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On differentiability of strongly α(·)-paraconvex functions
in non-separable Asplund spaces

by

S. Rolewicz (Warszawa)

Abstract. In Rolewicz (2002) it was proved that every strongly α(·)-paraconvex func-
tion defined on an open convex set in a separable Asplund space is Fréchet differentiable
on a residual set. In this paper it is shown that the assumption of separability is not
essential.

1. Introduction. Properties of α(·)-paraconvex functions. Let
(X, ‖ · ‖) be a real Banach space. Let f be a real-valued convex continuous
function defined on an open convex subset Ω ⊂ X. Mazur (1933) proved
that there is a subset AG ⊂ Ω of the first Baire category such that f is
Gateaux differentiable on Ω \ AG. Asplund (1968) showed that if addition-
ally X is an Asplund space (in particular if X has a separable dual), then
there is a subset AF ⊂ Ω of the first Baire category such that f is Fréchet
differentiable on Ω \AF.

The result of Asplund was extended in Rolewicz (2002) to a larger class
of functions called strongly α(·)-paraconvex, under the additional hypoth-
esis that X is a separable Asplund space (i.e. it is a separable space with
separable dual).

In the present paper we shall prove it without this additional hypoth-
esis. First we recall the definitions of α(·)-paraconvex and strongly α(·)-
paraconvex functions.

Let (X, ‖ · ‖) be a real Banach space and f be a real-valued function
defined on an open convex subset Ω ⊂ X. Let α : [0,∞) → [0,∞] be a
nondecreasing function such that

(1.1) lim
t↓0

α(t)/t = 0.
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We say that f is α(·)-paraconvex if there is a constant C > 0 such that
for all x, y ∈ Ω and 0 ≤ t ≤ 1,

(1.2) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + Cα(‖x− y‖).
For α(t) = t2 this definition was introduced in Rolewicz (1979a) and the

t2-paraconvex functions were called simply paraconvex. In Rolewicz (1979b)
the notion was extended to the case of α(t) = tγ , 1 ≤ γ ≤ 2, and the tγ-
paraconvex functions were called γ-paraconvex.

Observe that the convex functions can be treated as 0-paraconvex func-
tions.

We say that f is strongly α(·)-paraconvex if there is a constant C1 > 0
such that for all x, y ∈ Ω and 0 ≤ t ≤ 1,

(1.3) f(tx+(1− t)y) ≤ tf(x)+(1− t)f(y)+C1 min{t, (1− t)}α(‖x−y‖).
Obviously each strongly α(·)-paraconvex function is α(·)-paraconvex, but
the converse is not true (Rolewicz (2000)).

The simplest examples of strongly α(·)-paraconvex functions are sums of
convex and continuously differentiable functions, but the class of strongly
α(·)-paraconvex functions is larger.

The notion of strongly α(·)-paraconvex functions can be treated as a
uniformization of the notion of approximate convex functions introduced by
Luc, Ngai and Théra (1999) (see Rolewicz (2001b)).

It is known that a convex function has a directional derivative at each
point. The same holds for strongly α(·)-paraconvex functions.

Proposition 1.1. Let Ω be a convex subset of a Banach space X. Let
f : Ω → R be a strongly α(·)-paraconvex function. Then at each x ∈ Ω the
function f has a directional derivative in any direction h such that x+h ∈ Ω.

Proof. For simplicity we set f̃(t) = f(x0 + th) − f(x0). We shall show
that limt↓0 f̃(t)/t exists.

The first step is to show that lim supt↓0 f̃(t)/t is finite. Indeed, by strong
α(·)-paraconvexity of f ,

(1.4)
f̃(t)
t
≤ f̃(1) + C

α(t‖h‖)
t

.

Thus

(1.5) lim sup
t↓0

f̃(t)/t ≤ f̃(1).

This means that there are a real a and a sequence {tn} tending to 0 such
that

lim
n→∞

f̃(tn)/tn = a.
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The next step is to show that the limits limn→∞ f̃(tn)/tn are the same for
all sequences tending to 0.

