
STUDIA MATHEMATICA 167 (3) (2005)

Classes of measures closed under mixing and
convolution. Weak stability

by

J. K. Misiewicz (Zielona Góra), K. Oleszkiewicz (Warszawa)
and K. Urbanik (Wrocław)

Abstract. For a random vector X with a fixed distribution µ we construct a class
of distributions M(µ) = {µ ◦ λ : λ ∈ P}, which is the class of all distributions of random
vectors XΘ, where Θ is independent of X and has distribution λ. The problem is to char-
acterize the distributions µ for whichM(µ) is closed under convolution. This is equivalent
to the characterization of the random vectors X such that for all random variables Θ1, Θ2
independent of X,X ′ there exists a random variable Θ independent of X such that

XΘ1 +X ′Θ2
d= XΘ.

We show that for every X this property is equivalent to the following condition:

∀a, b ∈ R ∃Θ independent of X, aX + bX ′ d= XΘ.

This condition reminds the characterizing condition for symmetric stable random vectors,
except that Θ is here a random variable, instead of a constant.

The above problem has a direct connection with the concept of generalized convolu-
tions and with the characterization of the extreme points for the set of pseudo-isotropic
distributions.

1. Introduction. Let E be a separable real Banach space. By P(E)
we denote the set of all Borel probability measures on E. For E = R we
will use the simplified notation P(R) = P, and the set of all probability
measures on [0,∞) will be denoted by P+. For every a ∈ R and every
probability measure µ, we define the rescaling operator µ 7→ Taµ by the
formula (Taµ)(A) = µ(A/a) when a 6= 0, and T0(µ) = δ0. This means that
Taµ is the distribution of the random vector aX if µ is the distribution of
the vector X. For every µ ∈ P(E) and λ ∈ P we define a scale mixture µ ◦λ
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of the measure µ with respect to the measure λ by the formula

(µ ◦ λ)(A) =
�

R
(Taµ)(A)λ(da).

It is easy to see that µ ◦λ is the distribution of the random vector XΘ if X
and Θ are independent, X has distribution µ, and Θ has distribution λ.

We consider the set of all mixtures of the measure µ, i.e.

M(µ) = {µ ◦ λ : λ ∈ P} = P ◦ µ.
When it is more convenient we will write M(µ̂) instead of M(µ). The cor-
responding set of characteristic functions is denoted by

Φ(µ) = {ν̂ : ν = µ ◦ λ, λ ∈ P} =
{
ϕ : ϕ(ξ) =

�
µ̂(ξt)λ(dt), λ ∈ P, ξ ∈ E∗

}
.

The problem discussed here has a very elementary formulation: charac-
terize those probability measures µ on E for which the set M(µ) is closed
under convolution, i.e.

(A) ∀ν1, ν2 ∈ M(µ), ν1 ∗ ν2 ∈ M(µ).

In the language of random vectors, this condition looks even simpler: Let
X,X ′, Θ1, Θ2 be independent, where X and X ′ have distribution µ. If con-
dition (A) holds, then there exists a random variable Θ independent of X
such that

XΘ1 +X ′Θ2
d= XΘ.

In particular, under the previous assumptions,

∀a, b ∈ R ∃Θ = Θ(a, b), X and Θ independent and aX + bX ′
d= XΘ.

The main result of this paper states that condition (A) is equivalent to

(B) ∀a, b ∈ R, Taµ ∗ Tbµ ∈ M(µ).

Example 1. The class of symmetric distributions on R is closed under
mixing and under convolution. It is easy to see that this class can be written
as M(τ) for τ = 1

2δ1 + 1
2δ−1. Checking (B) in this case is especially simple.

In the language of characteristic functions we have

τ̂(at)τ̂(bt) = cos(at) cos(bt) =
1
2

cos((a+ b)t) +
1
2

cos((a− b)t)

=
�

R
cos(ts)

(
1
2
δa+b +

1
2
δa−b

)
(ds),

which means that we can take 1
2δa+b + 1

2δa−b for λ. But there are many
other possibilities, since if X is a symmetric random vector, and X and Θ

are independent, then XΘ
d= X|Θ|. Thus the measure λ is not uniquely
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determined and condition (B) holds for every λpq, p, q ∈ [0, 1/2], where

λpq := pδa+b +
(

1
2
− p
)
δ−a−b + qδa−b +

(
1
2
− q
)
δb−a.

It is easy to see that the set K(δa, δb) = {λpq : p, q ∈ [0, 1/2]} is closed and
convex. This property turns out to be general.

In [3, 10–13] Kucharczak, Urbanik and Vol’kovich considered a very sim-
ilar problem. They studied the properties of weakly stable random variables
and measures, where a random variable X ≥ 0 with distribution µ on [0,∞)
is said to be weakly stable if for any a, b ∈ R+ there exists a nonnegative
random variable Q with distribution λ such that

(C) Taµ ∗ Tbµ = µ ◦ λ.
From now on we will say that a distribution µ for which (C) holds is R+-
weakly stable, and that µ is weakly stable when (B) is satisfied. The next
example shows that these two conditions are not equivalent.

Example 2. Assume that a random vector X has a symmetric α-stable
distribution µ with α ∈ (0, 2]. This means that for every a, b ∈ R we have

aX + bX ′ d= cX, where cα = |a|α + |b|α, so condition (B) holds for λ = δc.
It is easy to see that the opposite implication also holds, i.e. if for every
a, b ∈ R there exists a Dirac measure satisfying condition (B), then µ is
symmetric stable. This is a little different from the usual condition, where
the assumption

(D) ∀a, b > 0 ∃c > 0, aX + bX ′ d= cX.

is equivalent to X having a strictly stable distribution. Thus, a strictly
stable distribution is R+-weakly stable, but it may not be weakly stable. A
symmetric stable distribution is both R+-weakly stable and weakly stable.

