An $\mathfrak{M}_{q}(\mathbb{T})$-functional calculus for power-bounded operators on certain UMD spaces

by
Earl Berkson (Urbana, IL) and T. A. Gillespie (Edinburgh)

Abstract

For $1 \leq q<\infty$, let $\mathfrak{M}_{q}(\mathbb{T})$ denote the Banach algebra consisting of the bounded complex-valued functions on the unit circle having uniformly bounded q-variation on the dyadic arcs. We describe a broad class \mathcal{I} of UMD spaces such that whenever $X \in \mathcal{I}$, the sequence space $\ell^{2}(\mathbb{Z}, X)$ admits the classes $\mathfrak{M}_{q}(\mathbb{T})$ as Fourier multipliers, for an appropriate range of values of $q>1$ (the range of q depending on X). This multiplier result expands the vector-valued Marcinkiewicz Multiplier Theorem in the direction $q>1$. Moreover, when taken in conjunction with vector-valued transference, this $\mathfrak{M}_{q}(\mathbb{T})$-multiplier result shows that if $X \in \mathcal{I}$, and U is an invertible power-bounded operator on X, then U has an $\mathfrak{M}_{q}(\mathbb{T})$-functional calculus for an appropriate range of values of $q>1$. The class \mathcal{I} includes, in particular, all closed subspaces of the von Neumann-Schatten p-classes \mathcal{C}_{p} $(1<p<\infty)$, as well as all closed subspaces of any UMD lattice of functions on a σ-finite measure space. The $\mathfrak{M}_{q}(\mathbb{T})$-functional calculus result for \mathcal{I}, when specialized to the setting of closed subspaces of $L^{p}(\mu)$ (μ an arbitrary measure, $1<p<\infty$), recovers a previous result of the authors.

1. Introduction and notation. Throughout what follows, the symbols $\mathbb{R}, \mathbb{C}, \mathbb{T}, \mathbb{N}$, and \mathbb{Z}, respectively, will stand for the real line, the complex plane, the unit circle in \mathbb{C}, the set of positive integers, and the additive group of all integers. The following notion will be central to our considerations.

Definition 1.1. If $[a, b]$ is a compact interval of \mathbb{R}, and $1 \leq q<\infty$, the q-variation of a function ψ mapping $[a, b]$ into \mathbb{C} is defined by putting

$$
\operatorname{var}_{q}(\psi,[a, b])=\sup \left\{\sum_{k=1}^{N}\left|\psi\left(x_{k}\right)-\psi\left(x_{k-1}\right)\right|^{q}\right\}^{1 / q}
$$

where the supremum is extended over all partitions $a=x_{0}<x_{1}<\cdots<$ $x_{N}=b$ of $[a, b]$.

We denote by $V_{q}([a, b])$ the class of all functions $\psi:[a, b] \rightarrow \mathbb{C}$ such that $\operatorname{var}_{q}(\psi,[a, b])<\infty$. It is straightforward to see that $V_{q}([a, b])$ is a Banach

[^0]algebra under pointwise operations and the norm
$$
\|\psi\|_{V_{q}([a, b])} \equiv \sup _{x \in[a, b]}|\psi(x)|+\operatorname{var}_{q}(\psi,[a, b])
$$

If $\psi \in V_{q}([a, b])$, then $\lim _{x \rightarrow y^{+}} \psi(x)$ exists for each $y \in[a, b), \lim _{x \rightarrow y^{-}} \psi(x)$ exists for each $y \in(a, b]$, and the set of discontinuities of ψ in $[a, b]$ is countable. Note that $\operatorname{var}_{1}(\psi,[a, b])$ is identical to the usual total variation $\operatorname{var}(\psi,[a, b])$, and so the Banach algebras $V_{1}([a, b])$ and $\mathrm{BV}([a, b])$ coincide (with identical norms).

Recall that the dyadic points relevant to the study of 2π-periodic functions are the terms of the sequence $\left\{s_{k}\right\}_{k=-\infty}^{\infty} \subseteq(0,2 \pi)$ given by

$$
s_{k}= \begin{cases}2^{k-1} \pi & \text { if } k \leq 0 \tag{1.1}\\ 2 \pi-2^{-k} \pi & \text { if } k>0\end{cases}
$$

The corresponding dyadic arcs of $\mathbb{T},\left\{\Delta_{k}\right\}_{k=-\infty}^{\infty}$, are specified by

$$
\Delta_{k}=\left\{e^{i x}: x \in\left[s_{k}, s_{k+1}\right]\right\}
$$

Our main theme will be the multiplier actions on vector-valued functions of the Marcinkiewicz q-classes $\mathfrak{M}_{q}(\mathbb{T}), 1 \leq q<\infty$, which are described as follows. Given a function $\phi: \mathbb{T} \rightarrow \mathbb{C}$ and $k \in \mathbb{Z}$, we write $\operatorname{var}_{q}\left(\phi, \Delta_{k}\right)$ to stand for

$$
\operatorname{var}_{q}\left(\phi\left(e^{i(\cdot)}\right),\left[s_{k}, s_{k+1}\right]\right)
$$