Indeed, let τm → 0 and

lim
t↓0

f̃(τm)/τm = b.

Suppose that τm < tn. Then by strong α(·)-paraconvexity of f ,

f̃(τm)
τm

≤ 1
τm

(
τm
tn

f̃(tn) + C
τm
tn

(
1− τm

tn

)
α(tn‖h‖)

)
(1.6)

=
f̃(tn)
tn

+ C

(
1− τm

tn

)
α(tn‖h‖)

tn
.

Thus b ≤ a. Reversing the roles of {tn} and {τm} we get a ≤ b. Therefore
a = b.

2. Uniform approximate subdifferentiability. The proof of the As-
plund theorem in the classical case of convex functions consists of two parts:

(a) a convex function defined on an open set has a subgradient at each
point,

(b) if a function f has a subgradient at each point, then there is a set
AF ⊂ Ω of the first category such f is Fréchet differentiable at every
point x0 ∈ Ω \ AF.

In the classical situation the first part is so trivial that it is not observed
at all. But now we are in a different situation. It is necessary to define
“subgradients” and to show that a strongly α(·)-paraconvex function has a
“subgradient” at each point.

The definition can be found in the papers of Fabian (1989), Ioffe (1983),
(1984), (1986), (1989), (1990), (2000) and Mordukhovich (1980), (1988).
Namely, a linear functional x∗ ∈ X∗ will be called an approximate subgra-
dient of f at a point x if

(2.1) lim inf
h→0

(f(x+ h)− f(x))− x∗(h)
‖h‖ ≥ 0.

The set of all approximate subgradients of f at x is called the approximate
subdifferential of f at x and denoted by ∂f |x, as in the classical case. Thus
∂f |(·) is a multifunction mapping the domain of ∂f |(·) into 2X

∗
.

Observe that (2.1) holds if and only there is a non-negative non-decreas-
ing function βx defined on [0,∞) and such that limu↓0 βx(u) = 0 and

(2.2)
(f(x+ h)− f(0))− x∗(h)

‖h‖ ≥ −βx(‖h‖).
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Indeed, the function

(2.3) βx(s) = sup
{h : ‖h‖≤s}

∣∣∣∣
(f(x+ h)− f(x))− x∗(h)

‖h‖

∣∣∣∣

has the required property.
Putting αx(u) = uβx(u) we can rewrite (2.2) in the form

(2.4) f(x+ h)− f(x) ≥ x∗(h)− αx(‖h‖).
Unfortunately βx (and hence αx) can be different at each point and we

are not able to use this definition for the problem of differentiation on a
residual set. This prompts an idea of uniformization of this notion.

Let, as before, α : [0,∞) → [0,∞] be a non-decreasing function such
that limt↓0 α(t)/t = 0.

Let f be a real-valued function defined on an open subset Ω of a Banach
space X. Let x ∈ X. A linear functional x∗ ∈ X∗ such that

(2.5) f(x+ h)− f(x) ≥ x∗(h)− α(‖h‖)
is called a uniform approximate subgradient of f at x with modulus α(·) (or
briefly an α(·)-subgradient of f at x). The set of all α(·)-subgradients of f
at x will be called the α(·)-subdifferential of f at x, and denoted by ∂αf |x.

We say that f is α(·)-subdifferentiable if ∂αf |x 6= ∅ for all x ∈ Ω.
In a similar way, we say that x∗ ∈ X∗ is an α(·)-gradient of f at x if

(2.6) |f(x+ h)− f(x)− x∗(h)| ≤ α(‖h‖).
By linearity of x∗ and property (1.1) of α(·) the α(·)-gradient is unique. The
notion of α(·)-gradient can be considered as a uniformization of Fréchet
gradients.

We say that f is α(·)-differentiable if it has α(·)-gradients for all x ∈ Ω.

3. α(·)-subdifferentiability of strongly α(·)-paraconvex functions.
We shall show that every strongly α(·)-paraconvex function is α(·)-subdiffe-
rentiable.

