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L1 factorizations, moment problems
and invariant subspaces

by

Isabelle Chalendar (Lyon), Jonathan R. Partington (Leeds)
and Rachael C. Smith (Leeds)

Abstract. For an absolutely continuous contraction T on a Hilbert space H, it is
shown that the factorization of various classes of L1 functions f by vectors x and y in H,
in the sense that 〈Tnx, y〉 = f̂(−n) for n ≥ 0, implies the existence of invariant subspaces
for T , or in some cases for rational functions of T . One of the main tools employed is the
operator-valued Poisson kernel. Finally, a link is established between L1 factorizations
and the moment sequences studied in the Atzmon–Godefroy method, from which further
results on invariant subspaces are derived.

1. Introduction. The starting point of the Scott Brown method is the
following result, which can be found, for example, in [6] and [9, Sec. 4].

Lemma 1.1. Let H be a complex Hilbert space and T ∈ L(H). Suppose
that there exist λ ∈ D and n0 ∈ N for which we can find two nonzero vectors
x, y ∈ H satisfying 〈Tnx, y〉 = λn for all n ≥ n0. Then T has a nontrivial
closed invariant subspace.

Indeed, to show this we take M = 〈(T − λ Id)T n0x〉, where 〈x〉 denotes
span{Tnx : n ≥ 0}, and span means the closed linear hull of a set. This is a
closed T -invariant subspace, and we note that y ⊥ M and so M 6= H. On
the other hand, if M = {0}, then (T − λ Id)T n0x = 0, whereas x 6= 0, and
so the cyclic subspace generated by x is finite-dimensional.

In the Banach space situation we obtain the following result, which is
proved in an identical manner.

Lemma 1.2. Let E be a complex Banach space and suppose that there
exist ψ0 ∈ E∗ \ {0}, x0 ∈ E \ {0}, λ ∈ D and n0 ∈ N such that 〈Tnx0, ψ0〉
= λn for all n ≥ n0. Then T has a nontrivial closed invariant subspace.
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Now we specialize to the case of a complex separable Hilbert space H
with dimH = ∞, and consider T an absolutely continuous contraction
(see [18]). In this case we know that for all x, y ∈ H one can give a meaning
to x T. y, as a function f ∈ L1(T) = L1(T, dm), where T denotes the unit
circle and m is normalized Lebesgue measure. The Fourier coefficients of f
are given by

f̂(n) =
{ 〈T ∗nx, y〉 if n ≥ 0,

〈T |n|x, y〉 if n ≤ 0.

One can also define the function x T. y via the operator Poisson kernel
(see, for example, [16])

Kr,t(T ) = (Id−re−itT )−1 + (Id−reitT ∗)−1 − Id

= (Id−reitT ∗)−1(Id−r2T ∗T )(Id−re−itT )−1

for r ∈ (0, 1) and t ∈ [0, 2π) in the following way:

x T. y(eit) = lim
r→1−

〈Kr,t(T )x, y〉.(1)

Note that x T. y = y T. x.
We recall that the condition ‖T‖≤ 1 is equivalent to saying that σ(T)⊂D

and Kr,t(T ) ≥ 0 for all reit ∈ D (see [9], for example).
We may reinterpret Lemma 1.1 in the language of Hardy spaces. As

usual, we define the Hardy space Hp = Hp(D) for 1 ≤ p < ∞ as the space
of all analytic functions for which the norm

‖f‖p =
(

sup
0≤r<1

1
2π

2π�

0

|f(reiθ)|p dθ
)1/p

is finite. The space H∞ = H∞(D) comprises all the bounded analytic func-
tions in D, with norm ‖f‖∞ = sup{|f(z)| : |z| < 1}.

It is well known [15, 12] that Hp(D) may be regarded isometrically as
a closed subspace of Lp(T, dm), by identifying the Taylor coefficients of f
with the Fourier coefficients of an Lp(T) function.

For |λ| < 1 we write Pλ for the Poisson kernel, i.e.,

Pλ(z) =
1− |λ|2
|1− λz|2

(|z| ≤ 1).

Lemma 1.1 is then equivalent to the following statement: If T is an abso-
lutely continuous contraction for which there exist n0 ∈ N and x, y ∈ H
such that

[x T. y]L1/z−n0H1
0

= [x T. y]L1/z1−n0H1 = [Pλ]L1/z−n0H1
0
,

then T has a nontrivial invariant subspace. In general we shall write [f ] to
denote [f ]L1/H1

0
, unless specified otherwise.
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Question 1.1. Let T be an absolutely continuous contraction on H.
Take g ∈ L1(T) and suppose that there exist x, y ∈ H such that

[g] = [x T. y](2)

(equivalently , 〈Tnx, y〉 = ĝ(−n) for all n ≥ 0). For which functions g 6= 0
does the identity (2) imply that T has a nontrivial invariant subspace?

