2#" (o1/n) gle=0)sne™ (1l/5m) | ¢|8l7] g (mAnd)w ()
for every x € K, y € supp f and |{] > 1.

We now fix { € RP, [£| > 1, and we take 1 < k < p with [{| = [|. For
every j € N we have, after integrating by parts,

| Da(r,y, &) f(y)e " dy = & L\ Dj, (D3a(e,y. &) () dy.
k

Hence, for every j,s € N and some constant C' which only depends on n, s
and on the Lebesgue measure of the support of f, we have

[ Dga(e.y.€) fw)e < dy]

J
< O[] metn® (/M lminde(© 3 <

j) plo—8)sng* (1/sn) psno* (1) /sm)
=0

! |10 19
Consider the natural number N such that
sn N €] sn N+1
<1 * .
N < > = °g<21/(g—6>> SN+1? < sn >
Then, for every | < j < N, we have ei-1#" (G=D/sn) < en e (V/sn) < ¢,
hence 5" (=D /s")/lf\] b <1, which implies, since 0 < p — § < 1,

esn* ((G=0)/sm) (esmp*((j—l)/sn) > =
(S €1

and

ele=08)sn*(l/sn) gsnp*((j—1)/sn) (esw*(j/sn) > e—d
€] (oo p=t - 194

see Lemma 1.3). We finally deduce

(
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[ Dga(e,y.€)f()e < dy

] . (g -0
o5 (3/5n), ©
< O flane Ot mI(©)gne* al/m) 3 < >< = )

=0
snp*(j/sn) 0—6
(Sntm)w(€) gng* (lal/m) (€77 T
= Clflne (=
for every j < N. It follows from Lemma 1.5 that

[ D2a(w,y, ) f(w)e " dy
< O[] ne )€ g (ol /m) g~ sn(o—8)w (el /21/(€=D) tiogJel 2/ )

Now it suffices to choose s large enough. The corresponding estimate for
b(x,y, &) can be deduced with a similar argument. m

2. Pseudodifferential operators. In this section we define pseudo-
differential operators on non-quasianalytic classes of Beurling type. Our
approach is as in [9], that is, pseudodifferential operators on Dy,({2) are
obtained as limits of operators with kernels in £(,)(£2 x (2). We examine
several examples showing that the class of pseudodifferential operators con-
tains enough elements and we show that they are pseudolocal.

It is easy to see from the definition of amplitude that {a(-,-, &) : [{| < T}
is a bounded set in &£, (£2 x {2) for every T' > 0; hence we easily deduce

LEMMA 2.1. Let a(z,y,&) be an amplitude in S)3°(2) and let ¥ €
D(w) (Rp) Then

(1) K(z,y) = (a(z,y,&)e Ue=v)Ew (&) dE belongs to Ew) (2 x 02),
(2) B : Dy(£2) = &y(2), B(f)(z) :== [ K(z,y)f(y)dy, is a continu-
ous linear operator.

Let ¥ € D(,,)(RP) be a test function such that ¥(£§) = 1 for |{| < 1 and
(&) =0 for [¢] > 2. We put

(Asf)(x) =V a(z,y, )"V f(y) W (5¢) dy dE.

THEOREM 2.2. Let a(z,y,&) be an amplitude in S5 (£2). Then

(1) For every f € D, (§2) the limit A(f) = &) ($2)-lims_or As(f)
exists and A : D) (2) — E)(£2) is a continuous linear operator,

(2) (Af)(x) = §(§alz,y, )9 f(y) dy) de.
Proof. ( )We fix a compact set K C (2 and n € N. We put

I(z,€) = a(z,y, ) f(y)e' " dy
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and we apply Proposition 1.9 to get a constant C' > 0 such that
| D (2, €)|e e Iel/m) < Cemw(®)

for every x € K, a € N§ and ¢ € RP. Hence, for 0 < 2 < 01 < 1 we can
estimate

grn(As,f — A5, /) <C | e Ow(6:6) — w(628)] dt,
[€1>1/61
which implies that the limit A(f) = &(,)(2)-lims_oy As(f) exists. An
application of the uniform boundedness principle gives the continuity of
A:Dy(02) — Euy(92).
(w) (w)
(2) We observe that

(Af)(@) = Tim §(§al@,y,€)f(r)e™ dy ) e w(e/n) de.

Since for every k € N there is C > 0 such that | {a(z,y,&)f(y)e ¥ dy| <
Ce " for every £ € ]Rp we can apply the dominated convergence theorem
to conclude that (Af)(z) = § (§a(z,y, )e!@¥Ef(y) dy) d¢. m

DEFINITION 2.3. The operator A : D(,,)(£2) — &,)({2) introduced in
Theorem 2.2 is called a pseudodifferential operator of (w)-class associated
to the amplitude a(z,y,§).

In the case a(zx,y,&) = p(x,§) the pseudodifferential operator A is de-
noted by P(z, D) and we have

P(z,D)f = \p(x,€)e™™ f(€) d¢

for every f € D, (2). It is clear that the expression above makes sense for
f € D(,)(RP), and even for a wider class of functions.

PROPOSITION 2.4. The operator P(x, D) associated to a symbol p(x,§)
in Sy3°(£2) can be extended to Dr, (,)(RP) and the extension is linear and

continuous taking values in &,)(£2).

Proof. Given f € Dr, (,)(RP) and k € N, its Fourier transform satisfies
sup | (£)]e") < C|| fll1 41
¢ERp

for some constant C' depending only on the weight w (see [12, 1.1.23]). Hence,
the integral above is also convergent for f € Dy, (,,)(RP). Thus P(z, D) can
be extended to Dy, (,)(RP), and the extension is linear.

Given a compact subset K of {2 and o € NE,

De(P(e, D)) < 3 (g) {157 (6)| | D Pp(a, )| de.

BLa
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As in 1.9, there is a sequence (C,) of constants such that
|Dgp(l‘,£)| < Onen‘p*(hvn)e(m—kné)w(g)

for every multi-index v, each x € K and & € RP. Moreover, we deduce from
the properties of ¢* that

gsuﬂga ’Dﬂf(é-)‘e(n-i-m)w(é) < CHDﬁfHLn—i-m-&-l < CHle,Qn_;_Qm_;,_Q 6”30*(@/”).
€

Therefore,

akn(P(z,D)f) < CCul fll1,2n42me2 | e™© dg

for n large enough, which finishes the proof. =

THEOREM 2.5. The pseudodifferential operator A associated to an am-
plitude a(z,y, ) in S;néw(ﬂ) admits a continuous linear extension S(’ (2) —

w)
D, (92).

Proof. We consider b(z,y,&) = a(y,z,—¢), which is an amplitude in
SZ’?‘)(Q), and we denote by B : Dy(£2) — &,)(£2) the associated pseu-
dodifferential operator. We only have to show that the transpose B! is the
desired extension of A. To do this, we put

(Bsf) () =\ b(x,y, e’V £ () (5€) dy de.

Then it is easy to prove that {p(Bs®) = {(Asp)® and an application of
Theorem 2.2(i) gives the conclusion. =

COROLLARY 2.6. Let A : D,y(£2) — E)(£2) be the pseudodifferential
operator with amplitude a(x,y,&). Then At"D(w)(Q) : Dy (02) — E)(92) is
a pseudodifferential operator with amplitude a(y,x, —§).

