On differentiability of strongly $\alpha(\cdot)$ -paraconvex functions in non-separable Asplund spaces

by

S. ROLEWICZ (Warszawa)

Abstract. In Rolewicz (2002) it was proved that every strongly $\alpha(\cdot)$ -paraconvex function defined on an open convex set in a separable Asplund space is Fréchet differentiable on a residual set. In this paper it is shown that the assumption of separability is not essential.

1. Introduction. Properties of $\alpha(\cdot)$ -paraconvex functions. Let $(X, \|\cdot\|)$ be a real Banach space. Let f be a real-valued convex continuous function defined on an open convex subset $\Omega \subset X$. Mazur (1933) proved that there is a subset $A_{\rm G} \subset \Omega$ of the first Baire category such that f is Gateaux differentiable on $\Omega \setminus A_{\rm G}$. Asplund (1968) showed that if additionally X is an Asplund space (in particular if X has a separable dual), then there is a subset $A_{\rm F} \subset \Omega$ of the first Baire category such that f is Fréchet differentiable on $\Omega \setminus A_{\rm F}$.

The result of Asplund was extended in Rolewicz (2002) to a larger class of functions called strongly $\alpha(\cdot)$ -paraconvex, under the additional hypothesis that X is a separable Asplund space (i.e. it is a separable space with separable dual).

In the present paper we shall prove it without this additional hypothesis. First we recall the definitions of $\alpha(\cdot)$ -paraconvex and strongly $\alpha(\cdot)$ paraconvex functions.

Let $(X, \|\cdot\|)$ be a real Banach space and f be a real-valued function defined on an open convex subset $\Omega \subset X$. Let $\alpha : [0, \infty) \to [0, \infty]$ be a nondecreasing function such that

(1.1)
$$\lim_{t\downarrow 0} \alpha(t)/t = 0.$$

²⁰⁰⁰ Mathematics Subject Classification: 46N10, 52A01.

Key words and phrases: Fréchet differentiability, strongly paraconvex functions, Asplund spaces.

We say that f is $\alpha(\cdot)$ -paraconvex if there is a constant C > 0 such that for all $x, y \in \Omega$ and $0 \le t \le 1$,

(1.2)
$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) + C\alpha(||x-y||).$$

For $\alpha(t) = t^2$ this definition was introduced in Rolewicz (1979a) and the t^2 -paraconvex functions were called simply paraconvex. In Rolewicz (1979b) the notion was extended to the case of $\alpha(t) = t^{\gamma}, 1 \leq \gamma \leq 2$, and the t^{γ} -paraconvex functions were called γ -paraconvex.

Observe that the convex functions can be treated as 0-paraconvex functions.

We say that f is strongly $\alpha(\cdot)$ -paraconvex if there is a constant $C_1 > 0$ such that for all $x, y \in \Omega$ and $0 \le t \le 1$,

(1.3)
$$f(tx+(1-t)y) \le tf(x)+(1-t)f(y)+C_1\min\{t,(1-t)\}\alpha(||x-y||).$$

Obviously each strongly $\alpha(\cdot)$ -paraconvex function is $\alpha(\cdot)$ -paraconvex, but the converse is not true (Rolewicz (2000)).

The simplest examples of strongly $\alpha(\cdot)$ -paraconvex functions are sums of convex and continuously differentiable functions, but the class of strongly $\alpha(\cdot)$ -paraconvex functions is larger.

The notion of strongly $\alpha(\cdot)$ -paraconvex functions can be treated as a uniformization of the notion of approximate convex functions introduced by Luc, Ngai and Théra (1999) (see Rolewicz (2001b)).

It is known that a convex function has a directional derivative at each point. The same holds for strongly $\alpha(\cdot)$ -paraconvex functions.

PROPOSITION 1.1. Let Ω be a convex subset of a Banach space X. Let $f: \Omega \to \mathbb{R}$ be a strongly $\alpha(\cdot)$ -paraconvex function. Then at each $x \in \Omega$ the function f has a directional derivative in any direction h such that $x+h \in \Omega$.

Proof. For simplicity we set $\tilde{f}(t) = f(x_0 + th) - f(x_0)$. We shall show that $\lim_{t\downarrow 0} \tilde{f}(t)/t$ exists.

