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Abstract. We prove the LP boundedness of the Marcinkiewicz integral operators p g
on R™ x --- x R™ under the condition that 2 € L(log L)*/2(S™ 1 x ... x §™~1). The
exponent k/2 is the best possible. This answers an open question posed in [7].

1. Introduction. Marcinkiewicz integrals have been studied by many
authors, dating back to the investigations of such operators by Zygmund on
the circle and by Stein on R™.

We shall be primarily concerned with Marcinkiewicz integrals on the
product space R® x R™, since the more general setting of R™ x ... x R"
can be handled similarly (see Section 4).

For n,m > 2, x € R"\{0}, y € R™\{0}, we let 2’ = z/|z| and ¢/ = y/|y|.
Let £2 € L} (S" 1 x S™~1) be a function satisfying the following cancellation

conditions:
§sn1 2(2',-) do(2') = 0,
(1.1) { SSm—l Q(-,y’) d(f(yl) —0.

Then the Marcinkiewicz integral operator ug is given by

dt ds\ '/?
(1.2) po(f)(z,y) = < LX |Fys(z,y)? (t8)3> ,
where
(13)  Fs@y= || % (x— &y —n)dEdn.

{lgl<t, Inl<s}

It has been known for a while that the LP boundedness of g holds for
1 < p < oo under the condition 2 € L(log L)?(S*~!xS™~!) (see Ding [6] and
Chen et al. [3]). On the other hand, by adapting an argument of Walsh ([18])
to the product space setting, it can be shown that, for every e > 0, the L?
boundedness of yq fails to hold for some §2 in L(log L) ~5(S"~! x §™~1). In
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this sense the condition 2 € L(log L)(S"~! x S™~1), if sufficient, would be
the best possible.

For the special case p = 2, Choi ([5]) verified that pg, is indeed bounded
on L?(R™ x R™) for all 2 € L(logL)(S"! x S™71). Ding subsequently
conjectured in [7] that the LP boundedness of py, holds under the condition
2 € Llog L)(S"! x S™ 1) for 1 < p < c0.

As a more recent progress in this investigation, Chen, Fan and Yang
obtained the following:

THEOREM 1 ([4]). Suppose that p € (1,00), r = min{p,p’}, and
2 € L(log L)*'"(loglog L)8(1 =2/ (s7=1 x ™1y,
Then pg is bounded on LP(R™ x R™).

Since the condition in Theorem 1 becomes {2 € L(log L) when p = 2,
it recovers Choi’s L? result. But, for p # 2, it still falls short of what is
conjectured by Ding.

The main purpose of this paper is to establish the following:

THEOREM 2. If 2 € L(logL)(S™ ! x S™1) and p € (1,00), then ug is
bounded on LP(R™ x R™).

Throughout the rest of the paper the letter C' will stand for a constant

but not necessarily the same one at each occurrence.

2. Main lemma. Given a two-parameter family v = {1, s : t,s € R} of
measures on R” x R™, we define the maximal operator v* by

(2.1) v (f) = sup [[vrs] * f|
t,s€R
and the corresponding square function by
1/2
(2.2) Go(N@y) = (s Fla,y)P deds)
RxR

Also, we write t=% = min{t®,t~%} and use |14 s to denote the total varia-
tion of vy .
The following is our main lemma;:

LEMMA 2.1. Let a,b> 2, o, 3,q > 1 and A > 0. Suppose that the family
{vs 1 t, s € R} of measures satisfies the following:
(i) [|vesll < A fort,s € R;
(i) [P2,(&,m)| < Ala'g[=/ ™o =0/ for (€,7) €R"XR™ and t, s € R;
(iii) [v*(F)llq < Allfllq for f € LYR™ x R™).
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Then, for every p satisfying |1/p — 1/2| < 1/(2q), there exists a positive
constant Cy, which is independent of a and b such that

(2.3) 1Gu(Nllp < Coll fllp
for f € LP(R™ x R™).
Two propositions are needed for the proof of Lemma 2.1.