Example 3. Consider the random vector Xk,n = (U1, . . . , Uk) for k ≤ n
which is the k-dimensional projection of Un = (U1, . . . , Un) with the uniform
distribution on the unit sphere Sn−1 ⊂ Rn. The distribution µk,n of Xk,n for
k < n is absolutely continuous with respect to the Lebesgue measure with
density

f(x1, . . . , xk) = c(n, k)
(

1−
k∑

i=1

x2
i

)(n−k)/2−1

+
,

where c(n, k) is a normalizing constant. The setM(µn,n) is well known, be-
ing the set of all rotationally invariant distributions on Rn. The setM(µk,n)
is a convex and closed subset ofM(µk,k). If n = k+ 2, then µk,n is the uni-
form distribution on the unit ball Bk ⊂ Rk. In particular, M(µ1,3) is the
set of symmetric unimodal probability measures on R.
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In order to show that all these classes are also closed under convolution,
we need to use the following characterization:

µ is rotationally invariant on Rk
⇔ µ̂(ξ) depends only on ‖ξ‖2 = (|ξ1|2 + · · ·+ |ξk|2)1/2, i.e. µ̂(ξ) = ϕ(‖ξ‖2)

for some function ϕ
⇔ µ is the distribution of UnΘ, where Θ ≥ 0 is independent of Un.

Now, let ν1, ν2 ∈ M(µk,n). This means that there exist independent rota-
tionally invariant random vectors X1 and X2 on Rn such that ν1 and ν2 are
the distributions of the k-dimensional projections of X1 and X2. For every
a, b ∈ R, the random vector aX1 + bX2 is also rotationally invariant on Rn
since

E exp{i〈aX1, ξ〉+ i〈bX2, ξ〉}
= E exp{i〈aX1, ξ〉}E exp{i〈bX2, ξ〉} = f1(|a|‖ξ‖2)f2(|b|‖ξ‖2),

so the right hand side is a function depending only on ‖ξ‖2 (a, b are just some
parameters here). This means that there exists a random variable Q = Qa,b

such that aX1 + bX2
d= UnQ. It is easy to see now that Taν1 + Tbν2 is the

distribution of a k-dimensional projection of UnQ, which was to be shown.
It is interesting that the variable Qa,b for the measure µk,n does not depend
on k; in fact Qa,b has the same distribution as ‖aX1 + bX2‖2.

2. Conditions (A) and (B) are equivalent

Lemma 1. Assume that a measure µ has property (B). Then, for any
discrete measures ν1 =

∑
i piδai and ν2 =

∑
i qiδbi , the measure (µ ◦ ν1) ∗

(µ ◦ ν2) belongs to M(µ).

Proof. Let λij be such that Taiµ ∗ Tbjµ = µ ◦ λij . Then

(µ◦ν1)∗ (µ◦ν2) =
∑

i,j

piqjTaiµ∗Tbjµ =
∑

i,j

piqjµ◦λij = µ◦
(∑

i,j

piqjλij

)
.

Lemma 2. Let µ 6= δ0 be a probability measure on a separable Banach
space E and let A ⊂ P. If the set B = {µ◦λ : λ ∈ A} is tight , then so is A.

Proof. Let µ = L(X) and λ = L(Qλ) for X and Qλ independent, λ ∈ A.
Let ε > 0. Since B is tight there exists a compact set L ⊂ E such that

P(QλX ∈ L) ≥ 1− εP(X 6= 0).

Put Ln = [−1/n, 1/n] · L = {sx : s ∈ [−1/n, 1/n], x ∈ L}. Since L is
bounded we have

lim inf
n→∞

P(X 6∈ Ln) ≥ P(X 6= 0).
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Choose n such that P(X 6∈ Ln) ≥ P(X 6= 0)/2. Then

εP(X 6= 0) ≥ P(QλX 6∈ L) ≥ P(|Qλ| > n, X 6∈ Ln)

= P(|Qλ| > n)P(X 6∈ Ln) ≥ P(|Qλ| > n)P(X 6= 0)/2,

so that P(|Qλ| > n) ≤ 2ε for all λ ∈ A. This implies tightness of A.

Lemma 3. The set M(µ) is closed in the topology of weak convergence
and the set of extreme points of M(µ) is {Taµ : a ∈ R}.

Proof. If µ = δ0 then the assertion follows immediately, so we assume
that µ 6= δ0. Assume that µ ◦ λn ⇒ ν. Then the set {µ ◦ λn : n ∈ N} is
tight, and, by Lemma 2 the set {λn : n ∈ N} is also tight. Thus it contains a
subsequence λnk converging weakly to a probability measure λ on R. Since
the function µ̂(t) is bounded and continuous, we obtain

�
µ̂(ts)λnk(ds)→

�
µ̂(ts)λ(ds).

On the other hand, we have
�
µ̂(ts)λn(ds)→ ν̂(t).

This means that ν = µ ◦ λ and consequently ν ∈M(µ).
If a = 0, then Taµ = δ0 and it is easy to check that δ0 is an extreme

point in M(µ). Assume that for some a ∈ R, a 6= 0, there exist λ1, λ2 ∈ P
and p ∈ (0, 1) such that

Taµ = pµ ◦ λ1 + (1− p)µ ◦ λ2 = µ ◦ (pλ1 + (1− p)λ2).