(£2) = D

THEOREM 2.7. The extension P(x, D) : & @)

() (£2) of the pseu-

dodifferential operator P(x, D) is given by
(Pa, D)) = [(€) ([ "ple, €)0h(a) da) de.

Proof. Since (P(x,D)p,v) = {@(&)(§e™p(x,&)¢(zx)dx)dé for every
©, 9 € D, (£2), we only have to prove that P(x,D) : Eéw)(ﬁ) — Dzw)(ﬁ) is
a well defined, continuous linear operator. To do this we first fix p € £ (’w) (£2)
and we let B be a bounded set in D,({2). By the Paley-Wiener theorem
([8, 7.4]) there are constants A, D > 0 such that |fi(€)] < DeA“(©) for every
¢ € RP. Now we take k := A 4+ 1 and we apply (the proof of) Proposition
1.9 to find a constant C' > 0 such that | §e™¢p(x, &) (z) dz| < Ce ™ E) for
every ¥ € B. Then

() (Je5p(r, ) (x) d) | < €D 19,
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which implies that P(xz, D)p : D(,(£2) — C is bounded on bounded sets

D /

and, consequently, P(x,D)u € D(w)(Q). Moreover the estimates just ob-

tained also show that P(z, D) : Séw)(ﬁ) — Dzw)(ﬂ) transforms bounded

sets in S(’w)(Q) into weakly bounded sets in DEw)(Q), and we conclude that

P(z, D) is continuous. =

The correspondence between amplitudes and operators is not one-to-one,
that is, two different amplitudes may define the same operator (see Example
2.11(4) below). The situation is much better for symbols.

COROLLARY 2.8. Let p(z,§) and q(x,§) be symbols in S, 3" (RP) defining
the same pseudodifferential operator. Then p(x, &) = q(x,§).

Proof. We put r(z,§) := p(x,&) — q(x, ). By hypothesis R(x, D) is the
null operator and hence (R(x,D)é,,v) = 0 for every y € R and ¢ €
D(.)(RP). For a fixed 1 € D(,,)(§2) we set I(§) := {ei®r(z, €)Y (x) dz and
we deduce from Theorem 2.7 that the Fourier transform of the continuous
function I(¢) vanishes. It follows that §e™r(z,&)y(z)dx = 0 for every
Y € D,y (RP), and so r(x,{) = 0 everywhere. =

In some cases it is possible to recover the symbol from the pseudodiffer-
ential operator it defines.

PROPOSITION 2.9. Let p(x,&) a symbol in S;rféw(]Rp) and assume that
P(z,D) admits a continuous linear extension A : E,)(RP) — &£,)(RP).
Then )

p(z,§) = @ e A (V) ().

Proof. Since A' : &l (RP) — &\ (RP) we see from 2.6 that Allp, mr) :

D) (RP) — D,)(RP) is a pseudodifferential operator defined by b(z,y, )

= p(y, —&). Then for every ¢ € D, (RP) we obtain
(') (@) = [ (([p(y, ~€)p(y)e ™ dy ) de.
We put 1(€) := {p(y, —&)p(y)e™ ¥ dy. Then I € Ly and moreover I(—-z) =
(Af@)(x), which implies, in particular, that I € Dy, (R”). Hence
(A5, 0) = ST (—x) da = (2m)P1(=€) = (27) | pla, ©)p(w)e™ da,
which finishes the proof. =

In most of the forthcoming results we will need stronger conditions on
the amplitude.

DEFINITION 2.10. Let 2 beanopensetin RP, 0 <d<p<1,d:=p—9¢
and assume w(t) = o(t?) as t — co. An amplitude in AS)%¥(£2) is a function
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a(z,y,€&) in C°(£2 x 2 x RP) such that for every compact set Q C §2 x 2
there are R, B > 1 and a sequence C,, > 0, n € N, with

|D§D;D?a(x, y,&)| < C,BPBlele=dne™ (latal/n) gme(€) (1 4 |g])letr19=I5le

for every n €N, (2,y) € Q, and § with log([¢|/R) = (n/|B])¢*(I8/n).
An amplitude in AS)3*(£2) is said to be of finite order if it satisfies the

inequalities above with (1 + |¢€])™ instead of e™«(€),

It follows from the Stirling formula and the condition w(t) = o(t?),
d := o — 4, that AS)s*(2) C S73°(£2). We observe that given two weight
functions 0 = O(w), each amplitude of finite order with respect to w is also
an amplitude with respect to o, and thus the corresponding pseudodifferen-
tial operator admits a continuous linear extension to D) ({2) which takes
values in &, (2).

Now we give examples of amplitudes and of pseudodifferential operators.

EXAMPLE 2.11. (1) w(t) := log(1 + t). This is a limit case that we are
not considering, since w does not have property () in 1.1. Then &£,y(£2) =
C>(£2) and ¢*(t) = oo for every t > 1. It follows that a(x,y,§) is an
amplitude of (w)-class in S}s”(£2) according to Definition 1.6 if, and only
if, for every compact set K C {2 and every a, 3,7 € Nj there is a constant
C > 0 such that

|DEDyDla(z,y,€)| < C(1+ [¢])m+olatrh—dld

for z,y € K. This means that a(x,y,§) is a symbol in the sense of Grigis
and Sjostrand [13].

(2) w(t) :=t% 0 < d < 1. Then Ew)(£2) is a Gevrey class of Beurling
type. In this case ne*(t/n) = (t/d)log(t/nd) — t/d and it follows from the
Stirling formula that for every n € N there are positive constants A, and
B,, such that for every a € Nf,

jal/d al/d
An(a!)l/d(i> ge"s"*ﬂa/")an(a!)l/d(Q—z) _

nd n
Thus, a(z,y,§) is an amplitude in AS}'¢*(£2) if, and only if, for every com-
pact set K C {2 there are R, B > 1 such that for every A > 0 there is C' > 0
satisfying
D3 Dy D a(x, y,€)| < CBYBl(al) 4 (y1)INletlem@ (1 4 |¢]) 17!

for every (r,y) € K and |¢| > R(BA)'/?. This should be compared with
the definition of amplitude of Gevrey class (of Roumieu type) which can be
found for instance in Rodino [23].

(3) Linear partial differential operators with coefficients in £, (§2) are
examples of pseudodifferential operators defined by symbols of finite order.
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(4) Let K(x,y) € E)(£2 x 2). The integral operator with kernel K,
(Ap)(x) = { K(z,y)¢(y) dy, is a pseudodifferential operator. In fact, given
any x € D (RP) with {x = 1, a(z,y,§) = K(z,y)e =98y (£) is an
amplitude in AS?:SJ (£2). This can be easily deduced from the compactness
of the support of x and the fact that K € £, (2 x £2).

The operators T' : D, (2) — &,)(§2) admitting a continuous linear
extension T : S(’w)(Q) — &) ({2) are called (w)-smoothing. These are exactly
the integral operators defined by kernels in £,(2 x §2).

(5) Every ultradifferential operator in the sense of Komatsu [17, p. 42]
defines a pseudodifferential operator. We recall that an ultradifferential op-
erator of (w)-class in the sense of Komatsu is an operator G(z,D) :=
> aEeN? aa(7)D* with aq € &(,)(£2) satisfying the following condition: there
exists m € N such that for every compact set K C {2 and every n € N there
is C,, > 0 with

sup | DPaq(z)| < Cpe™e” UBl1/m) g=me (al/m)
zeK
for every a, 3 € Nj.
It is easy to prove that p(z,§) := (2m)~P ZaeNg ao ()€Y is a symbol in

ASf’a"(Q) for some k > m. Moreover, for every ¢ € D(,)({2) we have

G2, D)o = = 3 aa(@) [ 4€°5(€) dé = P(z, D).