In the case of convex functions on open convex sets, this is a trivial
consequence of the Hahn–Banach theorem.

In the general case the proof is based on the following two propositions:

Proposition 3.1 (Rolewicz (2000)). Every strongly α(·)-paraconvex
function is locally Lipschitzian.

Proposition 3.2 (Rolewicz (2001a)). The α(·)-subdifferential of each
strongly α(·)-paraconvex function is equal to its Clarke subdifferential.

As a trivial consequence we obtain

Proposition 3.3 (Rolewicz (2002)). Every strongly α(·)-paraconvex
function is α(·)-subdifferentiable.
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In the case of X with separable dual (i.e. a separable Asplund space) we
have

Theorem 3.4 (Rolewicz (2002)). Let A be an open convex set in a sep-
arable Asplund space X. Let f : A→ R be α(·)-subdifferentiable. Then there
is a residual set Ω ⊂ A such that f is Fréchet differentiable at every point
x0 ∈ Ω.

4. Main results. As in the case of convex functions (see Phelps (1989)),
we have

Proposition 4.1. Let (X, ‖ · ‖) be a real Banach space. Let f be a real-
valued function defined on an open convex subset Ω ⊂ X. Suppose that x∗

is an α(·)-subgradient of f at x ∈ Ω. Then x∗ is the Fréchet gradient of f
at x if and only if for every ε > 0 there is δ > 0 such that

(4.1)
f(x+ ty) + f(x− ty)− 2f(x)

t
< ε

for all y ∈ X such that ‖y‖ = 1 and 0 < t < δ, in other words,

lim
t→0

sup
{y∈X : ‖y‖=1}

f(x+ ty) + f(x− ty)− 2f(x)
t

= 0.

Proof. Necessity. If x∗ is the Fréchet gradient at x, then for every ε > 0
there is δ > 0 such that

(4.2) f(x+ ty)− f(x)− x∗(ty) <
ε

2
t

for all y ∈ X such that ‖y‖ = 1 and 0 < t < δ. Replacing y by −y we obtain

(4.3) f(x− ty)− f(x) + x∗(ty) <
ε

2
t.

Adding (4.2) and (4.3) yields (4.1).
Sufficiency. By the property (1.1) of α(·), for every ε > 0 there is δ1 > 0

such that

(4.4) f(x+ ty)− f(x)− x∗(ty) > −εt
for all y ∈ X such that ‖y‖ = 1 and 0 < t < δ1.

Replacing y by −y and multiplying by −1 we get

(4.4−) f(x)− f(x− ty)− x∗(ty) < εt

On the other hand, (4.1) implies that there is δ2 > 0 such that

(4.5) f(x+ ty)− f(x)− x∗(ty) < εt+ f(x)− f(x− ty)− x∗(ty)

for 0 < t < δ2. Thus for 0 < t < δ = min{δ1, δ2} by (4.4) and (4.5) we get

(4.6) −εt < f(x+ty)−f(x)−x∗(ty) < εt+f(x)−f(x−ty)−x∗(ty) < 2εt.

The arbitrariness of ε implies that x∗ is the Fréchet gradient of f at x.
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If f is strongly α(·)-paraconvex we can replace the requirement that (4.1)
holds for t small enough by the condition that such a t exists, and we obtain

Proposition 4.2. Let (X, ‖ ·‖) be a real Banach space and f a strongly
α(·)-paraconvex function defined on an open convex subset Ω ⊂ X. The
function f is Fréchet differentiable at a point x ∈ Ω if and only if for every
ε > 0 there is tε > 0 such that

(4.7)
f(x+ tεy) + f(x− tεy)− 2f(x)

tε
< ε

for all y ∈ X such that ‖y‖ = 1.