This means that aX d= XΘ for some random variable Θ independent of
X with distribution pλ1 + (1 − p)λ2. The result of Mazurkiewicz (see [5])
implies that P{Θ = a} = 1 if the distribution of X is not symmetric, and
P{|Θ| = |a|} = 1 otherwise. In the first situation we would have

δa = pλ1 + (1− p)λ2,

so λ1 = λ2 = δa since δa is an extreme point in P. If X has symmetric
distribution we obtain

δ|a|(A) = pλ1(A) + (1− p)λ2(A) + pλ1(−A) + (1− p)λ2(−A)

=: p|λ1|(A) + (1− p)|λ2|(A)

for every Borel set A ⊂ (0,∞). Since δ|a| is an extreme point in P+, we have
δ|a| = |λ1| = |λ2|. Now, it is enough to notice that for a symmetric distri-
bution µ, the equality µ ◦ λ = µ ◦ |λ| holds for every probability measure λ.
Consequently, we obtain

Taµ = µ ◦ |λ1| = µ ◦ λ1 = µ ◦ |λ2| = µ ◦ λ2.

The above reasoning works for µ ∈ P. For µ ∈ P(E) the following two
situations are possible. If µ is nonsymmetric then one can choose ξ ∈ E∗ such
that ξ(X) is nonsymmetric and use the result of Mazurkiewicz as before. If



200 J. K. Misiewicz et al.

µ is symmetric then there exists ξ ∈ E∗ such that ξ(X) 6≡ 0 since µ 6= δ0,
so that δ|a| = |λ1| = |λ2|, as before. The rest of the reasoning does not need
any change.

Assume now that the probability measure ν is an extreme point ofM(µ).
Then there exists a probability measure λ such that ν = µ ◦ λ. If λ 6= δa for
any a ∈ R then we could divide R into two Borel sets A and A′ = R \ A
such that λ(A) = α ∈ (0, 1). Then

µ = αµ ◦ (α−1λ|A) + (1− α)µ ◦ ((1− α)−1λ|A′),
in contradiction with the assumption that ν is extremal.

Lemma 4. Assume that for a probability measure µ 6= δ0 and some
ν1, ν2 ∈ P the set

Kµ(ν1, ν2) := {λ : (µ ◦ ν1) ∗ (µ ◦ ν2) = µ ◦ λ}
is not empty. Then it is convex and weakly compact.

Proof. Notice that

{(µ ◦ ν1) ∗ (µ ◦ ν2)} = {µ ◦ λ : λ ∈ Kµ(ν1, ν2)},
and the set {(µ ◦ ν1) ∗ (µ ◦ ν2)} contains only one point. Then the weak
compactness of Kµ(ν1, ν2) follows from Lemma 2. The convexity is trivial.

Lemma 5. Assume that µ 6= δ0 is a probability measure and Kµ(ν1
n, ν

2
n)

6= ∅ for every n ∈ N, where ν1
n → ν1 weakly , ν2

n → ν2 weakly , and νin, νi ∈ P.
Then Kµ(ν1, ν2) 6= ∅.

Proof. Let A =
⋃∞
n=1Kµ(ν1

n, ν
2
n) and

B = {µ ◦ λ : λ ∈ A} = {(µ ◦ ν1
n) ∗ (µ ◦ ν2

n) : n ∈ N}.
Since B is tight, so isA by Lemma 2. Choosing now λn ∈ Kµ(ν1

n, ν
2
n) for every

n ∈ N, we can find a subsequence λnk converging weakly to a probability
measure λ. Since

(µ ◦ ν1
nk

) ∗ (µ ◦ ν2
nk

) = µ ◦ λnk ,
we also have

(µ ◦ ν1) ∗ (µ ◦ ν2) = µ ◦ λ,
and consequently λ ∈ Kµ(ν1, ν2) 6= ∅.

Theorem 1. For every probability distribution µ properties (A) and (B)
are equivalent.

Proof. The implication (A)⇒(B) is trivial. Assume that µ 6= δ0 and (B)
holds. This means that Kµ(δa, δb) 6= ∅ for any a, b ∈ R. It follows from
Lemma 1 that Kµ(ν1, ν2) 6= ∅ for any discrete measures ν1, ν2. Let now
λ1, λ2 ∈ P. We can find two sequences of discrete measures ν1,n and ν2,n
converging weakly to λ1 and λ2 respectively. Since Kµ(ν1,n, ν2,n) 6= ∅ for
every n ∈ N, Lemma 5 shows that also Kµ(λ1, λ2) 6= ∅, which implies (A).
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Proposition 1. Let X = (X1, . . . ,Xn) be a symmetric α-stable random
vector , and let Θ be a random variable independent of X. Then Y = XΘ
is weakly stable iff |Θ|α is R+-weakly stable.

Proof. Notice that

aXΘ + bX ′Θ′ d= (|aΘ|α + |bΘ′|α)1/αX,

where X ′, Θ′ are independent copies of X,Θ such that X,X ′, Θ,Θ′ are in-

dependent. Assume that Y is weakly stable. Since XΘ d= X|Θ| we obtain

(|aΘ|α + |bΘ′|α)1/αX
d= X · |Θ| ·Q

for some random variable Q. Without loss of generality we can assume that
Q ≥ 0. A symmetric stable distribution is cancellable (see [3, Prop. 1.1]),
thus we obtain

|a|α|Θ|α + |b|α|Θ′|α d= |Θ|αQα.
This implies that |Θ|α is R+-weakly stable. The converse is trivial.

3. Symmetrizations of mixing measures are uniquely deter-
mined. Assume that a measure µ 6= δ0 on R is weakly stable. We have seen
before that Kµ(ν1, ν2) is a nonempty convex and weakly compact set in P
for all ν1, ν2 ∈ P. In this section we discuss further properties of Kµ(ν1, ν2).

For a weakly stable measure µ we define

Φ(µ) = {ν̂ : ν = µ ◦ λ, λ ∈ P},
and let L(µ) denote the complex linear space generated by Φ(µ). Weak
stability of µ implies that for any f, g ∈ L(µ) we have fg, f ∈ L(µ). Since
µ ◦ δ0 = δ0 the space L(µ) contains the constants.