For $1 \leq q<\infty, \mathfrak{M}_{q}(\mathbb{T})$ is defined as the class of all functions $\phi: \mathbb{T} \rightarrow \mathbb{C}$ such that

$$
\|\phi\|_{\mathfrak{M}_{q}(\mathbb{T})} \equiv \sup _{z \in \mathbb{T}}|\phi(z)|+\sup _{k \in \mathbb{Z}} \operatorname{var}_{q}\left(\phi, \Delta_{k}\right)<\infty
$$

It is easily seen that $\mathfrak{M}_{q}(\mathbb{T})$ is a Banach algebra under pointwise operations and the norm $\|\cdot\|_{\mathfrak{M}_{q}(\mathbb{T})}$. For $1 \leq r \leq q<\infty, \mathfrak{M}_{r}(\mathbb{T}) \subseteq \mathfrak{M}_{q}(\mathbb{T})$, since $\|\cdot\|_{\mathfrak{M}_{q}(\mathbb{T})}$ $\leq\|\cdot\|_{\mathfrak{M}_{r}(\mathbb{T})}$. Note that $\mathfrak{M}_{1}(\mathbb{T})$ is the usual class of Marcinkiewicz multipliers. For key properties of the notion of q-variation and of the Marcinkiewicz q-classes, we refer the reader to [7], [9], [12], and [19]. In particular, when $1<p<\infty$, both the unweighted and the A_{p}-weighted ℓ^{p}-spaces of bilateral complex-valued sequences admit the classes $\mathfrak{M}_{q}(\mathbb{T})$ as Fourier multipliers for corresponding appropriate ranges of q (Corollary 4.12 of [7], Theorem 9 of [12]). (In the framework of the unweighted as well as of the A_{p}-weighted Lebesgue spaces of complex-valued functions on \mathbb{T} and \mathbb{R}, corresponding multiplier results hold for the relevant notions of the Marcinkiewicz q -classes-see [7], [12], [13], [19].) We remark in passing that, in contrast to $\mathfrak{M}_{1}(\mathbb{T})$, each function class $\mathfrak{M}_{q}(\mathbb{T}), 1<q<\infty$, contains continuous, nowhere differentiable functions of Weierstrass type (see 1.33 on p. 303 of [23], Theorem (17.7) of [24]).

The natural venue for seeking to extend classical multiplier theorems to Lebesgue spaces of vector-valued functions is the class of UMD spaces, which
are characterized as the Banach spaces X such that the Hilbert transform for \mathbb{R}, \mathbb{T}, or \mathbb{Z} acts as a bounded convolution operator on the corresponding spaces L_{X}^{p} when $1<p<\infty$. (For the salient features of UMD spaces, see, e.g., [14], [16], [18], [29].) In particular, for an arbitrary UMD space X, the classical forms of the Marcinkiewicz Multiplier Theorem (wherein $q=1$) have been extended to $L_{X}^{p}, 1<p<\infty$ (see Theorem 4 of [17] and Theorem (4.5) of [6]). Our first goal is to expand this vector-valued multiplier result beyond $q=1$ by identifying a broad class \mathcal{I} of UMD spaces so that whenever $X \in \mathcal{I}$, the sequence space $\ell^{2}(\mathbb{Z}, X)$ admits the classes $\mathfrak{M}_{q}(\mathbb{T})$ as Fourier multipliers, for an appropriate range of values $q>1$ (depending on X). More specifically, this class \mathcal{I} is described as follows. If a Hilbert space \mathfrak{X}_{0} and a UMD space \mathfrak{X}_{1} constitute a compatible couple for Calderón's complex method of interpolation, we shall denote the corresponding scale of interpolation spaces by $\left[\mathfrak{X}_{0}, \mathfrak{X}_{1}\right]_{t}, 0 \leq t \leq 1$. By definition, the class \mathcal{I} will consist of all Banach spaces X such that
(1.2) X is isomorphic (in the Banach space sense) to a subspace of $\left[\mathfrak{X}_{0}, \mathfrak{X}_{1}\right]_{t}$, for some Hilbert space \mathfrak{X}_{0}, some UMD space \mathfrak{X}_{1}, and some t in the open interval $(0,1)$.
Clearly $X \in \mathcal{I}$ implies that X is UMD, and that all closed subspaces of X belong to \mathcal{I}.