The first step is to show that $\limsup_{t\downarrow 0} \widetilde{f}(t)/t$ is finite. Indeed, by strong $\alpha(\cdot)$ -paraconvexity of f,

(1.4)
$$\frac{\widetilde{f}(t)}{t} \le \widetilde{f}(1) + C \,\frac{\alpha(t||h||)}{t}$$

Thus

(1.5)
$$\limsup_{t \downarrow 0} \widetilde{f}(t)/t \le \widetilde{f}(1).$$

This means that there are a real a and a sequence $\{t_n\}$ tending to 0 such that

$$\lim_{n \to \infty} \tilde{f}(t_n)/t_n = a.$$

The next step is to show that the limits $\lim_{n\to\infty} \tilde{f}(t_n)/t_n$ are the same for all sequences tending to 0.

Indeed, let $\tau_m \to 0$ and

$$\lim_{t\downarrow 0}\widetilde{f}(\tau_m)/\tau_m=b.$$

Suppose that $\tau_m < t_n$. Then by strong $\alpha(\cdot)$ -paraconvexity of f,

(1.6)
$$\frac{f(\tau_m)}{\tau_m} \leq \frac{1}{\tau_m} \left(\frac{\tau_m}{t_n} \widetilde{f}(t_n) + C \frac{\tau_m}{t_n} \left(1 - \frac{\tau_m}{t_n} \right) \alpha(t_n ||h||) \right)$$
$$= \frac{\widetilde{f}(t_n)}{t_n} + C \left(1 - \frac{\tau_m}{t_n} \right) \frac{\alpha(t_n ||h||)}{t_n}.$$

Thus $b \leq a$. Reversing the roles of $\{t_n\}$ and $\{\tau_m\}$ we get $a \leq b$. Therefore a = b.

2. Uniform approximate subdifferentiability. The proof of the Asplund theorem in the classical case of convex functions consists of two parts:

- (a) a convex function defined on an open set has a subgradient at each point,
- (b) if a function f has a subgradient at each point, then there is a set $A_{\rm F} \subset \Omega$ of the first category such f is Fréchet differentiable at every point $x_0 \in \Omega \setminus A_{\rm F}$.

In the classical situation the first part is so trivial that it is not observed at all. But now we are in a different situation. It is necessary to define "subgradients" and to show that a strongly $\alpha(\cdot)$ -paraconvex function has a "subgradient" at each point.

The definition can be found in the papers of Fabian (1989), Ioffe (1983), (1984), (1986), (1989), (1990), (2000) and Mordukhovich (1980), (1988). Namely, a linear functional $x^* \in X^*$ will be called an *approximate subgradient* of f at a point x if

(2.1)
$$\liminf_{h \to 0} \frac{(f(x+h) - f(x)) - x^*(h)}{\|h\|} \ge 0.$$

The set of all approximate subgradients of f at x is called the *approximate* subdifferential of f at x and denoted by $\partial f|_x$, as in the classical case. Thus $\partial f|_{(\cdot)}$ is a multifunction mapping the domain of $\partial f|_{(\cdot)}$ into 2^{X^*} .

Observe that (2.1) holds if and only there is a non-negative non-decreasing function β_x defined on $[0, \infty)$ and such that $\lim_{u \downarrow 0} \beta_x(u) = 0$ and

(2.2)
$$\frac{(f(x+h) - f(0)) - x^*(h)}{\|h\|} \ge -\beta_x(\|h\|).$$

Indeed, the function

(2.3)
$$\beta_x(s) = \sup_{\{h: \|h\| \le s\}} \left| \frac{(f(x+h) - f(x)) - x^*(h)}{\|h\|} \right|$$

has the required property.

Putting $\alpha_x(u) = u\beta_x(u)$ we can rewrite (2.2) in the form

(2.4)
$$f(x+h) - f(x) \ge x^*(h) - \alpha_x(||h||).$$

Unfortunately β_x (and hence α_x) can be different at each point and we are not able to use this definition for the problem of differentiation on a residual set. This prompts an idea of uniformization of this notion.

Let, as before, $\alpha : [0, \infty) \to [0, \infty]$ be a non-decreasing function such that $\lim_{t \downarrow 0} \alpha(t)/t = 0$.