With a view to providing some answers to Question 1.1, we begin in
Section 2 by showing that if T factorizes a function of the form h1/h2 with
h1, h2 ∈ H∞, then T has invariant subspaces. Examples of such functions
include various `1 sums of Poisson kernels. The functions h1/h2 cannot equal
zero on sets of positive measure, and so we next consider the implications
of being able to factorize functions that vanish on an arc I of the circle;
we shall use a supplementary spectral condition of the form I ∩ σ(T ) = ∅,
which is very natural, since one already knows from [7] that contractions
with spectrum containing T always have invariant subspaces.

Motivated by an observation due to Foiaş and Pearcy [13], we show that
in many cases the possibility of factorizing functions using b(T ) (where b is
a finite Blaschke product) implies that T itself has invariant subspaces.

In Section 3 we regard L1 factorizations in another light by linking them
with the results of Atzmon and Godefroy [1] that guarantee the existence
of real invariant subspaces when a Banach-space operator admits a moment
sequence on the real line. These fit well into the context of the earlier part
of this paper, provided that the given operators have a suitable algebraic
structure, and we are thus able to deduce further results on the link between
L1 factorizations and the existence of invariant subspaces.

2. L1 factorizations via the operator-valued Poisson kernel. Our
first result gives a significant extension of Lemma 1.1. Let L1(T) ∩ H∞(T)

H∞(T)

denote the set of functions f ∈ L1(T) that can be written as f = h1/h2 for
some h1, h2 ∈ H∞(T), regarding H∞(T) as the closed subspace of L∞(T)
consisting of boundary values of functions in H∞(D).

Theorem 2.1. Let T ∈ L(H) be an absolutely continuous contraction
and suppose that there exist nonzero vectors x, y ∈ H, a function f ∈
L1(T) ∩ H∞(T)

H∞(T) , and an n0 ∈ N such that

〈Tnx, y〉 = f̂(−n) for all n ≥ n0.

Then T has a nontrivial closed invariant subspace.

Proof. We write f = h1/h2 as in the definition of L1(T) ∩ H∞(T)
H∞(T) , and

consider the subspace M = 〈h2(T )Tn0+1x〉. It is clearly T -invariant. More-
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over, for k ≥ 1,

〈h2(T )Tn0+kx, y〉 = 〈h2(z)zn0+k, x T. y〉

=
1

2π

2π�

0

h2(eiθ)ei(n0+k)θ(x T. y)(eiθ) dθ

=
1

2π

2π�

0

h2(eiθ)ei(n0+k)θ h1(eiθ)
h2(eiθ)

dθ,

since zn0(x T. y−h1/h2) ∈ H1

=
1

2π

2π�

0

ei(n0+k)θh1(eiθ) dθ

= ĥ1(−n0 − k) = 0.

Hence M 6= H and if M 6= {0}, then T has a nontrivial closed invariant
subspace.

Suppose now that M = {0}. Then h2(T )Tn0+1x = 0. Let

N = Ker(h2(T )Tn0+1) 6= {0}.
If N 6= H, then it is a nontrivial closed invariant subspace for T .

There remains the possibility that N = H, i.e., that h2(T )Tn0+1 = 0.
Then T is a C0 operator and in this case T has a nontrivial invariant subspace
(cf. [18] and [3, Chap. II]). Indeed, it is even hyperinvariant if T is not a
scalar multiple of the identity.

Corollary 2.1. Let T be an absolutely continuous contraction on H
and suppose that there exist x, y ∈ H such that (2) holds for a nonzero
function g =

∑
n≥1 cnPλn , where (λn)n≥1 is a Blaschke sequence (possibly

finite) and
∑

n≥1 |cn| <∞. Then T has a nontrivial invariant subspace.

Proof. If f is a single Poisson kernel Pλ, then taking b ∈ H∞ as the
Blaschke product b(z) = (z − λ)/(1− λz), and |z| = 1, we have

f(z)b(z) =
1− |λ|2

(1− λz)(1− λz)

z − λ
1− λz

=
(1− |λ|2)z

(1− λz)2
∈ H∞.