Examples 1.2. (i) From the standard interpolation properties of $L^{p_{-}}$ spaces (Theorem 5.1.1 of [1]), it is obvious that for an arbitrary measure μ, and $1<p<\infty$, any closed subspace of $L^{p}(\mu)$ belongs to \mathcal{I}.
(ii) The Corollary of Theorem 4 in [29] establishes that every UMD lattice of measurable functions on a σ-finite measure space is an intermediate space $\left[\mathfrak{X}_{0}, \mathfrak{X}_{1}\right]_{t}$, as described in (1.2), and hence belongs to \mathcal{I}. Since a Banach space with an unconditional basis can be equivalently renormed so as to become a Banach lattice by identifying each vector with the coefficient sequence of its expansion, any UMD space with an unconditional basis belongs to \mathcal{I}.
(iii) In a direction away from lattices, consider the von Neumann-Schatten classes \mathcal{C}_{p} for the Hilbert space $\ell^{2}(\mathbb{N})$. The class \mathcal{C}_{2}, consisting of the Hilbert-Schmidt operators, is itself a Hilbert space, and, as is well known, \mathcal{C}_{p} is UMD for $1<p<\infty$ (for the UMD property of \mathcal{C}_{p} via the Cotlar "bootstrap" method, see, e.g., III. 6 of [21], IV. 4 of [22]). It is also well known (see, e.g., Proposition 8 on p. 44 of [28]) that any of the spaces $\mathcal{C}_{p}, 1<p<\infty$, is a strictly intermediate interpolation space between \mathcal{C}_{2} and some \mathcal{C}_{r}, where $1<r<\infty$. Consequently, for $1<p<\infty, \mathcal{C}_{p} \in \mathcal{I}$. (However, in contrast to example (ii), for $1<p<\infty, p \neq 2, \mathcal{C}_{p}$ is not isomorphic to a subspace of a UMD lattice, by virtue of Theorem 2.1 in [27].)
(iv) Problem 4 in §III.d of [29] poses the question of whether every UMD space is an intermediate space $\left[\mathfrak{X}_{0}, \mathfrak{X}_{1}\right]_{t}$ as described in (1.2). An affirmative answer would, of course, imply that the class UMD coincides with \mathcal{I}. However, it appears that this question remains open.

After having established (in Theorem 2.7) the $\mathfrak{M}_{q}(\mathbb{T})$-multiplier result for $\ell^{2}(\mathbb{Z}, X)(X \in \mathcal{I}$, and $q>1$ in a suitable range depending only on $X)$, we apply it, via vector-valued transference ([15]), to an arbitrary invertible power-bounded operator U on X. This procedure yields, for the same values of q, an $\mathfrak{M}_{q}(\mathbb{T})$-functional calculus for U (Theorem 3.8). The outcome extends to \mathcal{I} the $\mathfrak{M}_{q}(\mathbb{T})$-functional calculus result in Theorem 4.10 of [7] for $L^{p}(\mu)$-subspaces (μ an arbitrary measure, $1<p<\infty$), and also expands in the direction $q>1$ the $\mathfrak{M}_{1}(\mathbb{T})$-functional calculus result for arbitrary UMD spaces in Theorem (1.1)-(ii) of [6].

Throughout all that follows, the symbol K with a (possibly empty) set of subscripts will stand for a constant which depends only on those subscripts, and which may change in value from one occurrence to another. For a given Banach space Y, we shall denote by $\mathfrak{B}(Y)$ the Banach algebra of all bounded linear mappings of Y into Y. The identity operator of Y will be symbolized by I. The Fourier transform (respectively, inverse Fourier transform) of a function f will be written as \widehat{f} (respectively, f^{\vee}).
2. The multiplier theorem for $\mathfrak{M}_{q}(\mathbb{T})$ when $X \in \mathcal{I}$. In treating Fourier multipliers for Lebesgue spaces of vector-valued functions, we shall follow the presentation of this topic in $\S 3$ of [6]. If G is a locally compact abelian group with dual group Γ, Y is a Banach space, and $1 \leq$ $p<\infty$, then the algebra of Fourier multipliers for $L^{p}(G, Y)$ (denoted by $\left.M_{p, Y}(\Gamma)\right)$ consists of all bounded, measurable, complex-valued functions ϕ on Γ such that the mapping T_{ϕ}, initially defined on $\left\{L^{1}(G) \cap L^{\infty}(G)\right\} \otimes Y$ by putting

$$
T_{\phi}\left(\sum_{j=1}^{N} f_{j} y_{j}\right)=\sum_{j=1}^{N}\left(\phi \widehat{f}_{j}\right)^{\vee} y_{j}
$$

extends to an element of $\mathfrak{B}\left(L^{p}(G, Y)\right.$) (also denoted by T_{ϕ}, and called the multiplier transform on $L^{p}(G, Y)$ corresponding to $\left.\phi\right)$. In this case, we define the multiplier norm $\|\phi\|_{M_{p, Y}(\Gamma)}$ of ϕ to be $\left\|T_{\phi}\right\|_{\mathfrak{B}\left(L^{p}(G, Y)\right)}$. Regularization of Fourier multipliers for $L^{p}(G, Y)$ is furnished by Proposition A in $\S 3$ of [6]: if $k \in L^{1}(\Gamma)$ and $\phi \in M_{p, Y}(\Gamma)$, then the convolution $k * \phi$ belongs to $M_{p, Y}(\Gamma)$, and

$$
\begin{equation*}
\|k * \phi\|_{M_{p, Y}(\Gamma)} \leq\|k\|_{L^{1}(\Gamma)}\|\phi\|_{M_{p, Y}(\Gamma)} . \tag{2.1}
\end{equation*}
$$