Let f be a real-valued function defined on an open subset Ω of a Banach space X. Let $x \in X$. A linear functional $x^* \in X^*$ such that

(2.5)
$$f(x+h) - f(x) \ge x^*(h) - \alpha(||h||)$$

is called a uniform approximate subgradient of f at x with modulus $\alpha(\cdot)$ (or briefly an $\alpha(\cdot)$ -subgradient of f at x). The set of all $\alpha(\cdot)$ -subgradients of fat x will be called the $\alpha(\cdot)$ -subdifferential of f at x, and denoted by $\partial_{\alpha} f|_{x}$.

We say that f is $\alpha(\cdot)$ -subdifferentiable if $\partial_{\alpha} f|_x \neq \emptyset$ for all $x \in \Omega$.

In a similar way, we say that $x^* \in X^*$ is an $\alpha(\cdot)$ -gradient of f at x if

(2.6)
$$|f(x+h) - f(x) - x^*(h)| \le \alpha(||h||).$$

By linearity of x^* and property (1.1) of $\alpha(\cdot)$ the $\alpha(\cdot)$ -gradient is unique. The notion of $\alpha(\cdot)$ -gradient can be considered as a uniformization of Fréchet gradients.

We say that f is $\alpha(\cdot)$ -differentiable if it has $\alpha(\cdot)$ -gradients for all $x \in \Omega$.

3. $\alpha(\cdot)$ -subdifferentiability of strongly $\alpha(\cdot)$ -paraconvex functions. We shall show that every strongly $\alpha(\cdot)$ -paraconvex function is $\alpha(\cdot)$ -subdifferentiable.

In the case of convex functions on open convex sets, this is a trivial consequence of the Hahn–Banach theorem.

In the general case the proof is based on the following two propositions:

PROPOSITION 3.1 (Rolewicz (2000)). Every strongly $\alpha(\cdot)$ -paraconvex function is locally Lipschitzian.

PROPOSITION 3.2 (Rolewicz (2001a)). The $\alpha(\cdot)$ -subdifferential of each strongly $\alpha(\cdot)$ -paraconvex function is equal to its Clarke subdifferential.

As a trivial consequence we obtain

PROPOSITION 3.3 (Rolewicz (2002)). Every strongly $\alpha(\cdot)$ -paraconvex function is $\alpha(\cdot)$ -subdifferentiable.

In the case of X with separable dual (i.e. a separable Asplund space) we have

THEOREM 3.4 (Rolewicz (2002)). Let A be an open convex set in a separable Asplund space X. Let $f : A \to \mathbb{R}$ be $\alpha(\cdot)$ -subdifferentiable. Then there is a residual set $\Omega \subset A$ such that f is Fréchet differentiable at every point $x_0 \in \Omega$.

4. Main results. As in the case of convex functions (see Phelps (1989)), we have

PROPOSITION 4.1. Let $(X, \|\cdot\|)$ be a real Banach space. Let f be a realvalued function defined on an open convex subset $\Omega \subset X$. Suppose that x^* is an $\alpha(\cdot)$ -subgradient of f at $x \in \Omega$. Then x^* is the Fréchet gradient of fat x if and only if for every $\varepsilon > 0$ there is $\delta > 0$ such that

(4.1)
$$\frac{f(x+ty) + f(x-ty) - 2f(x)}{t} < \varepsilon$$

for all $y \in X$ such that ||y|| = 1 and $0 < t < \delta$, in other words,

$$\lim_{t \to 0} \sup_{\{y \in X : \|y\| = 1\}} \frac{f(x+ty) + f(x-ty) - 2f(x)}{t} = 0.$$

Proof. Necessity. If x^* is the Fréchet gradient at x, then for every $\varepsilon > 0$ there is $\delta > 0$ such that

(4.2)
$$f(x+ty) - f(x) - x^*(ty) < \frac{\varepsilon}{2}t$$

for all $y \in X$ such that ||y|| = 1 and $0 < t < \delta$. Replacing y by -y we obtain

(4.3)
$$f(x-ty) - f(x) + x^*(ty) < \frac{\varepsilon}{2} t.$$

Adding (4.2) and (4.3) yields (4.1).