The general case follows on noting that gB ∈ H∞, where B is a Blaschke
product with zeroes (λn)n≥1, as is now easily verified.

It is not possible to extend the above methods to arbitrary sequences
(λn)n≥1 ⊂ D, since any function in C(T) can be written as an `1 sum of
Poisson kernels (see, for example, [5, 10]), including some functions which
are not in H∞(T)/H∞(T), since they are zero on subintervals of positive
measure but not identically zero.
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It is clear that the class L1(T)∩H∞(T)
H∞(T) is dense in L1(T), since it contains

all rational functions without poles on the unit circle. However, we do not
know an explicit characterization of it. If f ∈ L1(T) ∩ H∞(T)

H∞(T) then certainly

log |f | ∈ L1(T), but this is not a sufficient condition, as the example 1 +χΩ
shows, withΩ being a closed subset of normalized measure strictly between 0
and 1. For if 1+χΩ = h1/h2, then h1 = h2 on a set of uniqueness, and hence
almost everywhere, which is absurd.

The next proposition collects together some standard facts, which will
show that the hypotheses in the theorem that follows it are very natural.

Proposition 2.1. (i) Suppose that for some λ ∈ D and vectors
x, y ∈ H, we have [Pλ] = [x T. y]. Then there is a vector x̃ ∈ H
such that [Pλ] = [x̃ T. x̃].

(ii) Let f ∈ L1(T) and x ∈ H; then the following assertions are equiva-
lent :

1. f ≥ 0 a.e. and [f ] = [x T. x].
2. f = x T. x.

Proof. (i) Without loss of generality we may suppose that y ∈ 〈x〉. By
the functional calculus we have

〈f(T )x, y〉 =
1

2π

2π�

0

f(eit)Pλ(eit) dt = f(λ)

for all f ∈ H∞, and so y ⊥ V := 〈(T −λ Id)x〉. Let x̃ be a unit vector in the
one-dimensional space 〈x〉	V; then one can easily check that [Pλ] = [x̃ T. x̃].

(ii) Since the operator-valued Poisson kernel is positive, we have

(x T. x)(eit) = lim
r→1−

‖K1/2
r,t (T )x‖2 ≥ 0,

and thus condition 2 implies condition 1.
Conversely, if condition 1 is satisfied, then 〈T nx, x〉 = f̂(−n) for all

n ≥ 0, and since f is real-valued we have

f̂(n) = f̂(−n) = 〈T ∗nx, x〉 = (x T. x)∧(n) for n ≥ 0,

i.e., f = x T. x.

Recall that if T is a contraction and σ(T ) ⊇ T, then T has a nontrivial
invariant subspace. We now analyse some of the possibilities when σ(T )∩T
is not the whole circle. To do this, we recall the following result.

Lemma 2.1 ([8, Lem. 5.1]). Let T ∈L(H) be a contraction with Γ (T ) :=
σ(T )∩T 6= T. For any x, y ∈ H and any closed arc I ⊂ T\Γ (T ) the function
x T. y extends analytically in a neighbourhood of I.
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Theorem 2.2. Let T ∈ L(H) be an absolutely continuous contraction.
Suppose that there is an open arc I ⊆ T \ σ(T ) and x ∈ H such that
[f ] = [x T. x], where f is a nonzero real function vanishing on I. Then T has
a nontrivial invariant subspace.

Proof. Using Proposition 2.1 we have f = xT. x and f ≥ 0. By Lemma 2.1,
since I ⊆ T\σ(T ), the function xT. x extends analytically in a neighbourhood
of I. For eit ∈ I we have

0 = (x T. x)(eit) = 〈(Id−T ∗T )(Id−e−itT )−1x, (Id−e−itT )−1x〉
= ‖(Id−T ∗T )1/2(Id−e−itT )−1x‖2

= ‖(Id−T ∗T )1/2(eit Id−T )−1x‖2.
Hence

(Id−T ∗T )1/2(eit Id−T )−1x = 0 for all t with eit ∈ I.
On taking successive derivatives with respect to t, we obtain

(Id−T ∗T )1/2(eit Id−T )−nx = 0 for all n ≥ 1, and t with eit ∈ I.
By multiplying T by a unimodular constant, we may reduce to the case
when

(Id−T ∗T )1/2(Id−T )−nx = 0 for all n ≥ 1.