Notice that if Z is a closed subspace of Y, then $M_{p, Y}(\Gamma) \subseteq M_{p, Z}(\Gamma)$, and

$$
\begin{equation*}
\|\phi\|_{M_{p, Z}(\Gamma)} \leq\|\phi\|_{M_{p, Y}(\Gamma)} \quad \text { for all } \phi \in M_{p, Y}(\Gamma) \tag{2.2}
\end{equation*}
$$

It will be convenient to record here, for later use, the following lemma.
Lemma 2.1. Suppose G is a locally compact abelian group with dual group Γ, Y is a Banach space, $1 \leq p<\infty,\left\{\phi_{n}\right\}_{n=1}^{\infty} \subseteq M_{p, Y}(\Gamma)$, and

$$
\sup _{n \in \mathbb{N}}\left\|\phi_{n}\right\|_{M_{p, Y}(\Gamma)}<\infty
$$

If ϕ is a bounded measurable function on Γ such that $\phi_{n} \rightarrow \phi$ a.e. on Γ, then $\phi \in M_{p, Y}(\Gamma)$, and

$$
\|\phi\|_{M_{p, Y}(\Gamma)} \leq \sup _{n \in \mathbb{N}}\left\|\phi_{n}\right\|_{M_{p, Y}(\Gamma)}
$$

Proof. Apart from the trivial case where $Y=\{0\}$, we have, for each $k \in \mathbb{N}$,

$$
\begin{equation*}
\left|\phi_{k}\right| \leq \sup _{n \in \mathbb{N}}\left\|\phi_{n}\right\|_{M_{p, Y}(\Gamma)} \quad \text { locally a.e. on } \Gamma \text {. } \tag{2.3}
\end{equation*}
$$

It follows from our hypothesis of a.e. convergence and (2.3) that if

$$
f \in\left\{L^{1}(G) \cap L^{\infty}(G)\right\} \otimes Y
$$

then $T_{\phi_{n}} f \rightarrow T_{\phi} f$ in $L^{2}(G, Y)$. Consequently, we can choose a subsequence $\left\{T_{\phi_{n_{k}}} f\right\}_{k=1}^{\infty}$ convergent to $T_{\phi} f$ a.e. An application of Fatou's Lemma completes the proof.

For a given Banach space Y, the multipliers for the sequence spaces $\ell^{p}(\mathbb{Z}, Y), 1 \leq p<\infty$, are easily seen to have the following simple characterization in terms of convolution operators.

Proposition 2.2. Suppose Y is a Banach space, and $1 \leq p<\infty$. Then a bounded measurable function $\psi: \mathbb{T} \rightarrow C$ belongs to $M_{p, Y}(\mathbb{T})$ if and only if its inverse Fourier transform ψ^{\vee} satisfies the following two conditions:
(i) For each sequence $x=\left\{x_{j}\right\}_{j=-\infty}^{\infty} \in \ell^{p}(\mathbb{Z}, Y)$, and each $k \in \mathbb{Z}$, the series

$$
\left(\psi^{\vee} * x\right)(k) \equiv \sum_{j=-\infty}^{\infty} \psi^{\vee}(k-j) x_{j}
$$

converges unconditionally in Y.
(ii) The mapping $S_{\psi}: x \in \ell^{p}(\mathbb{Z}, Y) \mapsto \psi^{\vee} * x$ belongs to $\mathfrak{B}\left(\ell^{p}(\mathbb{Z}, Y)\right)$.

If this is the case, then S_{ψ} is the multiplier transform on $\ell^{p}(\mathbb{Z}, Y)$ corresponding to ψ.

In the case of a UMD space Y, the vector-valued Marcinkiewicz Theorem for $\ell^{p}(\mathbb{Z}, Y)$ takes the following form (see Theorem (4.5) of [6]).

Theorem 2.3. Suppose Y is a UMD space, and $1<p<\infty$. If $\phi \in$ $\mathfrak{M}_{1}(\mathbb{T})$, then $\phi \in M_{p, Y}(\mathbb{T})$, and

$$
\begin{equation*}
\|\phi\|_{M_{p, Y}(\mathbb{T})} \leq K_{p, Y}\|\phi\|_{\mathfrak{M}_{1}(\mathbb{T})} \tag{2.4}
\end{equation*}
$$

The following interpolation result sets the stage for showing that if $X \in \mathcal{I}$, then for suitable values of $q>1$ we have $\mathfrak{M}_{q}(\mathbb{T}) \subseteq M_{2, X}(\mathbb{T})$.