(27‘1’)1’ a€eNE

Examples of ultradifferential operators in the sense of Komatsu are the
partial differential operators with coefficients in the class &£ (2) as well as
the ultradifferential operators with constant coefficients ([7]). In this case
G(z) := ZaeNg anz® is an entire function satisfying log|G(z)| = O(w(2)).
Therefore an application of the Paley—Wiener theorem ([8, 7.3]) gives the
existence of an element p € EE o) (RP) with support {0} such that G(D)y =
p* @ for every ¢ € D, (RP).

(6) If f € Euy)(£2) then a(z,y,§) = (2n)Pf(x) € AS%"(Q). Thus the
operator ¢ — fy is a pseudodifferential operator.

(7) Let f € D)(R) be a test function with supp f = [-1,1] and
f(0) # 0. We put ¢ := fX[o,00[, Which is an ultradistribution with compact
support and sing,y supp ¢ = {0}. Then @(¢) is a symbol and the associated
pseudodifferential operator is the operator ¥ — 27 (p*1)). (See the comment
after Theorem 2.18.)

We first observe that for every N € N we have

N 1

) => M) P | FN D (@)e " dt.

2 i)+ T (igv )
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This follows after integrating by parts N times in @(§) = S(l) f(t)e " dt,
using the fact that f and all its derivatives vanish at ¢ = 1.
Hence

N (k)
o0 =0t fma (Y )

pors (4 ¢y

N 1
1 N\ (N +k)! . CNN—k ¢(N+1) (4, —it
+Wz(k) D @y—w) O (t)e ™" gt
k=0 0
For every n € N we put C,, := | f|,, and assume that log || > (n/N)¢*(N/n).
Then for every k < N we have |f*)(0)|/|¢|* < C,, and
N

k) N
S L0 (V4 1| < Gt

P (z§)k+1 k gN ’€|N+1

Moreover, since |£[Ft1 > ¢ (/) > k! for some € > 0, there is D,, > 0
with

al 1
Z (]Z) w (-1)" gk% S (—it)N =k pNFD (4) it dt‘
k=0 - )

< D, 8N (N+1)/n),
We conclude that
PO < A BN g~
for some A,,, B > 0 and for every £ with log|{| > (n/N)p*(N/n).
Our next example is less obvious. It shows that the class of operators

under consideration contains not only ultradifferential operators but also
parametrices under some extra assumptions.

PROPOSITION 2.12. Let w be a weight with w(t) = o(t?), d < 1, and
let G(D) be an (w)-ultradifferential operator with constant coefficients such
that G(&) does not vanish on RP. If one of the following two conditions is
satisfied:

(1) G(D) is elliptic, or

(2) G(D) : £\ (RP) — £, (RP) is surjective and {t*}-hypoelliptic,
then there exists a pseudodifferential operator of (w)-class P : Dy, (RP) —
E(w)(RP) such that G(D) o P is the identity on D, (RP).

Proof. (1) We know from [11, Thms. 3, 4] and [3, 2.1] that there exists
a constant A > 0 such that the entire function G has no zeros in {z € CP :
|Im z| < A|Rez|} and

G(&)] > Ae=W/AO) ¢ e RP,
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Applying the minimum-modulus theorem of Chou [10, I1.2.1] as in [3, 2.6,
2.8], we may find a new constant C' > 0 such that

G(2)| 7! < Ot

for z € CP with [Imz| < |Rez|/C. Since 1/G is holomorphic in {z €
CP : |Imz| < |Rez|/C}, we conclude from the Cauchy inequalities that
(2m)PG)~ L € ASY'3”(RP) for some m. The pseudodifferential operator P
defined by this symbol is the convolution operator defined by a fundamental
solution of G(D), hence G(D) o Py = ¢ for every ¢ € D, (RP).

To prove (2), we may proceed as before taking into account that there
is a constant A > 0 such that G(¢) # 0 whenever [Im z| < A|Re z|? [3, 3.3].
In this case, the operator P is defined by a symbol in AS;*(RP). =

We recall that a continuous linear operator T : Dy (£2) — £, (§2) is
properly supported if the support of its kernel is a proper set in 2 x 2. Just

as for C'°°, this implies that T' can be extended as a continuous linear map
from &) (£2) to &) (£2).

REMARK 2.13. Observe that the solution operator P in 2.12 does not
admit a continuous linear extension P : £, (RP) — Dzw) (RP) ([4, Prop. 8]),
therefore it is not properly supported.

We already know that partial differential operators with coefficients in
Ew)(£2) and ultradifferential operators are examples of pseudodifferential
operators. Next we see that in most cases pseudodifferential operators of
(w)-class can be expressed as the composition of an ultradifferential oper-
ator of (w)-class and a finite order pseudodifferential operator. The argu-
ment depends on the possibility of constructing ultradifferential operators
on Beurling spaces which are elliptic in a very strong sense. See for instance
[7, 19].

PROPOSITION 2.14. Let P(x,D) be the pseudodifferential operator as-
sociated to p(x,§) € AS[3°(§2). Then there is an wultradifferential oper-
ator G(D) of (w)-class and a symbol q(x,§) € ASZ’?‘)(Q) of finite order

such that if Q(x, D) is the corresponding pseudodifferential operator, then
P(z,D) = Q(z,D) o G(D).

Proof. We take D > 0 such that Dw(£/2) > mw(€). Let G be an even
entire function satisfying log|G(z)] = O(w(z)) as |z| — oo and |G(z)| >
ePw(2) whenever |Im z| < |Rez|/D (the existence of such a function follows
from [19, Corollary 1.4]). Then 1/G is a symbol as in 2.10. Indeed, it is
clear that [1/G(€)| < e P¥@ for ¢ € RP, and since it is holomorphic in
{z € C?: [Imz| < |Rez|/D}, we conclude from the Cauchy integral formula
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that, for some C' > 0 and £ large enough,

1 (8) ‘ o—Dw(¢/2) o—Dw(£/2)
_— <olflgr= < colblgr=—
‘(G(@) = T gE =

We define ¢q(z, &) = p(x,§)/G(€). It is easy to see that ¢ is a symbol of finite
order. Moreover, for every ¢ € Dy,({2) we have

(Q(, D) 0 G(D))() = J i, )" G(D)(p)(€) e
= {4(e,)e™C()p(€) d¢ = P(x, D)(¢). =

REMARK 2.15. The ultradifferential operator G(D) :Dzw)(ﬁ) HDEW)(Q)
in the proposition above has the property that G(D)f € &) (£2) if, and
only if, f € £(£2) [3, 2.1]. Hence the decomposition given in Proposition

2.14 could be useful in order to study hypoellipticity.

We observe that each ultradifferential operator of (w)-class acts con-
tinuously from D) (£2) into &) ({2) for any weight o > w, whereas each
pseudodifferential operator of (w)-class and finite order is also a pseudodif-
ferential operator of (7)-class for 7 < w. However, one cannot expect that
pseudodifferential operators of infinite order of (w)-class be pseudodifferen-
tial operators of a different class. Roughly speaking, the p.d.o. (of infinite
order) of (w)-class are strongly tied to the Beurling space D,,(2).