We denote by R = R∪{∆} the one-point compactification of the real line,
and by R+ = R+ ∪ {∞} the one-point compactification of the nonnegative
half-line. Let C(Y ) denote the space of continuous real functions on the
topological space Y . Then C(R+) can be identified with the set of even
(symmetric) functions from C(R).

Now, for a probability measure µ, we define

A(µ) = {f ∈ L(µ) : f = f , lim
x→∞

f(x) = lim
x→−∞

f(x)}.

If µ is weakly stable then A(µ) is an algebra (over the reals).

Lemma 6. If a probability measure µ on R is not symmetric, then the
set A(µ) separates points of R.

Proof. Let γ be a symmetric Cauchy distribution with Fourier transform
γ̂(t) = e−|t|. For every c ∈ R, we define

hc(t) = (µ ◦ (γ ∗ δc))∧(t) ∈ Φ(µ).
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First we show that there exists a ∈ R such that =m(ha) 6= 0. Assume the
opposite, i.e. =m(hc) ≡ 0 for every c ∈ R. This means that

=m
(
hc(t)

)
=
∞�

−∞
e−|tx| sin(ctx)µ(dx) = 0

for all c, t ∈ R. Substituting u = ct, we obtain
∞�

−∞
e−|ux|/|c| sin(ux)µ(dx) = 0

for u ∈ R and c 6= 0. This implies that

lim
c→∞

∞�

−∞
e−|ux|/|c| sin(ux)µ(dx) =

∞�

−∞
sin(ux)µ(dx) = 0,

which means that the characteristic function µ̂ is real, which contradicts our
assumption.

Now let a, t0 ∈ R be such that =m(ha(t0)) 6= 0. For every s 6= 0, we
define

gs(t) = =m
(
ha

(
t · t0
s

))
.

It is easy to see that gs(t) ∈ A(µ), and gs(t) = −gs(−t). We can now see
that for every r ∈ R, r 6= 0, the function gr(t) separates the points r and
−r since gr(r) = ha(t0) 6= gr(−r). To finish the proof, it is enough to notice
that the function

h0(t) =
∞�

−∞
e−|tx| µ(dx)

separates points t1, t2 ∈ R if |t1| 6= |t2|, including the case ti = ∆.

Lemma 7. If a probability measure µ on R is symmetric and µ 6= δ0,
then A(µ) separates points of R+.

Proof. It is enough to notice that the function h0(t) = � e−|tx| µ(dx)
separates points of R+.

Theorem 2. If a weakly stable measure µ 6= δ0 on R is not symmetric,
then for any ν1, ν2 ∈ P the set Kµ(ν1, ν2) contains only one measure.

Proof. Assume that λ1, λ2 ∈ Kµ(ν1, ν2). This means that µ◦λ1 = µ◦λ2,
and consequently, for every λ ∈ P,

(µ ◦ λ) ◦ λ1 = (µ ◦ λ) ◦ λ2.

Hence, for every λ ∈ P,
∞�

−∞
(µ ◦ λ)∧(tx)λ1(dx) =

∞�

−∞
(µ ◦ λ)∧(tx)λ2(dx).
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This implies that for every f ∈ A(µ),

(∗)
∞�

−∞
f(x)λ1(dx) =

∞�

−∞
f(x)λ2(dx).

From Lemma 6 we know that the algebra A(µ) separates points of R, so by
the Stone–Weierstrass Theorem (see Theorem 4E in [4]), it is dense in C(R)
in the topology of uniform convergence. This means that (∗) holds for every
f ∈ C(R), and consequently λ1 = λ2.

Let τ = 1
2δ1 + 1

2δ−1. The symmetrization of a measure λ ∈ P is defined
to be the measure λ ◦ τ . Notice that λ is symmetric if and only if λ = λ ◦ τ .

Theorem 3. If a weakly stable measure µ 6= δ0 on R is symmetric and
ν1, ν2 ∈ P, then

λ1, λ2 ∈ Kµ(ν1, ν2)⇒ λ1 ◦ τ = λ2 ◦ τ.
If λ1 ◦ τ = λ2 ◦ τ and λ1 ∈ Kµ(ν1, ν2) then λ2 ∈ Kµ(ν1, ν2).

Proof. The second implication is trivial because for every symmetric
measure µ we have µ ◦λ = µ ◦ (λ ◦ τ). To prove the first implication assume
that λ1, λ2 ∈ Kµ(ν1, ν2). This implies that µ◦λ1 = µ◦λ2, and consequently
(µ ◦ λ) ◦ λ1 = (µ ◦ λ) ◦ λ2 for every λ ∈ P. This means that for every even
function f ∈ A(µ) the following equality holds:

(∗∗)
∞�

0

f(x) (τ ◦ λ1)(dx) =
∞�

0

f(x) (τ ◦ λ2)(dx).

It follows from the proof of Lemma 7 that the even functions from A(µ)
separate points in R+. Applying the Stone–Weierstrass Theorem again we
conclude that the set of even functions from A(µ) is dense in C(R+) in
the topology of uniform convergence. This means that (∗∗) holds for every
f ∈ C(R+), so the measures τ ◦ λ1 and τ ◦ λ2 coincide on R+, and, by
symmetry, also on R.

Remark 1. Notice that it follows from the proofs of Theorems 2 and 3
that weakly stable distributions are reducible in the sense that:

• If X,Y,Z are independent real random variables and X is nonsymmet-

ric and weakly stable then the equality XY d= XZ implies L(Y ) = L(Z).
• If X,Y,Z are independent, Y,Z are real, and X is a nonsymmetric

weakly stable random vector taking values in a separable Banach space E,

then XY
d= XZ implies L(Y ) = L(Z). To see this, apply the previous

remark to the random variable ξ(X), where ξ ∈ E∗ is such that ξ(X) is not
symmetric.
• If X,Y,Z are independent, Y,Z take values in E, and X is a non-

symmetric weakly stable real random variable, then XY
d= XZ implies
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L(Y ) = L(Z). To see this, note that it suffices to prove ξ(Y ) d= ξ(Z) for all
ξ ∈ E∗.
• If X,Y,Z are independent and X 6≡ 0 is symmetric weakly stable, then

XY
d= XZ implies L(Y ) ◦ τ = L(Z) ◦ τ .