Theorem 2.4. Let $F=\left[\mathfrak{X}_{0}, \mathfrak{X}_{1}\right]_{t}$, where \mathfrak{X}_{0} is a Hilbert space, \mathfrak{X}_{1} is a $U M D$ space, and $0<t<1$. Then for each $\phi \in \mathfrak{M}_{1}(\mathbb{T})$,

$$
\begin{equation*}
\|\phi\|_{M_{2, F}(\mathbb{T})} \leq K_{\mathfrak{X}_{1}}^{t}\left(\sup _{z \in \mathbb{T}}|\phi(z)|\right)^{1-t}\|\phi\|_{\mathfrak{M}_{1}(\mathbb{T})}^{t} \tag{2.5}
\end{equation*}
$$

Proof. By Theorem 5.1.2 of [1], we have, with equal norms,

$$
\begin{equation*}
\left[\ell^{2}\left(\mathbb{Z}, \mathfrak{X}_{0}\right), \ell^{2}\left(\mathbb{Z}, \mathfrak{X}_{1}\right)\right]_{t}=\ell^{2}(\mathbb{Z}, F) \tag{2.6}
\end{equation*}
$$

Since \mathfrak{X}_{0} is a Hilbert space and ϕ is bounded, it follows from Proposition 2.2 and the Parseval formula for $L^{2}\left(\mathbb{T}, \mathfrak{X}_{0}\right)$ that

$$
\begin{equation*}
\|\phi\|_{M_{2, x_{0}}(\mathbb{T})} \leq \sup _{z \in \mathbb{T}}|\phi(z)| . \tag{2.7}
\end{equation*}
$$

By Theorem 2.3, $\phi \in M_{2, \mathfrak{x}_{1}}(\mathbb{T})$, and

$$
\begin{equation*}
\|\phi\|_{M_{2, \mathfrak{X}_{1}(\mathbb{T})}} \leq K_{\mathfrak{X}_{1}}\|\phi\|_{\mathfrak{M}_{1}(\mathbb{T})} . \tag{2.8}
\end{equation*}
$$

Now a complex interpolation based on (2.6)-(2.8) concludes the proof.
In order to implement Theorem 2.4, we shall require the following version of Lemma 3 in [25]; a proof for the generality stated here can be obtained by suitable modifications to the argument on pp. 209-210 of [26].

Lemma 2.5. Let $[a, b]$ be a compact interval in \mathbb{R}, and suppose that $1 \leq q<\infty$. Then for each complex-valued function f on $[a, b]$ such that $\operatorname{var}_{q}(f,[a, b]) \leq 1$, and for each real number ε such that $0<\varepsilon<1$, there is a function $f_{\varepsilon} \in \operatorname{BV}([a, b])$ such that:

$$
\begin{align*}
\sup _{x \in[a, b]}\left|f(x)-f_{\varepsilon}(x)\right| & \leq \varepsilon \tag{2.9}\\
& \operatorname{var}\left(f_{\varepsilon},[a, b]\right) \leq 4 \varepsilon^{1-q} \tag{2.10}
\end{align*}
$$

The function f_{ε} can be chosen so that

$$
\begin{equation*}
f_{\varepsilon}(a)=f(a), \quad f_{\varepsilon}(b)=f(b) \tag{2.11}
\end{equation*}
$$

Theorem 2.6. Let $F=\left[\mathfrak{X}_{0}, \mathfrak{X}_{1}\right]_{t}$, where \mathfrak{X}_{0} is a Hilbert space, \mathfrak{X}_{1} is a $U M D$ space, and $0<t<1$. Suppose that $1 \leq q<1 / t$. Then

$$
\mathfrak{M}_{q}(\mathbb{T}) \subseteq M_{2, F}(\mathbb{T})
$$

For each $\phi \in \mathfrak{M}_{q}(\mathbb{T})$,

$$
\|\phi\|_{M_{2, F}(\mathbb{T})} \leq K_{\mathfrak{X}_{1}, q, t}\|\phi\|_{\mathfrak{M}_{q}(\mathbb{T})}
$$

Proof. (Compare the method of proof used for the Theorem in [25].) Let $\left\{s_{k}\right\}_{k=-\infty}^{\infty}$ be the sequence of dyadic points of $(0,2 \pi)$ specified in (1.1), and suppose that $1 \leq q<1 / t, \phi \in \mathfrak{M}_{q}(\mathbb{T})$, and $\|\phi\|_{\mathfrak{M}_{q}(\mathbb{T})} \leq 1$. Let $n \in \mathbb{N}$, and for each $k \in \mathbb{Z}$, apply Lemma 2.5 (including (2.11)) to the function $\phi\left(e^{i(\cdot)}\right)$ restricted to the interval $\left[s_{k}, s_{k+1}\right]$, taking $\varepsilon=2^{-n}$. This procedure allows us to construct a function $\phi_{n}: \mathbb{T} \rightarrow \mathbb{C}$ such that $\phi_{n}(1)=\phi(1)$, and

$$
\begin{align*}
& \sup _{z \in \mathbb{T}}\left|\phi(z)-\phi_{n}(z)\right| \leq 2^{-n} \tag{2.12}\\
& \sup _{k \in \mathbb{Z}} \operatorname{var}_{1}\left(\phi_{n}, \Delta_{k}\right) \leq 4\left(2^{n(q-1)}\right) \tag{2.13}
\end{align*}
$$