Next, we analyze the behaviour of a pseudodifferential operator when
it is defined by an amplitude which does not depend on the z-variable. A
combination of the next result and Proposition 2.4 will be useful to study
the composition of p.d.o.’s in Theorem 3.18.

PROPOSITION 2.16. Let b(y, &) be an amplitude in S;r:;w(ﬂ), and let B be

the associated pseudodifferential operator. Then Bf € DLh(w)(Rp) for every
[ €D (£2), and B : D(,,)(£2) — Dy, () (RP) is continuous.

Proof. Clearly (Bf)(z) = {(§b(y, £)e'®=¥)¢ f(y) dy) d¢ can be defined for
each z € RP, and B : D, (£2) — &, (R?) is linear and continuous.

To show that Bf € Dr,, (,,)(RP) it is enough to check that Bf € Ly and
G(D)(Bf) is in L; for each ultradifferential operator G(D) of (w)-class ([1,
2.11]).

We define 1(€) = §b(y, €)f(y)e% dy, so that (Bf)(x) = [I()e™ de.
Then for each a € NE,

DEI() = | f(y) DE (b(y, E)e™™") dy,

hence, using the Leibniz formula and 1.9 for the function y°f(y), 8 < a, we
find, for every k > 0 and each multi-index «, a constant C, ; such that

IDEL(E)] < Cage ™19,
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Therefore D?I € L1 and

z*(Bf)(z) = Sf(ﬁ)D?(eixE) d¢ = (—1)|Q‘SD?I(§)em5 de.

Consequently, z%(Bf) is bounded for each «, thus Bf is integrable. More-
over, from 1.9, D (e™¢1(¢)) = £€¥1(€)e™t € Ly, and hence DY(Bf)(z) =
JEoI(€)eit de.

Let G(D) =), aaD® be an ultradifferential operator of (w)-class. There
exist m € N and C > 0 such that |aq| < Ce=™¢"(121/™) From the estimates
above and Lemma 1.4 we conclude that

G(D)(Bf)(w) = § (§bly GO (y) dy) de.

Since G(z) is an entire function and log|G(z)| = O(w(z)) we infer that
b(y,£)G(€) is an amplitude in some S’;’(‘;’(Q). Proceeding as before, we have
G(D)(Bf) € Li1. The continuity of B : D, (2) — Dr, () (RP) follows from
the closed graph theorem. =

We close this section by showing that pseudodifferential operators are
pseudolocal, that is, they shrink singular supports. We recall that the (w)-
singular support of an ultradistribution T' € DEw)(Q) is the complement of
the largest open subset U with the property that T € E(w)(U ).

Let a(z,y, £) be an amplitude in S;’S‘”(Q) with associated pseudodifferen-
tial operator A : D,y (£2) — &,)(2) and let K € Dzw)(Q x §2) be the kernel
of A. We consider a test function ¥ € D, (RP) such that ¥(¢§) = 1 for [§] < 1
and ¥(£)=0 for [¢|>2 and we put K, (z,y):={a(z,y,&)e' VW (¢/2m) de.
It follows from Lemma 2.1 and Theorem 2.2 that K, € &, (£2 x §2) and

K =D (2 x Q)-limy, o K.

THEOREM 2.17. The (w)-singular support of the kernel K of a pseudo-
differential operator A is contained in A := {(x,y) € 2 x 2 :x =y}.

Proof. Given (xo,y0) € (£2 x £2) \ A we take a relatively compact open
neighbourhood @ of (z, yo), disjoint from A. We show that (K,) is a Cauchy
sequence in &, (Q). Without loss of generality we may take 1 <1 < p and
cp > 0 such that |x; — y;| > ¢ for every (x,y) € Q. Let R > 3/cp and let
(Ck) be a sequence of positive constants such that

D3 D} Dfa(x,y,€)
< Cpele ke (jatal/R)+(e=0)ke™ (181/k) (1 1 |¢|)la+vIo—IBlegmw(&)
for every k € N, (z,y) € Q and € with log([|/R) > k/|Bl*(18]/k).

We fix k € N, and we take k > k to be chosen later. For every N € N we
have, after integrating by parts N times,
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DgD;(Kn(xa y) - Kn+1(x7 y))

—1 Nn i(x—
-2 (5) () s e

BLa p<y

where

)\N,a,,B,'y,,u = Dé\lf{fquﬁDgﬁD;#a(x’ Y, 5) (W(%) - W<2n€_1>> }

_ N! (1 + B)! B—Niei yNa £\ 3
= 2 NN Gt e Pg (W(2> W(znﬂ))

x DY DS Dy M a(z,y,€),

and the last sum extends over all Ny, No, N3 such that Ny + Ny + N3 = N
and N1 < p; + 5;. Here e; is the multi-index with 1 in the [th position
and 0 elsewhere. The support of ¥(£/2") — ¥(£/2"H) is contained in 2" <
€] < 272 and this inequality implies that |[¢#HF—Nier] < |¢|lntBl=N <
(272) 481 /(27)N1 . We also have

> £ 3 (N, 1
(0 (n) (o)) <20 g

Let N € N be such that (k/N)p*(N/k) < log(2"/R"/(©=9). Then log(|¢|/R)
> k/N3p*(N3/k) and consequently, using the fact that ¢*(t)/t is increasing
and Lemma 1.4(1), we have

DS DYDY a(a, . )

< Opele= ke (ja=Bty—pl/k)+(e=0)ke™(Na/k) (1  |¢|yle—B+y—pld—Nsegmew(§)

ek (Na/k)

< ek (la=B+vy—pl/k)
< Ce @)

0—46 _ )
) (AR (2 H9)

Since N;! < EkekW*(Nl/k), we deduce
N! (p + Bp)!
AN.a <
’ N, ﬁﬁ#‘ - Z N1!N3!Nj! (Nl + 6 — Nl)!Nl!
ke (N1/k) ko™ (N2/k) 7 ko™ (N3/k)\ €—0
@2m)M (2N ( (2m)Ns )

« eFe (la=B+y—nl/R) (gn-+2) lu-tB] o (m+ R (")

on k(N k N,
IOg<R>_N¢<k>—Ni(p<k> (i=12)

X 2CkEk’W|k

Since
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we have e#¥"(Ni/k) /(97)Ni < 1. On the other hand,

* Nl + * N2 + * N3 < o N
7 k ¥ k ¥ k > L)
Z # =3", Z (pu +ﬁl)!' P < olu+p
N1+No+Nz=N Nyl NpI N3] N <5 ( + By — N1)!Ny!

and (243l t0l < ko) he" (I0481/F) | Hence

g™ (N/K)
< 204 B |0 3N [ S
< 2CLEx|¥ i3 ( @

=6 _ _ 3 ,
IAN..87. ) ke (latr/k) o (m+2k)w(27F3)

= INay-
Since the support of An o,8.+,.(%, Y, -) is contained in the set 2" < |£] < o2
which has measure (2"71)P(4P — 1), we finally obtain
1
| DDy (Kn(,y) — K1 (z,y))] < 2002 NP(AP — 1) ¢ In g -
0
We put R* := RY/(¢=9)_ Then, since 3/co < R, we deduce that
o 5(En = Knt1) < 2E,Ci|@|,(2" )P (4 — 1)
* * =
i )N ke (N/R) N € (M 2E)w(27+9)
(2m)N
whenever log(2"/R*) > (k/N)p*(N/k). Observe that the estimates just

obtained also hold if we replace N by j < N. Now, if we select k large
enough, and take IV such that

E (NN cpoef( 28 o K (N £
NP\ \E) =% \Rr) SNF1Y Tk

an application of Lemma 1.5 gives
4o r(Kn — K1) < 20, B[], (2P (4 — 1)),

whence it easily follows that (K,) is a Cauchy sequence in &,)(Q). Thus
(x0,y0) does not belong to the (w)-singular support of K. =

As in [25] we can conclude that the pseudodifferential operators are pseu-
dolocal.