Sufficiency. By the property (1.1) of $\alpha(\cdot)$, for every $\varepsilon > 0$ there is $\delta_1 > 0$ such that

(4.4)
$$f(x+ty) - f(x) - x^*(ty) > -\varepsilon t$$

for all $y \in X$ such that ||y|| = 1 and $0 < t < \delta_1$.

Replacing y by -y and multiplying by -1 we get

(4.4⁻)
$$f(x) - f(x - ty) - x^*(ty) < \varepsilon t$$

On the other hand, (4.1) implies that there is $\delta_2 > 0$ such that

(4.5)
$$f(x+ty) - f(x) - x^*(ty) < \varepsilon t + f(x) - f(x-ty) - x^*(ty)$$

for $0 < t < \delta_2$. Thus for $0 < t < \delta = \min{\{\delta_1, \delta_2\}}$ by (4.4) and (4.5) we get

$$(4.6) \qquad -\varepsilon t < f(x+ty) - f(x) - x^*(ty) < \varepsilon t + f(x) - f(x-ty) - x^*(ty) < 2\varepsilon t.$$

The arbitrariness of ε implies that x^* is the Fréchet gradient of f at x.

If f is strongly $\alpha(\cdot)$ -paraconvex we can replace the requirement that (4.1) holds for t small enough by the condition that such a t exists, and we obtain

PROPOSITION 4.2. Let $(X, \|\cdot\|)$ be a real Banach space and f a strongly $\alpha(\cdot)$ -paraconvex function defined on an open convex subset $\Omega \subset X$. The function f is Fréchet differentiable at a point $x \in \Omega$ if and only if for every $\varepsilon > 0$ there is $t_{\varepsilon} > 0$ such that

(4.7)
$$\frac{f(x+t_{\varepsilon}y)+f(x-t_{\varepsilon}y)-2f(x)}{t_{\varepsilon}} < \varepsilon$$

for all $y \in X$ such that ||y|| = 1.

The proof is based on the following lemma:

LEMMA 4.3. Let $(X, \|\cdot\|)$ be a real Banach space and f a strongly $\alpha(\cdot)$ -paraconvex function defined on an open convex subset $\Omega \subset X$. Then for $x \in \Omega$ and all $y \in X$ of norm one, 0 < s < 1, and t > 0 such that $x \pm ty \in \Omega$ we have

(4.8)
$$\frac{f(x+sty) + f(x-sty) - 2f(x)}{st} \le \frac{f(x+ty) + f(x-ty) - 2f(x)}{t} + 2\frac{\alpha(t)}{t}.$$

Proof. Since f is strongly $\alpha(\cdot)$ -paraconvex,

(4.9)
$$f(x + sty) \le (1 - s)f(x) + sf(x + ty) + s\alpha(t),$$

(4.10)
$$f(x - sty) \le (1 - s)f(x) + sf(x - ty) + s\alpha(t).$$

Adding (4.9) and (4.10) we get

(4.11)
$$f(x + sty) + f(x - sty)$$

 $\leq 2(1 - s)f(x) + sf(x + ty) + sf(x - ty) + 2s\alpha(t).$

Thus

(4.12)
$$f(x + sty) + f(x - sty) - 2f(x) \\ \leq s[f(x + ty) + f(x - ty) - 2f(x)] + 2s\alpha(t).$$

Dividing (4.12) by st we get (4.8).

Proof of Proposition 4.2. The necessity is obvious: it follows from Proposition 4.1 and the fact that each strongly $\alpha(\cdot)$ -paraconvex function is $\alpha(\cdot)$ -subdifferentiable.

Let $t_{\varepsilon} > 0$ be such that $t_{\varepsilon} + 2\alpha(t_{\varepsilon})/t_{\varepsilon} < \varepsilon$. Then Lemma 4.3 and (4.8) yield (4.7).

PROPOSITION 4.4. Let $(X, \|\cdot\|)$ be a real Banach space. Let f be a strongly $\alpha(\cdot)$ -paraconvex function defined on an open convex subset $\Omega \subset X$.