Now we define the functions $\psi_{n}, n \in \mathbb{N}$, on \mathbb{T} by putting:

$$
\psi_{1}=\phi_{1}, \quad \psi_{n}=\phi_{n}-\phi_{n-1} \quad \text { for } n \geq 2
$$

It is readily seen from (2.12) and (2.13) that for each $n \in \mathbb{N}$,

$$
\begin{align*}
\sup _{z \in \mathbb{T}}\left|\psi_{n}(z)\right| & \leq 3 \cdot 2^{-n} \tag{2.14}\\
\left\|\psi_{n}\right\|_{\mathfrak{M}_{1}(\mathbb{T})} & \leq K_{q} 2^{n(q-1)} \tag{2.15}
\end{align*}
$$

Moreover, it follows from (2.12) that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \psi_{n} \text { converges to } \phi \text { uniformly on } \mathbb{T} \text {. } \tag{2.16}
\end{equation*}
$$

Applying Theorem 2.4 to (2.14) and (2.15), we see that for each $n \in \mathbb{N}$,

$$
\begin{equation*}
\left\|\psi_{n}\right\|_{M_{2, F}(\mathbb{T})} \leq K_{\mathfrak{X}_{1}, q, t} 2^{-n(1-q t)} \tag{2.17}
\end{equation*}
$$

Since $q t<1$, (2.17) implies that

$$
\begin{equation*}
\sup _{N \in \mathbb{N}}\left\|\sum_{n=1}^{N} \psi_{n}\right\|_{M_{2, F}(\mathbb{T})} \leq K_{\mathfrak{X}_{1}, q, t} . \tag{2.18}
\end{equation*}
$$

In view of (2.16) and (2.18), the desired conclusions (for $\|\phi\|_{\mathfrak{M}_{q}(\mathbb{T})} \leq 1$) now follow from Lemma 2.1.

Our main multiplier theorem is now readily deduced.
Theorem 2.7. Suppose that X belongs to the class of Banach spaces \mathcal{I} defined by (1.2). Then there is a real number q_{0}, depending only on X, such that $1<q_{0}<\infty$, and for $1 \leq q<q_{0}$,

$$
\mathfrak{M}_{q}(\mathbb{T}) \subseteq M_{2, X}(\mathbb{T})
$$

Moreover, if $1 \leq q<q_{0}$, and $\phi \in \mathfrak{M}_{q}(\mathbb{T})$, then

$$
\|\phi\|_{M_{2, X}(\mathbb{T})} \leq K_{X, q}\|\phi\|_{\mathfrak{M}_{q}(\mathbb{T})}
$$

Proof. Let $t \in(0,1)$ be as in (1.2), set $q_{0}=1 / t$, and use Theorem 2.6 together with (2.2).
3. The $\mathfrak{M}_{q}(\mathbb{T})$-functional calculus. Let $X \in \mathcal{I}$, and suppose that $U \in \mathfrak{B}(X)$ is an invertible operator which is power-bounded, i.e.,

$$
\begin{equation*}
c \equiv \sup _{k \in \mathbb{Z}}\left\|U^{k}\right\|<\infty \tag{3.1}
\end{equation*}
$$

We shall show that for a suitable range of $q>1, U$ has a norm-continuous $\mathfrak{M}_{q}(\mathbb{T})$-functional calculus. In order to accomplish this it will be necessary to review beforehand relevant background items concerned with spectral decomposability.

Definition 3.1. A spectral family in a Banach space Y is an idempotentvalued function $E(\cdot): \mathbb{R} \rightarrow \mathfrak{B}(Y)$ with the following properties:
(i) $E(\lambda) E(\tau)=E(\tau) E(\lambda)=E(\lambda)$ if $\lambda \leq \tau$;
(ii) $\sup \{\|E(\lambda)\|: \lambda \in \mathbb{R}\}<\infty$;
(iii) with respect to the strong operator topology of $\mathfrak{B}(Y), E(\cdot)$ is right continuous and has a left-hand limit $E\left(\lambda^{-}\right)$at each point $\lambda \in \mathbb{R}$;
(iv) $E(\lambda) \rightarrow I$ as $\lambda \rightarrow \infty$ and $E(\lambda) \rightarrow 0$ as $\lambda \rightarrow-\infty$, each limit being with respect to the strong operator topology of $\mathfrak{B}(Y)$.

If, in addition, we have $a, b \in \mathbb{R}$ with $a \leq b, E(\lambda)=0$ for $\lambda<a$, and $E(\lambda)=I$ for $\lambda \geq b$, then $E(\cdot)$ is said to be concentrated on $[a, b]$.