THEOREM 2.18. Let A : Séw)(ﬂ) — DEw)(Q) be the pseudodifferential

operator associated to an amplitude a(z,y,§) in S;”(;w(ﬁ). Then
sing,,) supp(Ap) C sing(,) supp(x)
for every u € Séw)(ﬁ).
If a convolution operator ¢ +— 9 x S, ¥ € D, (RP), S € Dzw) (RP), is a
pseudodifferential operator, by 2.18 the (w)-singular support of S reduces
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to {0}. Therefore, not every convolution operator is a pseudodifferential
operator.

3. Symbolic calculus. One of the problems one has to face is how to
determine the class of symbols in order that the theory for the operators
can be converted into an algebraic theory for the corresponding symbols.
Moreover, the class of operators should be closed under products. This leads
to the necessity of developing the classical symbolic calculus in our setting.
The definitions below are motivated by [23, 25].

DEFINITION 3.1. We denote by FAS);*(2) the set of all formal sums
> aj(@,y,¢)
Jj€Ng

such that a;(x,y,§) € C(2x 2xRP) and for every compact set QQ C £2x {2
there are R, B > 1 and a sequence C,, > 0, n € N, with

| D Dy DEaj(w,y,€)]
< C, BBl glele=0ne™(latyl+i/n) gmw(§) (1 4 |¢])latvIo—IBle—(e=0)j

for every j € Ny, (z,y) € Q, and & with log(|¢|/R) >

\ﬂ\ﬂ 2 ( w‘;j)'

Let a € AS;%"(£2) and put ag := a, a; := 0 for j # 0. Then we can
identify a with the formal sum ) a;.

EXAMPLE 3.2. Let a € AS)'i*(£2). Then the series 32 pj(,§), where
pj(@,&) == 320 =;(1/a) Dgd}a(x,y, §)y=., is a formal sum in FAS;”(;W(Q).

DEFINITION 3.3. Two formal sums ) a; and ) b; in FASZ%“)(Q) are
said to be equivalent if for every compact set ) C 2 x {2 there are R, B > 1
and two sequences Cj, > 0 and N,, (n € N) with

‘DﬁDZDf > (a; - bj)’
j<N
< C, B g1ele=0ne™(latal+N/n) gmw(€) (1 4 |¢|)let10=IBlo=(e=0)N

for every (z,y) € Q, N > N, and & with log(|¢|/R) > (\ﬁHN)

|6\+N‘p

REMARK 3.4. Ifa(z,y,£) = 0 for every 2,y € 2 and |{| > M then a ~ 0.
In particular, every (w)-smoothing operator is associated to an amplitude
equivalent to zero.

PROPOSITION 3.5. Let A be the pseudodifferential operator defined by
an amplitude a € ASZ%W(Q) which is equivalent to zero. Then A is an
(w)-smoothing operator.
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Proof. We show that K(z,y) := Sei(w*y)éa(x,y,ﬁ) d¢ is a function in
Ew) (2 x 2) and (Ap)(z) = [ K (x,y)p(y) dy for every ¢ € D, (£2). We fix
a compact set Q C {2 x 2. Then

|DSD}a(z,y,€)| < Cpele=0ne" (lata+N/n) gmew (&) | ¢ laty|=(e=)N
for every (z,y) € Q, N > Ny, and £ with log(|¢|/R) > (n/N)p*(N/n). We

now fix ng € N and we take 0 < e < 1 and n € N with w(t/R) > ew(t) — 1/¢
and £(¢ — d)n > 2ng. Then, for every N > Ng, and £ with

2 (NN () 2 (N4
NP \om) =%\ \R)>NT1% U2
we have
\D;?D;(ei(%y)éa(%y,ﬁ))\

<Y (g) (7 )e(g—é)now*(a—ﬁ+7—#l/NO)

BLa H
n<y

x |€|lBFHl+dla=Bty—pl=(e=0)N gmw(€) c(o=8)4ne™ (N/4n)

Applying Lemma 1.4, we have
|§|5|a7ﬁ+%ule*5nw*(Ia*ﬂﬂ*ul/no) < enow(d)

and
|g18HHl < gnow™(1B+ul/mo) grow()

from which we conclude that
| Dg Dy (¢ a(w, y, £))]
< Cgp2lotlgnoe (latal/no) g (m+2n0)w(€) (e=0)Ang™ (N/4n) ¢ | =(e=d)N
An application of Lemma 1.5(2) gives
|D§Dg(ei(r—y)€a(%y’§))| < Dy, 210t groe” (Jatl/no) g(m+1-no)w(€)

Selecting ng large enough we conclude that K € E(W)(Q x §2). To finish, it
is easy to see that A coincides with the operator with kernel K. =

LeEMMA 3.6 ([24, p. 241]). There is a sequence (P;);>1 and constants
C,D > 0 such that & € D\(RP), [&1(§)] < 1, (&) = 1 for [¢] < 2,
&y(&) =0 for €] > 3 and

|DgP(E)] < C(D/3)lellle+ 1 whenever o] < 1.

We now fix a positive constant R > 1 and we put

ey . §
V(&) = 1= <W>
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Then ¥, ,(€) # 0 implies |¢] > 2Re(™/1)#" (/M) whereas if ¢ is in the support
of any derivative we also have |¢| < 3Re(™/ )% (/™) Tt follows that

’Déwj,n(i)\ < C(D/|g))l i+

for any multi-index ¢ with [i| < j.

In order to construct an amplitude from a formal sum, the idea is the
following: For a fixed n, as in [25] we can find a C'*° function a” satisfying the
estimates in 2.10 only for this fixed n. Since each a™ is obtained as a series
involving the a;’s, we will take, for each n, a finite block of the series, in
such a way that when we put together these blocks we obtain an amplitude
which is equivalent to the formal sum. In some sense, this procedure reflects
the fact that our amplitudes are “tied up” to the Fréchet spaces &,)({2).

THEOREM 3.7. Let - a; € FAS)3(U) and let £2 be a relatively compact
open subset of U. Then there is an amplitude a € AS;’B‘”(Q) such that
an~ Yy ajon (2

Proof. We put

. i y g
WJ,H(S) =1-9; (W>’

where R will be determined later. We set Ry := (2R)?~° and we observe
that W;,,(€) # 0 implies el@=m¢"(0/n) < |€)7(e=0)(1/Ry)7, whereas if ¢
is in the support of any derivative we also have (|¢[/3)7(e=9(1/R;) <
ele=0)ne™(/n) According to Definition 3.1, we can select R large enough
so that Y jePP/R] < oo and, for some sequence (C,,),

|DYD} D aj(w,y, )|
< C,, Bl g1ele=002ne" (Jakl/2m) mw(€) || lat713—|Ble(e=8)2ne" (i/2n) | ¢ |~ (e=0)]

whenever (z,y) € 2 and log(|¢|/R) > ‘/BH‘JL’O (\ﬂ\ﬂ')'

n

We first assume (z,y) € 2, n € N, log(|¢|/3R) > (n/|8])¢*(|58]/n) and
7 (€) # 0. Then