PROPOSITION 2.2. Suppose that (i) and (iii) in Lemma 2.1 are satisfied
and |1/po — 1/2| = 1/(2q). Let F(x,y,t,s) be a measurable function on
R" x R™ x R? and Fis(z,y) = F(x,9,t,8) for (v,y) € R* x R™ and
(t,s) € R2. Then

H( |Vts>|<FtS] dtds) /2‘

LPO(R" xR™)

<\/_H( \Fts|2dtds)/‘

LPO(R™ xR™)

The above proposition can be proved by using the proof of Lemma 14
in [8], after some minor modifications.

For A > 2, let ¢ : R — [0, 1] be a C™ function supported in [4/(5)),
(5X)/4] such that

(2.4) S
0
)

For a,b > 2,let ¥ € C®°(R") and I" € COO(R’”) be given by
w(e) = (e*),  Tn) = ¢ (Inl*)
for € € R" and n € R™. For x € R", y € R™ and t,s >0, set
Uy(z) =t7"W(z/t), Ts(y)=s""I(y/s)

(A) )

dt =2In .

and
@t75($,y) = Wt(x) : Fs(y)‘
Define the square function operator Sg on R™ x R™ by

@5 Ganew) = (| 1 @uper D w)Pdrds)”

RxR

PROPOSITION 2.3. For every p € (1,00), there exists a positive constant
Cp independent of a and b such that

1S f |l p(rr xrmy < Cpll £l L (n xrm)
for f € LP(R™ x R™).
Proposition 2.3 can be established by using an argument of Fefferman

and Stein in [12] (pp. 123-124) which is rooted in the theory of vector-valued
singular integrals ([16, p. 46]). A careful tracking of the constant at each step
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shows its independence from the parameters a and b, which is a key feature
of Proposition 2.3. Details of the proof are omitted.

Proof of Lemma 2.1. 1t suffices to prove (2.3) for all Schwartz functions
fonR" xR™. For f € S(R™ x R™), it follows from (2.4) that

(2.6) f=\ (@ape = f)dtds.
RxR

By (2.6) and Minkowski’s inequality,

2.7 G,(f)(z,y) = ( S } S Dyttu psto ¥ Vys x f(,y) dudv‘thds>l/2
RxR RxR

< S (Hu,vf) (IL’, y) du d?./,
RxR
where

N 1/2

(HuF)@,9) = (§ 1@ty 501,05 flw, )| dt ds)

RxR
First we shall obtain the following L? estimate:

A

2v/ap

We shall present the proof of (2.8) for the case u,v > 0 only. The remaining
cases can be handled similarly. Let

o) g—alul g—Blo|

(2.8) [Hupll22 < e

4, s _ba 4 _ , _ 5b
Bunen = {(t9) €RxR: 1o <@g < 5 & <oeropp < T,

By Plancherel’s theorem and assumption (ii), we have

I fl= § 1FEmP( § @@ HgR)e® @)

R™xR™ RxR
< |7,0(6.m) [ dt ds ) d dn

<A !f(f,n)\z( { Iatf\%‘/lna|bsn|w/lnbdtds)dgdn

R™xR™ Eyv,em
< A? eQa—Qa\u|€2,8—2ﬂ\v|||f”2
~ 4ap 2

which yields (2.8).
Next we let po satisfy |1/po —1/2| = 1/(2q). Then by Propositions 2.2
and 2.3, there exists a positive constant C' such that

(2'9) HHU,vf”po < C”quprO < CHprO‘
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By interpolating between (2.8) and (2.9) we obtain
(2.10) 1 Hoo fllp < C(a, B, p)e e fel £,

for (u,v) € R x R and p satisfying |1/p — 1/2| < 1/(2q), where C(«, 3,p),
ap and 3, are positive constants independent of w,v,a and b. Lemma 2.1
now follows from (2.7) and (2.10).