Given a spectral family $E(\cdot)$ in Y concentrated on a compact interval $J=[a, b]$, an associated theory of spectral integration can be developed as follows. For each bounded function $\varphi: J \rightarrow \mathbb{C}$ and each partition $\mathcal{P}=$ $\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}\right)$ of J, where $a=\lambda_{0}<\lambda_{1}<\cdots<\lambda_{n}=b$, set

$$
\begin{equation*}
\mathcal{S}(\mathcal{P} ; \varphi, E)=\sum_{k=1}^{n} \varphi\left(\lambda_{k}\right)\left\{E\left(\lambda_{k}\right)-E\left(\lambda_{k-1}\right)\right\} \tag{3.2}
\end{equation*}
$$

If the net $\{\mathcal{S}(\mathcal{P} ; \varphi, E)\}$ converges in the strong operator topology of $\mathfrak{B}(Y)$ as \mathcal{P} increases with respect to refinement through the set of partitions of J, then the strong limit is called the spectral integral of φ with respect to $E(\cdot)$ (over J) and is denoted by $\int_{J} \varphi(\lambda) d E(\lambda)$. In this case, we define $\int_{J}^{\oplus} \varphi(\lambda) d E(\lambda)$ by writing

$$
\int_{J}^{\oplus} \varphi(\lambda) d E(\lambda) \equiv \varphi(a) E(a)+\int_{J} \varphi(\lambda) d E(\lambda)
$$

The Banach algebra $\mathrm{BV}(J)$ consists of the functions $\varphi: J \rightarrow \mathbb{C}$ having bounded variation on J, with norm

$$
\|\varphi\|_{\mathrm{BV}(J)}=\sup _{x \in \mathcal{J}}|\varphi(x)|+\operatorname{var}(\varphi, J)
$$

It can be shown that the spectral integral $\int_{J} \varphi(\lambda) d E(\lambda)$ exists for each
$\varphi \in \operatorname{BV}(J)$, and that the mapping

$$
\varphi \in \mathrm{BV}(J) \mapsto \int_{J}^{\oplus} \varphi(\lambda) d E(\lambda)
$$

is an identity-preserving algebra homomorphism of $\mathrm{BV}(J)$ into $\mathfrak{B}(Y)$ satisfying

$$
\begin{equation*}
\left\|\int_{J}^{\oplus} \varphi(\lambda) d E(\lambda)\right\| \leq\|\varphi\|_{\mathrm{BV}(J)} \sup \{\|E(\lambda)\|: \lambda \in \mathbb{R}\} \tag{3.3}
\end{equation*}
$$

(See [20, Chapter 17], or the simplified account in [5, §2].) We shall also consider the Banach algebra $\operatorname{BV}(\mathbb{T})$, which consists of all $\psi: \mathbb{T} \rightarrow \mathbb{C}$ such that the function $\widetilde{\psi}(t) \equiv \psi\left(e^{i t}\right)$ belongs to $\operatorname{BV}([0,2 \pi])$, and which is furnished with the norm $\|\psi\|_{\operatorname{BV}(\mathbb{T})}=\|\widetilde{\psi}\|_{\mathrm{BV}([0,2 \pi])}$.

Definition 3.2. Let Y be a Banach space. An operator $V \in \mathfrak{B}(Y)$ is said to be trigonometrically well-bounded if there is a spectral family $E(\cdot)$ in Y concentrated on $[0,2 \pi]$ such that $V=\int_{[0,2 \pi]}^{\oplus} e^{i \lambda} d E(\lambda)$. In this case, it is possible to arrange that $E\left((2 \pi)^{-}\right)=I$, and with this additional property the spectral family $E(\cdot)$ is uniquely determined by V, and is called the spectral decomposition of V.

The class of trigonometrically well-bounded operators was introduced in [3], and its theory further developed in [4]. Trigonometrically well-bounded operators occur naturally in fundamental structural roles, since every invertible power-bounded operator on a UMD space is trigonometrically wellbounded (Theorem (4.5) of [14]). (In particular, the operator $U \in \mathfrak{B}(X)$ in (3.1) is trigonometrically well-bounded, since X is UMD.) For a variety of natural examples of trigonometrically well-bounded operators which are not power-bounded, see, e.g., $\S 4$ of [8]. For some further applications of trigonometrically well-bounded operators to ergodic theory, see [2] and [10]-[12].

The next proposition (Theorem (3.10)-(i) of [5]) provides a vector-valued variant of Fejér's theorem valid for trigonometrically well-bounded operators.