) 2o () 2 (0) 2 2 (552)

Moreover from Dé%m(f) # 0 we deduce that log(|¢|/3R) < (n/j)¢*(j/n),
and consequently, |3| < j since ¢*(t)/t is increasing. Since |{] > 1 and
0 < o < 1, it follows that |¢|71! < |¢]7l1le and we can estimate

D3 Dy D (a;(x, y, )W (€)) e ™)

<3 (ﬁ) IDE; (€ D2 D DL ay (1, y, €) e

7
i<p
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—i| plil slil+1
BIIDr ;T | lil—el=i

< Ccne2mp*(\a+7|/2n)|£|\a+7\5—(g—6)jenw(§) Z -
1!

i<p
< CC, B8 glele=0)2ne™ (Jat91/2n) | ¢ | la+710= ISl (0=0)2ne™ (7/2n) ¢ | =(e=0)7

plil jlit+1
DD
i<p
< O, B glele=0)2n0* (ot /20) g loct15- IBIQ(R ) el

By induction we select a sequence (j,,) of natural numbers such that j; := 0,
Jn < Jn+1s lim,, oo ]n/n = oo and

o = jebir _ C, Jn+2 jeDip
J=int1+l 71 j=intl 7L
Then
]n+1
LR
J=in+1 1
satisfies Dy, 11 < D,,/2. We now prove that
e e] Jn+1
a(w,y,€) = ao(,y,) + > Y Ua(&)aj(x,y,)
n=1j=jn+1

is an amplitude. Since j, < j and ¥; ,,(§) # 0 implies

n Jn J €]
e ()< 5o () < eelam)

the condition limy,—.co(1/7n)¢* (jn/n) = co permits us to conclude that the
sum defining a is locally finite. Hence a is a well defined C'*° function. Let
us assume log(|¢|/3R) > (n/|5])¢*(|8|/n). Then, for every n € N,

00 Jk+1

DﬁD;Df(Z Y Tr(&ay(x yﬁ))‘

k=nj=j+1

< CBPIglele=0ne™ (Jotal/n) | ¢|latv1o=|Blegmew(&) Z Dy.
k=n

Since ag + Zz;% if{]} 11 %jka; is a finite sum of amplitudes we conclude
that a(z,y,§) € AS, 5" (£2).
To finish we have to show that a ~ )" a; on {2. In order to do this, we

assume that (z,y) € 2 and log(|¢|/3R) > EES @*(WTJFN) and we estimate
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the derivatives of

00 Jk+1 N-1
a — E aj = E E ijkaj — E a,j.
J<N k=1j=jr+1 Jj=1

We will only consider the case N > nj,. For every j € N there is k € N with
Jk < j < jk+1. Then k < n implies j < j,(< N) and

()2 3(2) > Loz 2)

On the other hand, £k > n and N > j also imply

() 25(2) (1)

and ¥;;(£) = 1. Consequently, a — ZKN a; can be expressed as a sum of
functions ¥; pa; with j > N and k > n.
It follows from the above estimates that
DS DYDY (a;(w, y, ) (&) e~
< CD;, Bl g1ele=9)2ke" (loatn|+N/2k) | ¢|lat710—[Blo—(e~0)N

o« o=k ((=N)/k)| ¢~ (e~8)—N)

< C Dy, B8 g1ele=0)2ke™ (jatr|+N/2k) | | latv10=IBle=(e=0)N (1 / R )i =N

where the last inequality follows from the fact that ¥;;(£) # 0 implies that
€ J ko (j—N
I =] > .
o8 (23 iP\k) 2N

Finally, we get
‘D;;Dng <a, -3 aj) < >3 DDy DL (W) kay))|
k>nj>N

J<N

< CBIPI g1ele=0ne (jatal+N/n) | ¢|lat|6=|Bloe—(e=O)N

g2 )

k>n j>N

We observe that any other choice of the sequence (j,) and the constant
R satisfying the estimates in the proof of the previous result would give
another amplitude defining the same pseudodifferential operator, modulo
an (w)-smoothing one. Hence, in what follows we can assume without loss
of generality that (j,,) and R are as large as necessary.

Our next aim is to give an asymptotic expansion formula. From now
on, we will always assume that £, ({2) contains the Gevrey class I' s} (2)



122 C. Ferndndez et al.

for some s > 1. Then, for o(t) := t!/*, E(0)(§2) is contained (and dense) in
(D) (see [8]).
We assume that (n/j)p*(j/n) > n for every j > j,. We put ¢; := ¥;,
if jn, < J < Jn+1, po(§) = 1. As in the proof of 2.2 we have the following
LEMMA 3.8. Leta € S;n(gw(ﬁ) and let A be the pseudodifferential opera-
tor defined by a. Then, for every u € D, (£2),

u) =Y Aj(u)
§=0

where Aj is the pseudodifferential operator with amplitude aj(x,y,§) =
(pj — +1)(Ealz,y,§).

LEMMA 3.9. Let 3772 pj(z,€) be a formal sum in FAS]3*(U), 2 a rela-
tively compact open subset of U, and (jy,) as in the proof of 3.7 and satisfying
the additional assumption (n/j)e*(j/n) > max(n,logCy) for j > jn, (Cy)
being the constants of Definition 3.1 relative to the closure of 2. Let

)= 0i(&)p;(, ),
=0

which is a symbol in ASZ&W(Q). Then the corresponding pseudodifferential
operator P(z, D) is the limit in L(D(,,)(§2), Dzw)( )) of the sequence of op-
erators Py : D) (2) — &£)(£2), where each Py is the pseudodifferential
operator with symbol 3334 (; = ¢5+1)(€) (i pi(x, €))-

Proof. We first observe that

N
> (@5 — i)l (szw€> Z% p;(x,€) — eny1(§ Zp;:cﬁ

j=0
Let B be a bounded set in D(w)(Q) and let K be a compact set in 2. We
will prove:

a)S(i_Vjsoj@)pj(:c,s))e“f dé—ﬂ(Z% s, ) ) e “Si(¢) de,

(b) {oni1(¢ (ZPJ z f) e u(8) d — 0,

as IV goes to mﬁmty, uniformly in x € K and v € B. By the Paley—Wiener

theorem ([8, 3.4]) there is D > 0 with |u(¢)| < De~ (M3 for all u € B.