Then the set G (possibly empty) of points $x \in \Omega$ where f is Fréchet differentiable is a G_{δ} set.

$$\begin{split} & Proof. \mbox{ We set} \\ & G_m^{\delta}(f) = \bigg\{ x \in \varOmega: \overline{B}(x,\delta) \subset \varOmega, \\ & \sup_{\{y \in X: \|y\| = 1\}} \frac{f(x+\delta y) + f(x-\delta y) - 2f(x)}{\delta} < \frac{1}{m} \bigg\}, \end{split}$$

where as usual $\overline{B}(x, \delta) = \{y \in X : ||y - x|| \le \delta\}$ denotes the closed ball of radius δ with center at x. Let $G_m(f) = \bigcup_{\delta > 0} G_m^{\delta}(f)$, i.e.

$$G_m(f) = \left\{ x \in \Omega : \\ \inf_{\substack{\delta > 0 \\ \bar{B}(x,\delta) \subset \Omega}} \sup_{\{y \in X : \|y\| = 1\}} \frac{f(x+\delta y) + f(x-\delta y) - 2f(x)}{\delta} < \frac{1}{m} \right\}.$$

We shall show that the sets $G_m^{\delta}(f)$ are open.

Take any $x \in G_m^{\delta}(f)$. Since f is strongly $\alpha(\cdot)$ -paraconvex, it is locally Lipschitz. Hence there are $\delta_1 > 0$ and M > 0 such that $|f(u) - f(v)| \leq M ||u - v||$, provided $u, v \in \overline{B}(x, \delta_1)$. Without loss of generality we may assume that $\overline{B}(x, \delta_1) \subset \Omega$.

Since $x \in G_m^{\delta}(f)$, there is r such that

$$\sup_{\{y \in X : \|y\|=1\}} \frac{f(x+\delta y) + f(x-\delta y) - 2f(x)}{\delta} \le r < \frac{1}{m}$$

Let $\delta_2 > 0$ be smaller than $\min \{\delta_1, \frac{\delta}{3M}(\frac{1}{m} - r)\}$. Then for any $z \in \overline{B}(x, \delta_2)$ and any y of norm one we have

$$\frac{f(z+\delta y) + f(z-\delta y) - 2f(z)}{\delta} \le \frac{f(x+\delta y) + f(x-\delta y) - 2f(x)}{\delta} + \frac{|f(x+\delta y) - f(z+\delta y)|}{\delta} + \frac{|f(x-\delta y) - f(z-\delta y)|}{\delta} + \frac{|f(x) - f(z)|}{\delta} \le r + 3M\delta_2 < 1/m.$$

Hence the set $G_m^{\delta}(f)$ is open. Therefore so is $G_m(f) = \bigcup_{\delta > 0} G_m^{\delta}(f)$. By Propositions 4.1 and 4.2, $G = \bigcap_m G_m(f)$. Hence G is a G_{δ} set.

COROLLARY 4.5. Let $(X, \|\cdot\|)$ be a real Banach space and f a strongly $\alpha(\cdot)$ -paraconvex function defined on an open convex subset $\Omega \subset X$. Suppose that the set G of points $x \in \Omega$ where f is Fréchet differentiable is dense in Ω . Then it is a residual set (i.e. its complement is of the first Baire category).

Proof. Let $F = \Omega \setminus G$ and $F_m = \Omega \setminus G_m$. Since G_m is open, F_m is closed. Since G is dense, so is G_m . Thus F_m is nowhere dense and the set $F = \bigcup_m F_m$ is of the first Baire category.

THEOREM 4.6. Let Ω be an open convex set in an Asplund space X. Let f be a strongly $\alpha(\cdot)$ -paraconvex function defined on Ω . Then the set G of points where f is Fréchet differentiable is a dense G_{δ} set (hence residual).

Proof. Suppose that G is **not** dense in Ω . We shall show that there is a separable subspace $E \subset X$ such that the set of points of Fréchet differentiability of the restriction $f|_{\Omega \cap E}$ is **not** dense in $\Omega \cap E$.