Remark 2. Notice that if µ is weakly stable then so is µ ◦ τ . Indeed, if
Taµ ∗ Tbµ = ν1 ◦ µ and Taµ ∗ T−bµ = ν2 ◦ τ then

Ta(µ ◦ τ) ∗ Tb(µ ◦ τ) =
(

1
2
ν1 +

1
2
ν2

)
◦ (µ ◦ τ).

4. Some general properties of weakly stable distributions

Lemma 8. If a measure µ on R is weakly stable then µ({0}) = 0 or 1.

Proof. Let X be a weakly stable variable such that L(X) = µ, P{X = 0}
= p < 1, and let X ′ be its independent copy. We define the random variable
Y with distribution L(X |X 6= 0) and Y ′ its independent copy. The random
variable Y/Y ′ has at most countably many atoms, so there exists a ∈ R,
a 6= 0, such that P{Y = aY ′} = 0. Now let Θ be the random variable
independent of X such that

X − aX ′ d= XΘ.

Then we have

p ≤ P{XΘ = 0} = P{X − aX ′ = 0} = p2 + (1− p)2P{Y − aY ′ = 0} = p2.

This holds only if p = 0, which ends the proof.

Lemma 9. Assume that a weakly stable probability measure µ 6= δ0 on
R has at least one atom. Then the discrete part of µ (normalized to be a
probability measure) is also weakly stable.

Proof. Let µ = αµ1 +(1−α)µ2, α ∈ (0, 1), where αµ1 is the discrete part
of µ, µ1(R) = 1, and µ2 is such that µ2(R) = 1 and µ2({x}) = 0 for every
x ∈ R. If µ is weakly stable, then for every a ∈ R there exists a probability
measure λ such that µ ∗ Taµ = µ ◦ λ. Now we have

µ ∗ Taµ = α2µ1 ∗ Taµ1 + α(1− α)µ1 ∗ Taµ2

+ α(1− α)µ2 ∗ Taµ1 + (1− α)2µ2 ∗ Taµ2.

Clearly for a 6= 0 the discrete part of µ∗Taµ is equal to α2µ1 ∗Taµ1. On the
other hand, we have

µ ◦ λ = (1− β)µ ◦ λ2 + αβµ1 ◦ λ1 + (1− α)βµ2 ◦ λ1,

where λ1(R) = λ2(R) = 1, λ1 is a discrete measure, λ2({x}) = 0 for every
x ∈ R and λ = βλ1 + (1− β)λ2.



Classes of measures closed under mixing 205

Let S = {a ∈ R : µ ∗ Taµ({0}) = 0}. If a ∈ S, a 6= 0, then λ({0}) = 0
and µ ◦ λ2({x}) = βµ2 ◦ λ1({x}) = 0 for every x ∈ R, so

α2µ1 ∗ Taµ1 = αβµ1 ◦ λ1.

This means that α = β and µ1 ∗ Taµ1 = µ1 ◦ λ1.
If a 6∈ S then there exists a sequence an ∈ S \ {0}, n ∈ N, such that

limn an = a. Then µ∗Tanµ⇒ µ∗Taµ and µ1 ∗Tanµ1 ⇒ µ1 ∗Taµ1. For every
n ∈ N there exists λn such that µ1 ∗ Tanµ1 = µ1 ◦ λn, i.e. λn ∈ Kµ1(δ1, δan).
In view of Lemma 5 there exists λ ∈ Kµ1(δ1, δa), which ends the proof.

Theorem 4. Assume that a random vector X taking values in a separ-
able Banach space E and having distribution µ is such that E‖X‖ <∞ and
EX = a 6= 0. Then µ is weakly stable if and only if µ = δa.

Proof. Assume first that E = R. If µ = δa for some a 6= 0, then it is
weakly stable. Conversely, let µ be weakly stable and EX = a 6= 0. Let
X1,X2, . . . be a sequence of i.i.d. random variables with distribution µ. The
Weak Law of Large Numbers implies that

1
n

n∑

k=1

Xk → a

weakly as n → ∞. The measure µ is weakly stable, thus for every n ∈ N
there exists a measure νn such that

µn = L
(

1
n

n∑

k=1

Xk

)
= (T1/nµ)∗n = µ ◦ νn.

Since µn ⇒ δa, it follows from Lemma 2 that the family {νn} is tight and it
contains a sequence νnk such that νnk ⇒ ν for some probability measure ν.
Now, we obtain

δa = lim
n→∞

µn = lim
k→∞

µ ◦ νnk = µ ◦ ν.

Since a 6= 0 the last equality is possible only if µ = δx and ν = δy for some
x, y ∈ R with xy = a. Since EX = a, we conclude that µ = δa.

If X is a random vector in a separable Banach space E with EX =
a 6= 0 then the previous considerations yield P{ξ(X) = ξ(a)} = 1 for each
ξ ∈ E∗ with ξ(a) 6= 0. Such ξ’s form a dense subset in E∗. Consequently,
P{X = a} = 1.

Theorem 5. Assume that for a weakly stable measure µ 6= δ0 on a sep-
arable Banach space E there exists ε ∈ (0, 1] such that for every ξ ∈ E∗ and
every p ∈ (0, ε), �

E
|ξ(x)|p µ(dx) <∞.
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Then there exists α0 ∈ [ε, 2] such that M(µ) contains a strictly α-stable
measure for every α ∈ (0, α0).