It follows from Definition 3.1 that there is a sequence (Cy,) with
ele=0)ne*(j/n)

' e T mw(©)
pj(z, &) < Cn (1+ ) (e ©
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whenever z € K and log(|(|/R) > (n/j)¢*(j/n). Since ¢;(§) # 0 and
jn <3 < jnsr imply log(€]/2R) > (n/)@"(j/n) we get

. Chn
5 (&)pj(z, §u(§)] < QR)@D

De 3w (&)
We can assume
1 1
i AR — 4
e €] < e Gl for £ € supp ;.
For a fixed N one can find [ such that j; <N <j;41. Then, since (n/j)¢*(j/n)

> log C,, for every n € N and j, < j < jp+1, we have

0 o0 Jnt1
2 Slei@pi@0u©ld <Dy S S 6)5 2900 g
J=N+1 n=lj Jn+1

which proves (a). To prove (b), given N we take n with j,+1 < N+1 < jp41
and we note that ¢n41(€) # 0 implies log(|£]/2R) > NLHQO*(%) Then

n(e—=08)¢*(j/n)

N
‘@N+1(f)(2pj($,§))‘ <O, Z D o (6)
Jj=0 =0
> (e—98)j
Z <2R> em (€

Hence

+1)

’¢N+1(§)(§:pj (x, 5))@(5)’ < Cewl® ¢ wire (5
j=0

which yields (b), since j, + 1 < N + 1 < j,4+1 implies

n fN+1
> n.
N—}—1S0< n >_n-

LeEMMA 3.10. For every n € N we have

N
R ey P Rl

Proof. If this is not the case, we find 0 < ¢ < 1 and an unbounded
sequence (Vi) of natural numbers such that

g_NkN]in > ene" (Ni/n),
An application of the Stirling formula and [12, 2.1.2] gives a contradiction. m

LEMMA 3.11. Let m > n and

L omiieri/m) < ¢ < o/ie*i/m),

e
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Then
|t H1 > enw(®)g2me™(3/2m) o =J
In particular
e (/) > o(n=1w®) 206" (G/20)  for i large enough.
Proof. By Lemma 1.4(2) we know that

nw(t) < log(t) + Sup {klog(t) — ne"(k/n)}

for t > 1. Since 0 < t < e(®/9)¢"(G/™) and *(t)/t is an increasing function
we deduce that nw(t) <log(t) + llog(t) — ne*(I/n) for some 0 <1 < j and

mo(d s m (i1
it \m) =1 \m )
Hence

m/7)p*(j/m j—1
1 = tlemn#" (Un)i—lene*(U/n) > gnw(t)—log(t) <e(—/m) v/ )>] o (1/m)
e

> nw(t)=log(t) mep* (1) /m)+mip*(1/m) =i > nw(®)—log(t) =i 2mep* (3/2m)

the last inequality being a consequence of 1.4(1). The second statement of
the lemma follows as the above inequality with t = e("/9)#"([@/n) g

LEMMA 3.12. Let o(t) =14, 0 < d < 1, and let w be a weight function
such that w(t) = o(o(t)). Then there are A > 0 and a sequence (j,) of
natural numbers such that

Ao (e UMY > 5 for every j > jn.
Proof. For every n € N there is A,, > 0 with w(t) < A, +n~1o(¢) for all

t > 0. Hence
n (7 nA, 1 ,
—oul =) 2 o5 (4)-

J n J J
We take j, satisfying nA, /j, < 1. Now the conclusion follows from the fact
that (1/7)¢5(j) = (1/d)log(j/ed). =

THEOREM 3.13. Let w be a weight such that w(t) = o(t?), d < o — 6,
d<1. Letaé€ ASZSW(U) with associated pseudodifferential operator A and
let 2 be a relatively compact open subset of U. Then there are a pseudo-
differential operator P(x,D) : D,)(£2) — &£ (£2) and an (w)-smoothing
operator R : 5éw)(9) — &) (£2) such that Ap = P(z,D)p + Ry for every
¢ € D) (§2). Moreover

&~ pi(x,€), where pi(x,€) = Z Dg a(z, Y, ) jy=s-
=0

lor|=3
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Proof. For p;(z,§) as above, we take p(x,&) as in Lemma 3.9 and P :=
P(z, D). According to the previous lemmata, the operator A — P : D(w)(Q)
— &) (£2) can be represented as A — P = Y % Py, where Py(u)(z) =
§ Kn(z,y)u(y) dy and the series is convergent in L(D(,,)(£2), D’w)(Q)). Here

N
K (e,y) = (on = oni) (©) (al@,5,€) = > pi(e,€) )i ag
7=0

is a function in &£, (£2x{2), as easily follows from the fact that ¢y —p N1 has
compact support. Hence, each Py is (w)-smoothing and our aim is to show
that so is > x_, Pn. To do this we need to obtain a different representation
for this series. There is no loss of generality to assume that {2 is convex (in
fact, in view of Theorem 2.17 we only have to show that every point x € {2
admits a neighbourhood W such that the kernel distribution of A — P is an
ultradifferentiable function of (w)-class in W x W.)

Proceeding as in [25, 2.25] we get, for N > 1, Ky = 2\1:3[4:1 AN + Ry,
where

N = 41 i(z—y)¢
A (z,y) = O%jga it e ovas(, ) ds
with
oN.0,8(7,€) 1= DL (on(8) — en11(8)) Dg P00 alx, 2, ),
and
Ry(xz,y) := __ Ve (2, y, €)d
N(z,y) agﬂéﬁ!(a—ﬁﬂs N6 (2, Y, &) dE
with
V0,8 (%,9,€) = D (N () — on11(€) Dg P walw, y, &)
Here

1
wal@,y,€) = (N + 1) | 0pa(z,z + ty — 2),&)(1 - )N dt.
0

On the other hand, 3>V > laj=1 Ao = Z;VZI I; — Wy, where

Li(wy):=> > mSei(x_y)gD?SOj(§)D?_ﬂ35a($a9675) dg

lal=j 0£5<a
and
N . '
Wy(z,y) =Y Y mSe’(x‘y)EDgsONH(f)D?_ﬁaﬁ‘a(x,x,ﬁ) dg.
jal=1 0%5<a " '

Hence E;\le K; = E;\le I; + Z;VZI Rj — Wy. To finish the proof we will
show that 3 7% R;(z,y) and > 22, Ij(z,y) converge in &, ({2 x §2) and
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that the sequence of operators defined by the kernels (Wy) converges to the
null operator as N — oc.
(a) Let j, < j < jp+1. Then
DDy I;(z,y)| < ( >
ooents 3 5 % (2 st
al=j 0#B<av<p
x § 61711 DY 0 (€)] 1D5 (D™ 0y ale, 2, €))| d.
We fix k € N and we take n > k and [ := 2n. If D/;(€) # 0 then
2Re(W/)e" (/7)) < €| < 3Re(/ D¢ (i/n)
and we see that
DD 0 ala, ., 0)|
< Cyi(a — B)1Ble—Blele=02le™ (ln=y+al/2D) gmw(€) | ¢ d(n=I+|al)—ela=F]
< Cy(a — B)1 Ble—Blele=d) (ke (ln=/k) ™ (7/1)) gmuw(€) | ¢ Ol |F-el Bl =(e—0)
by 1.3(1) and k£ < [. We now use the fact that |D§ ©;(€)] < C(D/Ig])Pl4181+1

and yg,élu Y e=Ske™ (In=71/k) < 0kw(€)  Moreover e~ (n—Dw(€/3R)ne™(j/n) >
2" (/27) (see Lemma 3.11) and €|V < ek (Iv1/k)+he(€) thus

i ko* (|ptv|/k
DEDY L ()] < Z Cyp BI eke™ (utvl/k)

= (QR)(Q—5)j

al=j

-S> (N)i'CDﬁ|j|ﬁ|+1Se<2k+m>w<§)—(n—1>(g—é)w(é/BR) .
0#£8<a ’
<

Given k we can select n large enough in order to ensure that the integral
above is less than 1. Then, for j, < j < jn4+1, We obtain

eDip®
|DEDY I (,y)| < CCunj? ' B W eltl+ke™ (lu+vl/k)
Proceeding as in the proof of 3.7 we can select the sequence (j,) and the
constant R > 0 in order to guarantee the convergence of ) I;(x,y) in
S(W)(Q X Q)
(b) With a similar argument it is possible to prove that > 72, R;(z,y)
converges in &,,)(£2 x §2) for a suitable choice of (j,) and R > 0. In fact, we

recall that
Z Z 6 S i(x_y)gTj,a,ﬁ(xa Y, 5) d€

la|=j+1 B<a
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Hence
© v 1
| Dy Dy Rj(w,y)| < Z Z ZZ < >( )7
y laj=j+1 8<ay<pr<y N/ N Bl(a— B)!
X S |§|\v+r| ’Dg_WDZ_TTj,a,g(:E, v, €| d.