3. Proof of the main theorem. Assume §2 € L(log L)(S"~! x S™~1)
and {2 satisfies (1.1). For k € N, let Ej, = {(x,y) € S"~1 x Sm~1: 2°k=1 <
12(z,y)| < 2F}. Let D = {k € N : |Eg| > 274}, where | - | denotes the
product measure on S”~! x S™~1. We now define £2;, by

(31)  2u(z,y) = Qx,y)xe(xy) - | 20, y)x8,(x,y) do(z)

gn—1
— | Q@ y)xe(@,y)do(y) + | 2x,y)do(x)do(y)
sm—1 Ey
for k € N, and
(32) Do(x,y) = 2x,y) = > 2(x,y).
keD

Thus, for k& € NU {0}, £ satisfies (1.1). Since [|£20]|p2(gn-1xgm-1y < 8, it
follows that pg, is a bounded operator on LP(R™ x R™) for all p € (1, 00).
For k € D we let
ap =28, A= 167 )2)| 2x s I
(I'(n/2)I"(m/2))
We then define the family of measures v¥) = {Vkts:t,s € R} on R” x R™
by

(3-3) S Jdvkes= < ! ) S Mf(x,y) dz dy.

t+s n—1 m—1
RrxR™ A" <ot <oy ST W

Thus

(3.4) [k t,sll < 1.
By the cancellation properties of {2, we have
(35)  [Frss&n)

/ /
|z Hy|m ! :
{lz|<a}, ly|<a}}

Similarly,
(3.6) Uk t,5 (& m)| < ag|nl.



232 H. Al-Qassem et al.
By the proof of Corollary 4.1 in [9],

-5 in- 1?2 :c’,y’ s -
it § e By < clala) ()P do(s)
lyl<a3, sm—1
Thus, for £k € D and t,s € R,
1 1
3.7 Uhts(E,m) < | —— -
6 Pl < (o) 1 e

k

1/2

. Q / /
S eln'y k(x 7_:? ) d
ly|™

y|dx

|| <a, lyl<aj

< CA M (ai ) ™0l 2l po(gn—1 xsmo1)
S C22k+1(a2\77\)_1/6.

Similarly,

(3.8) |Dt,s(€,m)| < C22FF 2 (al |g])~H/E.
By (3.4)—(3.8) we obtain

(3.9) Dk t,5(E,m)] < Clab g1/ 60 |agp|+1/(6k),

By the boundedness of the strong maximal function on R? we see that

H(V(k))*(f)HLQ(R"me) < Byllfll Larn xrm)
for 1 < ¢ < 0o, where B, is independent of k. Applying Lemma 2.1, we get

(3.10) G (Nllp < Gl flp-
Finally, by Minkowski’s inequality and (3.10), we have

B lue(Nly < lnae(Hllp + Y (nar) AlGyw ()l

keD

< Cp(L+ 192/l Log )1 f 11
for 1 <p<ooand f € LP(R™ x R™). This proves Theorem 2.

4. Concluding remarks. Let k € N, ny,...,n; > 2 and 2(2],...,2})

be an integrable function on S™~! x ... x S™ 1. Suppose that {2 satisfies
the following cancellation condition:
(4.1) S Qay,...,a5)do(af) =0 forj=1,... k.

Snj—l
The corresponding Marcinkiewicz integral operator on R™ x ... x R™ is
defined by

[e.9] o

(4.2)  po(f)(x1,...,xx) = < S S |Fop oo (21, k)

ydty - dt \ Y2
e ) o
0 0 1

3
3
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where

(43) Ftl,...,tk (xl, e ,%k)

Q(y,""’y,)
= S S ’yl‘nl—ll,__w:k—lf(xl_yl""’mk_yk)dyl”'dyk’
k

ly1|<t1 [y <tk

Theorem 2 admits the following generalization:

THEOREM 3. For 2, g as above, if 2€ L(log L)F/2(SM—1x ... xS§™1)
and p € (1,00), then g is bounded on LP(R™ x --- x R™). The exponent
k/2 is the best possible.

When k£ = 1 (i.e. the underlying space is not a product space), the L?
boundedness of p under the condition 2 € L(log L)'/? was obtained first
for p = 2 in [18], and then for all p € (1,00) in [1]. Historically, this is the
case that had received the most amount of attention. For a sampling of past
studies, see [2], [11], [13], [14], [18], [19]. Related results can also be found
in [8], [15], and [17].

Theorem 2 takes care of the case k = 2. The proof of Theorem 2 easily
extends to the case k > 2. We omit the details.
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