Let M = span{(Id−T )−nx : n ≥ 1}. Clearly M 6= {0}, since it contains
the nonzero vector (Id−T )−1x. IfM = H, then it follows that Id−T ∗T = 0
and thus T is an isometry, and therefore has a rich lattice of invariant sub-
spaces. Otherwise, set A = (Id−T )−1. Then M is a nontrivial invariant
subspace for A. Now σ(A) ⊂ {z ∈ C : Re z > 0}, and so, by the holomor-
phic functional calculus, there is a sequence (pn)n≥1 of complex polynomials
converging uniformly to the function z 7→ 1 − 1/z on a neighbourhood of
σ(A). Then ‖pn(A)−T‖ → 0 and henceM is a nontrivial invariant subspace
for T as well.

A simple example of the above situation is obtained by taking H =
L2(Ω), where Ω is a proper closed subset of T. Let T be the operator
of multiplication by the independent variable. Then for x, y ∈ H one has
(x T. y)(eit) = (xy)(eit), where x and y are regarded as functions in L2(T)
that vanish on the complement of Ω.

We can obtain a corollary of Theorem 2.2 by exploiting the following
result.

Theorem 2.3 ([11, Thm. 3.1]). Let T ∈ L(H) be any absolutely contin-
uous contraction, and let b be a finite Blaschke product. Then, for every
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x, y ∈ H, we have

(x b(T ). y)(eit) =
d∑

j=1

(x T. y)(ξj)
|b′(ξj)|

a.e.,

where ξ1, . . . , ξd are the solutions of b(z) = eit.

Corollary 2.2. Let T ∈ L(H) be an absolutely continuous contraction.
Suppose that there is an open arc J ⊆ T \ σ(b(T )) and x ∈ H such that
[f ] = [x b(T ). x], where f is a nonzero real function vanishing on J . Then T
has a nontrivial invariant subspace.

Proof. Suppose that eit ∈ J . Then

(x b(T ). x)(eit) =
d∑

j=1

(x T. x)(ξj)
|b′(ξj)|

= 0 a.e.,

and so x T. x = 0 for almost all ξ with b(ξ) ∈ J , since x T. x ≥ 0 almost
everywhere. The hypotheses of Theorem 2.2 are now satisfied on taking I
to be any interval contained in b−1(J).

In particular, if x T 2
. x is a function vanishing on an arc disjoint from

the spectrum of T 2, then T has nontrivial invariant subspaces. This can be
viewed in the context of a result of Foiaş and Pearcy [13, Cor. 2.3], which
asserts that if it is the case that every invertible contraction T with T 2 ∈ Aℵ0

has a nontrivial invariant subspace, then in fact every contraction in L(H)
with spectral radius 1 also has a nontrivial invariant subspace. We omit the
definition of the class Aℵ0 and refer the reader to [4] for further information;
the important points are that if T 2 ∈ Aℵ0 , then for every g ∈ L1(T) there
exist x, y ∈ H with g = x T 2

. y, and moreover, that we can write f = x T 2
. x

for some x ∈ H if and only if f is lower semicontinuous and strictly positive
(see [10, Cor. 4.4 and Thm. 5.3]). It is possible that the methods employed
here may shed further light on the question whether every contraction with
spectral radius 1 has a nontrivial invariant subspace.

The hypotheses of Theorem 2.2 require that σ(T )∩T is reasonably rich,
as the following result shows.

Proposition 2.2. Let T ∈ L(H) be an absolutely continuous contrac-
tion such that Γ (T ) := σ(T ) ∩ T contains at most one point. Suppose that
f ∈ L1(T), [f ] 6= 0, but f vanishes on a set Ω ⊂ T with m(Ω) > 0. Then
there do not exist x, y ∈ H with [f ] = [x T. y].

Proof. Suppose to the contrary that there is a function h ∈ H1
0 such that

f = x T. y+h. By Lemma 2.1, x T. y extends analytically to a neighbourhood
of T\Γ (T ), which can be chosen to be connected, since Γ (T ) is either empty
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or a single point. Since x T. y = −h on Ω, which is a uniqueness set for H1,
we deduce that x T. y = −h on T. It follows that [f ] = [0], which is absurd.

We now look at some of the consequences of factorizing a characteristic
function.

Proposition 2.3. Let T ∈ L(H) be an absolutely continuous contrac-
tion, and let x, y ∈ H be such that [x T. y]L1/H1

0
= [χΩ]L1/H1

0
for some subset

Ω ⊂ T of normalized measure strictly between 0 and 1. Then by considering
z T. y for different z ∈ H but with the same y one can factorize all functions
in H∞|Ω ; this is a subset of L∞(Ω) that is not dense in L∞(Ω) in the L∞

norm but is dense in L1(Ω) in the L1 norm.