Now, for a fixed £ € N we take n > k and [ = 2n + 2. Then the quantity
| Dy "Dy T 0,8(2, Y, €)| is less than or equal to the product of

DL (¢ — i41)(EIG + 1)
by

> ("))

s<pu—y

O e =

Dyt DDy D a4 tly — @), €)| dt.

The above integral is dominated by
| e(e=0)(ke* (lutv—r—l/k)+lp*(j+1/1))

e )
€[l BToltota—r—]

CyB" (o - 3

Having in mind
KP\MW—T—V\e—5k90*(\u+v—r—v\/k‘) < Ikw(&)
(Lemma 1.4) and
¢ trlgeke” (utv—r=yl/k) < k() ko™ (utri/k)
(1.3 and 1.4) we conclude that
€I DE Dy T 0 (0, €)
is less than or equal to the product of ]D?(goj — j+1)(&)] by
o (ktm+8k)w(€)
|€|et+1=18)=6(i+1)

o= BIHI=1B1Cy (o — B)1(5 + 1)

x ke (Intvl/k) o(e=8)le™((1+1)/1)
An application of the previous lemmata shows that we can select n in such
a way that the above bound is less than

e_w(g)

9105 4 1)y
CDPG D0 promgn

o= BIT1I=18l (o — B)1(j + 1)2eke" (tvl/R),

Hence

2
DD Ry ()| < (e

It follows that, after choosing (j,) and R in the proper way, the series ) R;
converges in £, (§2 x £2).

j+1
) (j + 1) 20y 22it ke (sl /1)
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(c) Let Ty : D) (£2) — Dzw)(ﬂ) be the operator with kernel Wy. Since
> N—o Pn converges in L(D(w)(ﬁ),DEw)(Q)), we deduce from (a) and (b)
that (Tv) converges to an operator T' : D(,,(§2) — DEM)(Q) in L(D(.(£2),
DEW) (£2)). In order to show that 7' = 0 it is sufficient to prove that T" vanishes
on the dense subset D, (2), o(t) = t?. To do this, we fix N € N with
Jjn < N+1 < jpt1, and we put ay := R@NL‘HLP*(%). Then D?gpNH(f) #0
implies that 2ay < [§] < 3an. For every u € D) ({2) we have

Ty (u) ()] < Z > s \§D§wN+1<g>D§*ﬁa;a<x,x,@a@dg
lo|=1 0#£8<a
N Dl N+ )mm Blo—8lc, (€)1
\a| 10#6<a |€]>2an

Let A\ be given as in Lemma 3.12. Then Ao(ay) > N + 1. For every u €
D) (£2) we have [u(§)| < e~ (Mt +1)o(6) for |¢| large enough. Since log(t) =
o(o(t)) we obtain

—Ap?0(2aN) 1

<
(2@]\[)2 2ayer?(N+1)

| @) ae <
|€]>2an

for N large enough. By Lemma 3.10, we can assume that j/e(”/j)p*(j/”)
< 1/2" for j > jn. Consequently, since 5., (N + 1Bl < P’ NVHD) e
get

N o j
1 BD N+1 C, 1 pDB
T < — E _ E
T (w)()] < on = <2R9_5> ay 2any 2 =1 <RQ—5> ’

from which we deduce that T (u)(x) converges to 0 uniformly on = € (2 as
N goes to infinity. =

In order to compose pseudodifferential operators it is useful to consider
operations with formal sums.

PROPOSITION 3.14. Let P(z, D) be the operator associated to p(x,§) €
ASZBW(U) and let 2 be a relatively compact open subset of U. Then the

transposed operator (restricted to D(,)(£2)) can be decomposed as P(x,D)" =
Q(z, D) + R, where R is (w)-smoothing and Q(x, D) is defined by a symbol
Q(xag) ~ ijv and we have QJ(wvé.) = Z|a\:](1/a')8?D%p(xa _g)

Proof. We already know that P(z, D)! is associated to p(y, —&). Then
apply 3.13. =
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Given ) p; € FAS]S(£2), standard calculations ([25]) and the proper-
ties of * prove that }° q;, where ¢;(,§) := >4 4p=;(1/a!)O¢ Dgpp, is
formal sum.

Analogously, if > p; € FASml’ (2) and > q; € FASQJ, one can prove
that Y r; € FAS;"1+m2’ (02), Where 7i(2,8) = 22 0tk hey (1/ ) Og PR DG g

is a formal sum.

DEFINITION 3.15. (1) For Y°p; € FAS,"*(£2) we define (3_p;)" as the
formal sum Z g;, where g; is as before.

(2) For Y p; € FASml’ (£2) and }"q; € FAS]} we define (3°pj) o
> -qj) =21y, where rj is as above.

The following two results are straightforward, therefore we omit their
proof ([25]).

PROPOSITION 3.16. (1) (3 pj)H)t ~ > pj.
(2) If Xopj ~ 220 and 32 q; ~ >0 q;, then (3op;) o (3oq5) ~ (3op)) o
(22 q5)-
LEMMA 3.17. Let 2 C RP be an open bounded set, and let p(x, &), q(x,§)
€ ASZ%’“’(Q) Assume b(x,§) € AS’Z}%M(Q) satisfies b(z, &) ~ q'(z, =€) and
r(z,&) € AS2mw((2) is equivalent to 37,37, _; O%,80‘D°‘( (2, )by, 8))|y=2-
Then r(z,£) ~ p(x, &) o q(z,§).

THEOREM 3.18. Let p(x,€),q(x,€) € ASZE“’(U) and let §2 be an open set
which is relatively compact in U. Denote by P and Q) the corresponding pseu-
dodifferential operators and assume that either P or QQ is properly supported.
Then PoQ : D) (§2) — £ (£2) coincides, modulo an (w)-smoothing opera-
tor, with the pseudodiferential operator associated to (2m)P(p(x,&) o q(x,§)).

Proof. Assume that P is properly supported. We take {2 relatively com-
pact and open in U containing 2.

We know that Q = (Q")! and that Q! is given by q(y, —&). There-
fore Q' = Q" + T’ on (21, where T is (w)-smoothing and Q' is given
by a symbol ¢’ on 21, which is equivalent to ¢!. Since the class of (w)-
smoothing operators is closed under taking transposes on {27,  coincides,
modulo some (w)-smoothing operator, with the operator (); associated to
b(y, &) == ¢ (y, =€) ~ q*(y, —&). As composition of P with any (w)-smoothing
operator is again (w)-smoothing, P o @ — P o Q1 is (w)-smoothing.

Given f € Dw)(Q) we have Q1f € Dr, ()(R?P) (Prop. 2.16), there-

fore P(Q1f)(z) = Sp x,§) Qlf(g)dg (Prop. 2.4). But, from 2.16, Q1 f(z) =
I(~z), therefore Qlf(f) (2m)PI(&). That is, P o Q)1 is the pseudodiffer-
ential operator associated to a(x,y,&) = (2m)Pp(z, £)b(y, ). We apply 3.13
and 3.17 to conclude. m
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