Proof. Let p ∈ (0, ε). Since M(µ) is closed under scale mixing, µ ◦mn

∈ M(µ) for every n ∈ N, where

mn(dx) = c(n)x−p−11(1/n,∞)dx, c(n) = pn−p.

As M(µ) is also closed under convolution and under taking convex linear
combinations, and weakly closed, for every n ∈ N we have

νn = exp{c(n)−1(µ ◦mn)} ∈ M(µ),

where exp(κ) := e−κ(E)∑∞
k=0 κ

∗k/k! for every finite measure κ on E. Notice
that for every ξ ∈ E∗ we have

ν̂n(ξ) = exp
{
−

�

E

∞�

1/n

(1− eiξ(sx))s−p−1 ds µ(dx)
}

= exp
{
−

�

E
|ξ(x)|p

∞�

|ξ(x)|/n
(1− eiu sgn(ξ(x)))u−p−1 duµ(dx)

}
.

Let h(u) = (1 − eiu sgn(ξ(x)))u−p−1. Then h is integrable on [0,∞) since
p ∈ (0, 1), and |h(u)| = 2|sin(u/2)|u−p−1, thus |h(u)| ≤ u−p for u < 1 and
|h(u)| ≤ 2u−p−1 for u ≥ 1. This implies that the function

Hp(ξ(x)) =
∞�

0

(1− eiu sgn(ξ(x)))u−p−1 du

is well defined and bounded on E, thus

ν̂n(ξ)→ exp
{
−

�

E
|ξ(x)|pHp(ξ(x))µ(dx)

}
=: γ̂p(ξ).

It is easy to see that γ̂p is the characteristic function of a strictly p-stable
random variable and the corresponding measure γp belongs to M(µ) since
this class is weakly closed. Now we define

α0 = sup{α ∈ (0, 2] :M(µ) contains a strictly α-stable measure}.
To end the proof it is enough to recall that for every 0 < β < α ≤ 2 and
every strictly α-stable measure γα the measure γα ◦λβ/α is strictly β-stable,

where λβ/α is the distribution of the random variable Θ1/α
β/α, and Θβ/α ≥ 0

is such that E exp{−tΘβ/α} = exp{−tβ/α}.
Remark 3. Notice that if a weakly stable measure µ 6= δ0 on E is

such that � |ξ(x)|p µ(dx) < ∞ for every ξ ∈ E∗ and p ∈ (0, ε) for some
ε ∈ (0, 2] then M(µ) contains a symmetric p-stable measure for every
p ∈ (0, ε).
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To see this it is enough to notice that if µ is symmetric, then so is the
measure νn constructed in the proof of Theorem 5. Consequently,

ν̂n(ξ) = exp
{
−

�

E
|ξ(x)|p

∞�

|ξ(x)|/n
(1− cosu)u−p−1 duµ(dx)

}
.

Let h(u) = (1 − cosu)u−p−1. Then |h(u)| < u1−p for u < 1, and |h(u)| <
2u−p−1 for u > 1, so h is integrable on [0,∞) for every p ∈ (0, 2). For the
constants

Hp =
∞�

0

(1− cosu)u−p−1 du

we obtain
ν̂n(ξ)→ exp

{
−Hp

�

E
|ξ(x)|p µ(dx)

}
,

which is the characteristic function of a symmetric p-stable random vector.
If µ is not symmetric then we replace µ by µ ◦ τ in this construction.

This is possible since µ◦τ is symmetric, belongs toM(µ), and has the same
moments as µ.

Remark 4. In the situation described in Remark 3, if E = R thenM(µ)
also contains a symmetric ε-stable random variable. Indeed, it follows from
Remark 3 that

exp
{
−Hp

�

R
|tx|p µ(dx)

}
= exp

{
−|t|pHp

�

R
|x|p µ(dx)

}

is the characteristic function of some measure from M(µ). Since rescaling
is admissible, exp{−|t|p} is also the characteristic function of some measure
from M(µ). Now it is enough to notice that

lim
p↗ε

exp{−|t|p} = exp{−|t|ε},

and use Lemma 3.

Remark 5. There exist measures µ such that µ◦ν is symmetric α-stable
for some probability measure ν, but µ is not weakly stable. Any measure of
the form µ = qδ−1 + (1− q)δ1 for q ∈ (0, 1) \ {1/2} can serve as an example.

Lemma 10. Let X be a real random variable with distribution µ. If µ
is weakly stable and supported on a finite set then either there exists a ∈ R
such that µ = δa or there exists a 6= 0 such that µ = 1

2δ−a + 1
2δa.

Proof. Let X ′ be an independent copy of X. Assume that µ 6= δa for all
a ∈ R. Theorem 4 implies that X must take on both negative and positive
values with positive probability. Let V = {x ∈ R : µ({x}) > 0}. By Lemma 8
we have 0 6∈ V . Let b be the greatest and −a the least element of V . Clearly,
a, b > 0. We will prove first that a = b.
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Assume that b > a. For λ ∈ R consider the set of values taken on by
X − λX ′ with positive probability: Vλ = {v − λw : v, w ∈ V }. Clearly, for
λ ∈ (0, 1) the greatest element of Vλ is b + λa, and the least is −(a + λb).
Moreover a + λb < b + λa (hence b + λa has strictly the greatest absolute
value among all elements of Vλ). Since µ is weakly stable there exists a real

random variable Yλ independent of X and such that YλX
d= X − λX ′. One

can easily see that Yλ is also finitely supported. We have b+λa ∈ Vλ so that
there exist c, d 6= 0 such that P{Yλ = c} > 0, d ∈ V and cd = b+λa. Also for
any d′ ∈ V we have cd′ ∈ Vλ, so that |d′| > |d| would imply |cd′| > b + λa,
contrary to the fact that b + λa has the maximal absolute value among
all elements of Vλ. Hence d must have maximal absolute value among all
elements of V and therefore d = b so that c = 1 + λa/b.