Proof. We have, for n ≥ 0 and k ∈ H∞,

(k(T )x T. y)∧(−n) = 〈Tnk(T )x, y〉 =
1

2π

2π�

0

einθk(eiθ)(x T. y)(eiθ) dθ

= (k.(x T. y))∧(−n),

and hence [k(T )x T. y]L1/H1
0

= [k.(x T. y)]L1/H1
0
. The fact that H1

|Ω is dense in
L1(Ω) but H∞|Ω is not dense in L∞(Ω) may be found in [2].

Another consequence of factorizing χΩ in certain special cases is the
following.

Proposition 2.4. Let n ≥ 2 be an integer and let Ω be a subarc of the
circle such that m(Ω) = 1/n. Suppose that there exist x, y ∈ H such that
[χΩ]L1/H1

0
= [x T. y]L1/H1

0
. Then Tn has a nontrivial invariant subspace.

Proof. We know from Theorem 2.3 that, writing ξj = e(it+2jπ)/n for
j = 1, . . . , n, we have

(x Tn. y)(eit) =
1
n

n∑

j=1

(x T. y)(ξj) =
1
n

n∑

j=1

(χΩ(ξj) + ξjh(ξj)),

where h ∈ H1(T). If h(z) =
∑∞

r=0 arz
r, then

n∑

j=1

ξjh(ξj) =
∞∑

r=0

ar

n∑

j=1

ξr+1
j = n

∞∑

k=1

ank−1e
ikt,

which, regarded as a function of eit, lies in H1
0 . Here we have used the fact

that
n∑

j=1

ξr+1
j =

{
0 if n - (r + 1),

neikt if r + 1 = nk with k ∈ N.
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We conclude that

(x Tn. y)(eit)− 1
n

n∑

j=1

χΩ(ξj) ∈ H1
0 ,

and so [xTn. y]L1/H1
0

= [P0]L1/H1
0
. The result now follows from Corollary 2.1.

3. L1 factorizations and moment problems. The following result
is due to Atzmon and Godefroy [1, Cor. 4].

Theorem 3.1. Let X be a real Banach space and let A ∈ L(X) be an
operator which admits a real moment sequence, in the sense that there exists
a positive Borel measure µ on R and elements x ∈ X \{0} and x∗ ∈ X∗\{0}
such that for each n ≥ 0 we have

〈x∗0, Anx0〉 =
�

R
un dµ(u).

Then A has a nontrivial invariant subspace.

We may use the above result to deduce further results linking L1 factor-
izations with the existence of (complex) invariant subspaces.

Theorem 3.2. Let H be a complex Hilbert space that decomposes as the
topological direct sum K ⊕ iK of real closed subspaces. Let T ∈ L(H) be an
absolutely continuous contraction such that TK ⊆ K and −1 6∈ σ(T ), and
suppose that there exist nonzero vectors x, y ∈ K and a nonnegative function
f ∈ L1(T) vanishing on an open arc containing −1 such that [f ] = [x T.
y]. Then the operator (Id−T )2(Id +T )−2 has a nontrivial closed invariant
subspace.

Proof. Let Br := (Id−rT )(Id +rT )−1 for 0 ≤ r ≤ 1 with B = B1; then
‖Br −B‖ → 0 as r → 1−. By the H∞ functional calculus, we have

〈Bn
r x, y〉 =

1
2π

2π�

0

(
1− reit
1 + reit

)n
f(eit) dt for n = 0, 1, . . .

whenever 0 ≤ r < 1, and hence, by the hypotheses on f , we deduce that

〈Bnx, y〉 =
1

2π

2π�

0

(
1− eit
1 + eit

)n
f(eit) dt.

Note that (1− eit)/(1 + eit) = −i tan(t/2), and so, setting u = tan(t/2), we
obtain

〈Bnx, y〉 =
1

2π

∞�

−∞
(−iu)ng(u)

2 du
1 + u2 ,
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where g(u) = f(eit). Hence

〈(−B2)kx, y〉 =
1

2π

∞�

−∞
u2kg(u)

2 du
1 + u2 for k = 0, 1, . . . .