The proof is based on the following lemma:

Lemma 4.3. Let (X, ‖ · ‖) be a real Banach space and f a strongly α(·)-
paraconvex function defined on an open convex subset Ω ⊂ X. Then for
x ∈ Ω and all y ∈ X of norm one, 0 < s < 1, and t > 0 such that
x± ty ∈ Ω we have

(4.8)
f(x+ sty) + f(x− sty)− 2f(x)

st

≤ f(x+ ty) + f(x− ty)− 2f(x)
t

+ 2
α(t)
t
.

Proof. Since f is strongly α(·)-paraconvex,

f(x+ sty) ≤ (1− s)f(x) + sf(x+ ty) + sα(t),(4.9)

f(x− sty) ≤ (1− s)f(x) + sf(x− ty) + sα(t).(4.10)

Adding (4.9) and (4.10) we get

(4.11) f(x+ sty) + f(x− sty)

≤ 2(1− s)f(x) + sf(x+ ty) + sf(x− ty) + 2sα(t).

Thus

(4.12) f(x+ sty) + f(x− sty)− 2f(x)

≤ s[f(x+ ty) + f(x− ty)− 2f(x)] + 2sα(t).

Dividing (4.12) by st we get (4.8).

Proof of Proposition 4.2. The necessity is obvious: it follows from Pro-
position 4.1 and the fact that each strongly α(·)-paraconvex function is
α(·)-subdifferentiable.

Let tε > 0 be such that tε + 2α(tε)/tε < ε. Then Lemma 4.3 and (4.8)
yield (4.7).

Proposition 4.4. Let (X, ‖ · ‖) be a real Banach space. Let f be a
strongly α(·)-paraconvex function defined on an open convex subset Ω ⊂ X.
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Then the set G (possibly empty) of points x ∈ Ω where f is Fréchet differ-
entiable is a Gδ set.

Proof. We set

Gδm(f) =
{
x ∈ Ω : B(x, δ) ⊂ Ω,

sup
{y∈X : ‖y‖=1}

f(x+ δy) + f(x− δy)− 2f(x)
δ

<
1
m

}
,

where as usual B(x, δ) = {y ∈ X : ‖y − x‖ ≤ δ} denotes the closed ball of
radius δ with center at x. Let Gm(f) =

⋃
δ>0 G

δ
m(f), i.e.

Gm(f) =
{
x ∈ Ω :

inf
δ>0

B(x,δ)⊂Ω

sup
{y∈X : ‖y‖=1}

f(x+ δy) + f(x− δy)−2f(x)
δ

<
1
m

}
.

We shall show that the sets Gδm(f) are open.
Take any x ∈ Gδm(f). Since f is strongly α(·)-paraconvex, it is locally

Lipschitz. Hence there are δ1 > 0 and M > 0 such that |f(u) − f(v)| ≤
M‖u − v‖, provided u, v ∈ B(x, δ1). Without loss of generality we may
assume that B(x, δ1) ⊂ Ω.

Since x ∈ Gδm(f), there is r such that

sup
{y∈X : ‖y‖=1}

f(x+ δy) + f(x− δy)− 2f(x)
δ

≤ r < 1
m
.

Let δ2 > 0 be smaller than min
{
δ1,

δ
3M

(
1
m − r

)}
. Then for any z ∈

B(x, δ2) and any y of norm one we have

f(z + δy) + f(z − δy)− 2f(z)
δ

≤ f(x+ δy) + f(x− δy)− 2f(x)
δ

+
|f(x+ δy)− f(z + δy)|

δ
+
|f(x− δy)− f(z − δy)|

δ
+
|f(x)− f(z)|

δ

≤ r + 3Mδ2 < 1/m.

Hence the set Gδm(f) is open. Therefore so is Gm(f) =
⋃
δ>0G

δ
m(f). By

Propositions 4.1 and 4.2, G =
⋂
mGm(f). Hence G is a Gδ set.