We deduce that
−a
b

(b+ λa) = c · (−a) ∈ Vλ
and therefore there exist v, w ∈ V such that −(a/b)(b+ λa) = v − λw, and
consequently λ(w − a2/b) = v + a. Assume that a2/b 6∈ V . Then the last
equation may be satisfied for finitely many values of the parameter λ only
(because v and w can be chosen from a finite set only). It was proved for all
λ ∈ (0, 1), however. Hence a2/b ∈ V . Therefore

a2

b2
(b+ λa) = c · a2/b ∈ Vλ

and again, there exist v, w ∈ V such that (a2/b2)(b+ λa) = v − λw so that
λ(w + a3/b2) = v − a2/b. As before we infer that −a3/b2 ∈ V . By iterating
this reasoning we prove that (−1)k+1ak+1/bk ∈ V for every k ∈ N. Since
0 < a/b < 1 this implies that V contains an infinite subset, contradict-
ing our assumptions. The case a > b is excluded in a similar way. Hence
a = b.

Now, let −α be the greatest negative element and β the least positive
element of V . Consider X − λX ′ for 0 < λ < min(α, β)/a. Clearly, the
least positive element of Vλ is β − λa, whereas −(α − λa) is the greatest
negative one. Assume without loss of generality that β ≤ α so that β − λa
has the least absolute value among all elements of Vλ (otherwise consider
−X instead of X). Again, we choose Yλ and parameters c, d 6= 0 such that
P{Yλ = c} > 0, d ∈ V and cd = β−λa. We obtain d ∈ {−α, β} by a similar
reasoning—no element can be both at the same side of zero as d and closer
to zero than d because multiplying by c we would get a positive element
of Vλ less than β − λa. Hence c ∈ {(β − λa)/β,−(β − λa)/α}. However,
ca ∈ Vλ so that there exist v, w ∈ V such that ca = v − λw, which means
that λ(w− a2/β) = v − a or λ(w+ a2/α) = v + aβ/α. Since we proved this
alternative for infinitely many λ’s and we know that v and w can have only
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finitely many values we infer that a2/β ∈ V (if d = β) or −a2/α ∈ V (if
d = −α).

We have proved that V ⊂ [−a, a], so that β = a if d = β, or α = a
if d = −α. Anyway, |d| = a so that |c| = β/a − λ. Since {−a, a} ⊂ V we
have {−ca, ca} ⊂ Vλ and therefore also −(β − λa) ∈ Vλ. We have assumed
though that β − λa has the least absolute value among all elements of Vλ,
so in particular −(α − λa) ≤ −(β − λa). Since −(α − λa) is the greatest
negative element of Vλ we also have −(α− λa) ≥ −(β − λa). Hence α = β.

We have proved earlier that α = a or β = a, so finally α = β = a and
the support of µ is {−a, a}. Theorem 4 implies that µ is symmetric.

Lemma 11. Let X be a real random variable with distribution µ 6= δ0
and let X ′ be its independent copy. Assume that µ is weakly stable, so that
for any λ ∈ R there exists a real random variable Yλ independent of X such

that X − λX ′ d= YλX. If X is symmetric, assume additionally that Yλ ≥ 0
a.s. Then the map

λ 7→ L(Yλ)

is well defined and continuous on R.

Proof. The existence and uniqueness of distribution of Yλ follows from

Theorems 2 and 3. We only need to prove that λn → λ implies that Yλn
d→ Yλ

as n → ∞. Suppose not. Then we can find ε > 0 and a subsequence {nk}
such that for any k the law of Yλnk is ε-separated from the law of Yλ in
Lévy’s metric. Since

YλnkX
d= X − λnkX ′

d→ X − λX ′ d= YλX,

by Lemma 2 we can choose a subsequence {nkl} ⊂ {nk} such that Yλnkl
d→ Z

for some real random variable Z as l →∞. Hence L(Z) 6= L(Yλ). Moreover
Z ≥ 0 a.s. if X is symmetric because then all Yλn ’s are nonnegative a.s.

On the other hand, Z ′X d= YλX, where Z ′ is a copy of Z independent of

X since the map λ 7→ L(X − λX ′) is continuous. Therefore Yλ
d= Z ′ d= Z,

by Theorems 2 and 3 (or by Remark 1). The contradiction obtained ends
the proof.

Remark 6. Let α ∈ [1, 2]. Note that if X is a random variable with a
weakly stable distribution µ and E|X|p <∞ for all p ∈ (0, α) then

1 + |λ| ≥
{ |Yλ| a.s. if α = 2,

‖Yλ‖α if α < 2.

Indeed, by Theorem 5 there exists Θ independent of X such that XΘ
is strictly α-stable. If α < 2 then E|XΘ|β < ∞ for every β < α, thus
E|X|β < ∞ for every β < α. If α = 2 then XΘ is Gaussian so E|X|β < ∞
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for every β > 0. Now it is enough to notice that for β ≥ 1 we have

‖Yλ‖β‖X‖β = ‖YλX‖β = ‖X −λX ′‖β ≤ ‖X‖β + |λ| ‖X ′‖β = (1 + |λ|)‖X‖β.
The case β = α can be obtained by observing that ‖Yλ‖α = limβ→α− ‖Yλ‖β.
If α = 2 the inequality holds for all β ≥ 1, which implies that ‖Yλ‖∞ ≤
1 + |λ|.

Lemma 12. Let X be a real random variable with distribution µ. If µ is
weakly stable and supported on a countable set then there exists a ∈ R such
that µ = δa or there exists a 6= 0 such that µ = 1

2δ−a + 1
2δa.