Splitting the range of integration into two pieces, namely (−∞, 0] and [0,∞),
and letting v = u2 in each integral, we obtain

〈(−B2)kx, y〉 =
1

2π

∞�

0

vk(g(
√
v) + g(−√v))

dv

(1 + v)
√
v
,

which is easily seen to correspond to the moment sequence of a positive
L1 function. Hence, by Theorem 3.1, the operator A := −B2 (and hence
also the operator B2) has a nontrivial real invariant subspace E ⊆ K. It now
follows that E ⊕ iE is a nontrivial complex invariant subspace for B2 (this
technique of passing from real to complex invariant subspaces appears to
originate in [14]).

Such ideas can be used to prove more general results as follows. We work
with rational functions φ of the form

φ(z) =
∑N

n=0 an(1− z)2n(1 + z)2N−2n

∑N
n=0 bn(1− z)2n(1 + z)2N−2n

,(3)

with real coefficients (an) and (bn). Note that φ maps T to R ∪ {∞}, since
(1− z)/(1 + z) ∈ iR ∪ {∞} when z ∈ T. Simple examples of such functions
include φ(z) = z + z−1, and z(1 + z)−2.

Theorem 3.3. Let H be a complex Hilbert space that decomposes as
the topological direct sum K ⊕ iK of real closed subspaces. Let T ∈ L(H)
be an absolutely continuous contraction such that TK ⊆ K. Suppose that
there exist nonzero vectors x, y ∈ K and a nonnegative function f ∈ L1(T),
supported on a closed subset F of T, such that [f ] = [x T. y]. Let φ be a
function given by (3) that has all its poles in the unbounded component of
C \ (σ(T ) ∪ F ). Then the operator φ(T ) has a nontrivial closed invariant
subspace.

Proof. Write B = φ(T ). Using Mergelyan’s theorem [17, Thm. 20.5] and
the holomorphic functional calculus, we see that z 7→ φ(z) is a uniform limit
of polynomials on a neighbourhood of σ(T ) ∪ F and we have

〈Bnx, y〉 =
1

2π

2π�

0

(φ(eit))nf(eit) dt for n = 0, 1, . . . .

We set u = φ(eit) and change the integration variable, splitting the circle
into finitely many arcs (Ij)Mj=1 on each of which φ(eit) varies monotonically
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with t. We obtain

〈Bnx, y〉 =
1

2π

M∑

j=1

�

φ(Ij)

ungj(u) du,

where the intervals φ(Ij) are taken in the positive direction and

gj(u) =
f(eit)∣∣ d
dtφ(eit)

∣∣ ≥ 0

on the arc Ij . Hence we obtain the moment sequence of a positive L1 func-
tion. As in Theorem 3.2, the operator B has a nontrivial real invariant
subspace E ⊆ K and E ⊕ iE is a nontrivial complex invariant subspace.

Remark 3.1. The method is well illustrated by the example φ(z) =
z + z−1. Write B = T + T−1 and set u = eit + e−it = 2 cos t. The arcs
I1 = [0, π] and I2 = [π, 2π] both map under φ to [−2, 2]. We obtain

〈Bnx, y〉 =
1

2π

2�

−2

unh1(u)
du√

4− u2
+

1
2π

2�

−2

unh2(u)
du√

4− u2
,

where hj(u) = f(eit) on the arc Ij for j = 1, 2.
Note that it is not necessary for f to vanish at ±1, because the integrals

converge absolutely for f ∈ L1(T).

Remark 3.2. Under further spectral assumptions the hypotheses of
Theorem 3.3 would imply that T also has an invariant subspace, since T
will be the limit of polynomials in B provided that the function φ−1 is an-
alytic in a neighbourhood of σ(B) containing all the bounded components
of C \ σ(B).

Remark 3.3. Finally, it is possible to prove Banach space versions of
the above results, although, since the main interest of this paper has been
with Hilbert space operators, we shall not give full details. One requires
a complex Banach space X that decomposes as the topological direct sum
Y ⊕ iY of real closed subspaces. Note that this situation arises naturally
if X has an unconditional basis (xm)m≥1 and one defines Y to be the
closed linear span of those linear combinations of the (xm) that use only
real coefficients. It is then easy to see that the natural real-linear projec-
tion from X onto Y is bounded. Then T ∈ L(X ) should be a contraction
such that TX ⊆ X . In this situation we say that T factorizes a suitable
nonnegative function f ∈ L1(T) if for some vector y0 ∈ Y and functional
y∗0 ∈ X ∗ such that y∗0 takes real values on Y, one has f̂(−n) = 〈y∗0, Tny0〉
for n ≥ 0.
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