We denote as before by $G_m(f)$ the set of those x for which there is a $\delta > 0$ such that $\overline{B}(x, \delta) \subset \Omega$ and

$$\sup_{\substack{\{y: \|y\|=1\}}} \frac{f(x+\delta y) + f(x-\delta y) - 2f(x)}{\delta} < \frac{1}{m}.$$

By our assumption there are m and an open set $U \subset \Omega$ such that $U \cap G_m(f) = \emptyset$. Thus for $x \in U$ and all $\delta > 0$ such that $\overline{B}(x, \delta) \subset \Omega$,

(4.13)
$$\sup_{\{y: \|y\|=1\}} \frac{f(x+\delta y) + f(x-\delta y) - 2f(x)}{\delta} \ge \frac{1}{m}$$

Take any $x_1 \in U$. Take a decreasing sequence $\{\beta_j\}$ of positive numbers tending to 0 such that $\overline{B}(x_1, \beta_1) \subset \Omega$ and $\overline{B}(x_1, \beta_1) \cap G_m(f) = \emptyset$.

By (4.13) for j large enough we can find an element $y_{1,j}$ of norm one such that

(4.14)
$$\frac{f(x_1 + \beta_j y_{1,j}) + f(x_1 - \beta_j y_{1,j}) - 2f(x_1)}{\beta_j} > \frac{1}{2m}.$$

Take $\delta > 0$ such that $\overline{B}(x, \delta_1) \subset \Omega$ and

(4.15)
$$\frac{\alpha(\delta)}{\delta} > \frac{1}{2m}$$

By Lemma 4.3 and (4.15) there is a constant $\varepsilon_m > 0$ depending only on m such that for $\delta \geq \beta_j$ such that $\overline{B}(x_1, \delta) \subset \Omega$ and

(4.16)
$$\frac{f(x_1 + \delta y_{1,j}) + f(x_1 - \delta y_{1,j}) - 2f(x_1)}{\delta} > \varepsilon_m$$

Since $\beta_j \to 0$, for all $\delta > 0$ such that $\overline{B}(x_1, \delta) \subset \Omega$ we have

(4.17)
$$\sup_{j\geq 1} \frac{f(x_1+\delta y_{1,j})+f(x_1-\delta y_{1,j})-2f(x_1)}{\delta} > \varepsilon_m.$$

We denote by E_1 the closed linear span of the set $\{x_1, y_{1,1}, y_{1,2}, \ldots\}$. Of course $U \cap E_1 \neq \emptyset$ and E_1 is separable. Now we construct by induction a sequence $\{E_1, E_2, \ldots\}$ of separable spaces such that $E_k \subset E_{k+1}$ and $U \cap E_k \neq \emptyset$. Suppose that we have constructed spaces E_1, \ldots, E_k . Let $\{x_{k,p}\}$ be dense in $U \cap E_k$. Then by (4.17) for each $x_{k,p}$ we can find a sequence $\{y_{p,j}\}$ of elements of norm one such that for all p for sufficiently small δ (depending on k and p)

(4.18)
$$\sup_{j\geq 1} \frac{f(x_{k,p}+\delta y_{p,j})+f(x_{k,p}-\delta y_{p,j})-2f(x_{k,p})}{\delta} > \varepsilon_m.$$

We denote by E_{k+1} the closed linear span of the set $\{x_{k,p}, y_{p,j} : p = 1, 2, \ldots, j = 1, 2, \ldots\}$. Clearly $U \cap E_{k+1} \neq \emptyset$ and E_{k+1} is separable.

We put $E = \overline{\bigcup_k E_k}$. It is easy to see that the sequence $\{x_{k,p}\}, k, p = 1, 2, \ldots$, is dense in E. By construction, it is easy to see that if m_1 is such that $1/m_1 < \varepsilon_m$, then the points $x_{k,p}, k, p = 1, 2, \ldots$, do not belong to $G_{m_1}(f|_E)$. Since the set $G_{m_1}(f|_E)$ is open in E and disjoint from $E \cap U$ we conclude that $f|_E$ is not differentiable at any point of the open set $E \cap U$.

This is a contradiction, since $f|_E$ is a strongly $\alpha(\cdot)$ -paraconvex function defined on an open set in the separable space E, and by Theorem 3.4 it is differentiable on a residual set.