Proof. Assume that the support of µ is an infinite countable set. For

λ ∈ (0, 1) we have X − λX ′ d= YλX, where X ′ and Yλ are defined as in the
preceding lemma (so that if X is symmetric then Yλ ≥ 0 a.s.). By Lemma 11,

Yλ
d→ Y0 = 1 as λ→ 0. Let

µ =
∞∑

n=1

pnδxn ,

where xn’s are nonzero (by Lemma 8) and pairwise different, and (pn)∞n=1 is
a nonincreasing sequence of positive numbers. Let

M =
{
xi − xj
xk − xl

: k 6= l

}
.

Clearly, M is a countable set. We see that for λ 6∈M the equality xk − λxi
= xl − λxj implies i = j and k = l. Finally, let N ∈ N be such that∑

n>N pn ≤ p2
1/2. Then for λ ∈ (0, 1) \M we have

p2
1 = P{X = x1,X

′ = x1} = P{X − λX ′ = x1 − λx1}

= P{YλX = x1(1− λ)} =
∞∑

n=1

P
{
Yλ =

x1

xn
(1− λ)

}
· pn

≤ P{Yλ = 1− λ} · p1 +
p2

1

2
+

N∑

n=2

P
{

Yλ
1− λ =

x1

xn

}
· pn,

and the summands for 2 ≤ n ≤ N tend to zero as λ→ 0 (since Yλ
1−λ

d→ 1) so
that

lim inf
λ→0, λ∈(0,1)\M

P{Yλ = 1− λ} ≥ p1/2.

On the other hand, for λ ∈ (0, 1) \M and k ∈ N we have

p2
k = P{X = xk, X

′ = xk} = P{X − λX ′ = xk(1− λ)}
= P{YλX = xk(1− λ)} ≥ P{Yλ = 1− λ} · pk,
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so that
lim sup

λ→0, λ∈(0,1)\M
P{yλ = 1− λ} ≤ pk.

Hence pk ≥ p1/2 for any k ∈ N and
∑∞

k=1 pk = ∞, which is clearly not
possible. This proves that µ has finite support and the assertion follows
from Lemma 10.

Theorem 6. Let µ be a weakly stable probability measure on a separable
Banach space E. Then either there exists a ∈ E such that µ = δa, or there
exists a ∈ E \ {0} such that µ = 1

2δ−a + 1
2δa, or µ({a}) = 0 for all a ∈ E.

Proof. Assume first that E = R. One can express µ as pµ1 + (1 − p)µ2,
where p ∈ [0, 1], µ1 is a discrete probability measure and µ2({x}) = 0 for
any x ∈ R. The case p = 0 is trivial, so assume that p > 0. Lemma 9 implies
that µ1 is weakly stable, and therefore by Lemma 12, µ1 = δa for some a ∈ R
or µ1 = 1

2δ−a + 1
2δa for some a 6= 0.

Case 1: µ1 = δa. If a = 0 then by Lemma 8 we have p = 1 and the
proof is finished. If a 6= 0, note that for λ ∈ (0, 1) the random variable
X − λX ′ d= YλX has exactly one atom with mass p2 at (1 − λ)a. Hence
Yλ has an atom with mass p at 1 − λ. Since Yλ

d→ Y1 as λ → 1 we have
P{Y1 = 0} ≥ p, and therefore P{X −X ′ = 0} = P{Y1X = 0} ≥ p. On the
other hand, P{X − X ′ = 0} = P{X = X ′} = p2 because X has only one
atom, at a. Hence p2 ≥ p so that p = 1.

Case 2: µ1 = 1
2δ−a + 1

2δa for some a 6= 0. For λ ∈ (0, 1) the random

variable X − λX ′ d= YλX has exactly four atoms, with mass p2/4 each, at
±(1−λ)a and ±(1+λ)a. Hence Yλ has atoms with total mass p/2 at ±(1−λ)

(and atoms with total mass p/2 at ±(1 + λ)). Since Yλ
d→ Y1 as λ → 1 we

have P{Y1 = 0} ≥ p/2, and therefore P{X−X ′ = 0} = P{Y1X = 0} ≥ p/2.
On the other hand, P{X−X ′ = 0} = P{X = X ′ = a} + P{X = X ′ = −a}
= p2/2 so that p2/2 ≥ p/2 and p = 1.

Let now E be an arbitrary separable Banach space. By making use of the
above result for real random variables ξ(X), where ξ ∈ E∗, we can easily
finish the proof.

Remark 7. Let X be a given random variable. It may happen that for
some a, b ∈ R there exists a random variable Qa,b independent of X such

that aX + bX ′ d= XQa,b, and for some other a, b such a random variable
does not exist.

Consider, for example,X with exponential distribution and characteristic
function (1− it)−1. It follows from Theorem 4 that the classM((1− it)−1)
is not closed under convolutions. However, if a, b ∈ R are such that ab < 0
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then the characteristic function of aX + bX ′ can be written as

E exp{i(aX + bX ′)t} =
1

1− iat
1

1− ibt =
� 1

1− ist λ(ds),

where λ({a}) = p = 1 − λ({b}), with p = a/(a− b). This means that

aX + bX ′ d= XQa,b, where Qa,b is independent of X and has distribution λ.

Assume that for some a, b > 0 there exists Q ≥ 0 such that aX + bX ′ d=
XQ. Then the density g of aX + bX ′ can be written as

g(x) =
∞�

0

e−x/ss−1 L(Q)(ds).

On the other hand, we have

g(x) =
∞�

0

e−x/ss−1 λ(ds).

The uniqueness of the Laplace transform for signed σ-finite measures implies
that L(Q) = λ, which is impossible since L(Q) is a probability measure
while λ is a signed measure only. Similar arguments can be used for a, b < 0.
Finally, if ab > 0 then aX + bX ′ cannot have the same distribution as XQ
for any random variable Q independent of X.
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