Corollary 4.5. Let (X, ‖ · ‖) be a real Banach space and f a strongly
α(·)-paraconvex function defined on an open convex subset Ω ⊂ X. Suppose
that the set G of points x ∈ Ω where f is Fréchet differentiable is dense
in Ω. Then it is a residual set (i.e. its complement is of the first Baire
category).
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Proof. Let F = Ω \ G and Fm = Ω \ Gm. Since Gm is open, Fm is
closed. Since G is dense, so is Gm. Thus Fm is nowhere dense and the set
F =

⋃
m Fm is of the first Baire category.

Theorem 4.6. Let Ω be an open convex set in an Asplund space X. Let
f be a strongly α(·)-paraconvex function defined on Ω. Then the set G of
points where f is Fréchet differentiable is a dense Gδ set (hence residual).

Proof. Suppose that G is not dense in Ω. We shall show that there is a
separable subspace E ⊂ X such that the set of points of Fréchet differentia-
bility of the restriction f |Ω∩E is not dense in Ω ∩ E.

We denote as before by Gm(f) the set of those x for which there is a
δ > 0 such that B(x, δ) ⊂ Ω and

sup
{y : ‖y‖=1}

f(x+ δy) + f(x− δy)− 2f(x)
δ

<
1
m
.

By our assumption there are m and an open set U ⊂ Ω such that
U ∩Gm(f) = ∅. Thus for x ∈ U and all δ > 0 such that B(x, δ) ⊂ Ω,

(4.13) sup
{y : ‖y‖=1}

f(x+ δy) + f(x− δy)− 2f(x)
δ

≥ 1
m
.

Take any x1 ∈ U . Take a decreasing sequence {βj} of positive numbers
tending to 0 such that B(x1, β1) ⊂ Ω and B(x1, β1) ∩Gm(f) = ∅.

By (4.13) for j large enough we can find an element y1,j of norm one
such that

(4.14)
f(x1 + βjy1,j) + f(x1 − βjy1,j)− 2f(x1)

βj
>

1
2m

.

Take δ > 0 such that B(x, δ1) ⊂ Ω and

(4.15)
α(δ)
δ

>
1

2m
.

By Lemma 4.3 and (4.15) there is a constant εm > 0 depending only on m
such that for δ ≥ βj such that B(x1, δ) ⊂ Ω and

(4.16)
f(x1 + δy1,j) + f(x1 − δy1,j)− 2f(x1)

δ
> εm.

Since βj → 0, for all δ > 0 such that B(x1, δ) ⊂ Ω we have

(4.17) sup
j≥1

f(x1 + δy1,j) + f(x1 − δy1,j)− 2f(x1)
δ

> εm.

We denote by E1 the closed linear span of the set {x1, y1,1, y1,2, . . .}.
Of course U ∩ E1 6= ∅ and E1 is separable. Now we construct by induc-
tion a sequence {E1, E2, . . .} of separable spaces such that Ek ⊂ Ek+1 and
U ∩ Ek 6= ∅.
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Suppose that we have constructed spaces E1, . . . , Ek. Let {xk,p} be dense
in U ∩ Ek. Then by (4.17) for each xk,p we can find a sequence {yp,j} of
elements of norm one such that for all p for sufficiently small δ (depending
on k and p)

(4.18) sup
j≥1

f(xk,p + δyp,j) + f(xk,p − δyp,j)− 2f(xk,p)
δ

> εm.

We denote by Ek+1 the closed linear span of the set {xk,p, yp,j :
p = 1, 2, . . . , j = 1, 2, . . .}. Clearly U ∩ Ek+1 6= ∅ and Ek+1 is separable.

We put E =
⋃
k Ek. It is easy to see that the sequence {xk,p}, k, p =

1, 2, . . . , is dense in E. By construction, it is easy to see that if m1 is such
that 1/m1 < εm, then the points xk,p, k, p = 1, 2, . . . , do not belong to
Gm1(f |E). Since the set Gm1(f |E) is open in E and disjoint from E ∩U we
conclude that f |E is not differentiable at any point of the open set E ∩ U .

This is a contradiction, since f |E is a strongly α(·)-paraconvex function
defined on an open set in the separable space E, and by Theorem 3.4 it is
differentiable on a residual set.
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