References

- E. Asplund (1966), Farthest points in reflexive locally uniformly rotund Banach spaces, Israel J. Math. 4, 213–216.
- E. Asplund (1968), Fréchet differentiability of convex functions, Acta Math. 121, 31-47.
- M. Fabian (1989), Subdifferentiability and trustworthiness in the light of a new variational principle of Borwein and Preiss, Acta Univ. Carolinae 30, 51–56.
- A. D. Ioffe (1984), Approximate subdifferentials and applications I, Trans. Amer. Math. Soc. 281, 389–416.
- A. D. Ioffe (1986), Approximate subdifferentials and applications II, Mathematika 33, 111–128.
- A. D. Ioffe (1989), Approximate subdifferentials and applications III, ibid. 36, 1–38.
- A. D. Ioffe (1990), Proximal analysis and approximate subdifferentials, J. London Math. Soc. 41, 175–192.
- A. D. Ioffe (2000), Metric regularity and subdifferential calculus, Uspekhi Mat. Nauk 55, no. 3, 104–162 (in Russian).
- A. Jofré, D. T. Luc and M. Théra (1998), ε-subdifferential and ε-monotonicity, Nonlinear Anal. 33, 71–90.
- A. Jourani (1996), Subdifferentiability and subdifferential monotonicity of γ-paraconvex functions, Control Cybernet. 25, 721–737.
- D. T. Luc, H. V. Ngai and M. Théra (1999), On ε-convexity and ε-monotonicity, in: Calculus of Variations and Differential Equations, A. Ioffe et al. (eds.), Res. Notes Math. 410, Chapman & Hall, 82–100.
- D. T. Luc, H. V. Ngai and M. Théra (2000), Approximate convex functions, J. Nonlinear Convex Anal. 1, 155–176.
- S. Mazur (1933), Über konvexe Mengen in linearen normierten Räumen, Studia Math. 4, 70–84.

- B. S. Mordukhovich (1980), Metric approximations and necessary optimality conditions for general classes of nonsmooth extremal problems, Soviet Math. Dokl. 22, 526–530.
- B. S. Mordukhovich (1988), Approximation Methods in Problems of Optimization and Control, Nauka, Moscow (in Russian).
- D. Pallaschke and S. Rolewicz (1997), Foundations of Mathematical Optimization, Math. Appl. 388, Kluwer, Dordrecht, 1997.
- R. R. Phelps (1989), Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Math. 1364, Springer.
- D. Preiss and L. Zajíček (1984), Stronger estimates of smallness of sets of Fréchet nondifferentiability of convex functions, Rend. Circ. Mat. Palermo (2) Suppl. 3, 219–223.
- R. T. Rockafellar (1970), Convex Analysis, Princeton Univ. Press.
- R. T. Rockafellar (1980), Generalized directional derivatives and subgradient of nonconvex functions, Canad. J. Math. 32, 257–280.
- S. Rolewicz (1979a), On paraconvex multifunctions, Oper. Res. Verfahren 31, 540-546.
- S. Rolewicz (1979b), On γ -paraconvex multifunctions, Math. Japon. 24, 293–300.
- S. Rolewicz (1981), On conditions warranting Φ_2 -subdifferentiability, Math. Programming Stud. 14, 215–224.
- S. Rolewicz (1993), Generalization of Asplund inequalities on Lipschitz functions, Arch. Math. (Basel) 61, 484–488.
- S. Rolewicz (1994), On an extension of Mazur's theorem on Lipschitz functions, ibid. 63, 535–540.
- S. Rolewicz (1999), On $\alpha(\cdot)$ -monotone multifunctions and differentiability of γ -paraconvex functions, Studia Math. 133, 29–37.
- S. Rolewicz (2000), On $\alpha(\cdot)$ -paraconvex and strongly $\alpha(\cdot)$ -paraconvex functions, Control Cybernet. 29, 367–377.
- S. Rolewicz (2001a), On the coincidence of some subdifferentials in the class of $\alpha(\cdot)$ -paraconvex functions, Optimization 50, 353–360.
- S. Rolewicz (2001b), On uniformly approximate convex and strongly $\alpha(\cdot)$ -paraconvex functions, Control Cybernet. 30, 323–330.
- S. Rolewicz (2002), On $\alpha(\cdot)$ -monotone multifunctions and differentiability of strongly $\alpha(\cdot)$ -paraconvex functions, ibid. 31, 601–619.

Institute of Mathematics Polish Academy of Sciences Śniadeckich 8, P.O. Box 21 00-956 Warszawa, Poland E-mail: rolewicz@impan.gov.pl

> Received May 5, 2004 Revised version December 10, 2004 (5394)