Definition 3.3. Given a function $\psi \in \operatorname{BV}(\mathbb{T})$, we define $\psi^{\#} \in \operatorname{BV}([0,2 \pi])$ by writing

$$
\psi^{\#}(t)=\frac{1}{2}\left\{\lim _{s \rightarrow t^{+}} \psi\left(e^{i s}\right)+\lim _{s \rightarrow t^{-}} \psi\left(e^{i s}\right)\right\} \quad \text { for all } t \in[0,2 \pi] .
$$

Proposition 3.4. Suppose that Y is a Banach space, and V is a trigonometrically well-bounded operator on Y with spectral decomposition $E(\cdot)$. Then for each $\psi \in \mathrm{BV}(\mathbb{T})$, and each $y \in Y$, we have, in the notation of Definition 3.3,

$$
\left\|\sum_{j=-n}^{n} \widehat{\kappa}_{n}(j) \widehat{\psi}(j) V^{j} y-\int_{[0,2 \pi]}^{\oplus} \psi^{\#}(t) d E(t) y\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

where $\left\{\kappa_{n}\right\}_{n=0}^{\infty}$ is the Fejér kernel for \mathbb{T} :

$$
\kappa_{n}(z)=\sum_{j=-n}^{n}\left(1-\frac{|j|}{n+1}\right) z^{j} \quad \text { for all } n \geq 0 \text { and all } z \in \mathbb{T}
$$

The discussion leading up to (3.3) shows that a trigonometrically wellbounded operator V has a norm-continuous $\mathrm{BV}(\mathbb{T})$-functional calculus Ψ_{V} : $\psi \in \mathrm{BV}(\mathbb{T}) \mapsto \int_{[0,2 \pi]}^{\oplus} \psi\left(e^{i t}\right) d E(t)$, where $E(\cdot)$ is the spectral decomposition of V. The following theorem (contained in Theorem 14 of [12]) provides a simplifying condition for the existence of values $q>1$ such that Ψ_{V} can be extended to a norm-continuous $\mathfrak{M}_{q}(\mathbb{T})$-functional calculus for V.

Theorem 3.5. Suppose that Y is a Banach space, $V \in \mathfrak{B}(Y)$ is trigonometrically well-bounded, $E(\cdot)$ is the spectral decomposition of V, and $1<$ $\beta<\infty$. If there is a constant η such that (with notation as in Definition 3.3)

$$
\left\|\int_{[0,2 \pi]}^{\oplus} \psi^{\#}(t) d E(t)\right\| \leq \eta\|\psi\|_{\mathfrak{M}_{\beta}(\mathbb{T})} \quad \text { for all } \psi \in \mathrm{BV}(\mathbb{T})
$$

then whenever $1 \leq q<\beta$, the integral $\int_{[0,2 \pi]} \phi\left(e^{i t}\right) d E(t)$ exists for each $\phi \in \mathfrak{M}_{q}(\mathbb{T})$, and the mapping $\phi \in \mathfrak{M}_{q}(\mathbb{T}) \mapsto \int_{[0,2 \pi]}^{\oplus} \phi\left(e^{i t}\right) d E(t)$ is a homomorphism of the Banach algebra $\mathfrak{M}_{q}(\mathbb{T})$ into $\mathfrak{B}(Y)$ such that

$$
\left\|\int_{[0,2 \pi]}^{\oplus} \phi\left(e^{i t}\right) d E(t)\right\| \leq K \eta\|\phi\|_{\mathfrak{M}_{q}(\mathbb{T})} \quad \text { for all } \phi \in \mathfrak{M}_{q}(\mathbb{T})
$$

In order to relate the multiplier result in Theorem 2.7 to the trigonometrically well-bounded operator $U \in \mathfrak{B}(X)$ in (3.1), we shall also require the following vector-valued version of transference (Theorem (2.8) of [15]).

TheOrem 3.6. Let $u \mapsto R_{u}$ be a strongly continuous representation of a locally compact abelian group G in a Banach space Y such that

$$
\tau \equiv \sup \left\{\left\|R_{u}\right\|: u \in G\right\}<\infty
$$

Let $k \in L^{1}(G)$, and let H_{k} denote the bounded linear mapping of Y into Y defined (via Bochner integration with respect to Haar measure du on G) by

$$
H_{k} y=\int_{G} k(u) R_{-u} y d u \quad \text { for all } y \in Y
$$

Then for $1 \leq p<\infty$,

$$
\begin{equation*}
\left\|H_{k}\right\| \leq \tau^{2} N_{p, Y}(k) \tag{3.4}
\end{equation*}
$$

where $N_{p, Y}(k)$ denotes the norm of convolution by k on $L^{p}(G, Y)$.

REMARK 3.7. If G is a locally compact abelian group with dual group Γ, Y is a Banach space, $1 \leq p<\infty$, and $k \in L^{1}(G)$, then it is clear that $\widehat{k} \in M_{p, Y}(\Gamma)$, the multiplier transform of \widehat{k} coinciding on $L^{p}(G, Y)$ with convolution by k. Hence we can replace $N_{p, Y}(k)$ in (3.4) by $\|\widehat{k}\|_{M_{p, Y}(\Gamma)}$.

The stage is now set for establishing the following theorem, which constitutes the $\mathfrak{M}_{q}(\mathbb{T})$-functional calculus result described at the outset of this section.

Theorem 3.8. Suppose that X belongs to the class \mathcal{I} of Banach spaces defined by (1.2), and $U \in \mathfrak{B}(X)$ is an invertible operator such that (3.1) holds. (It follows, in particular, that U is trigonometrically well-bounded.) Let $\mathcal{E}(\cdot)$ denote the spectral decomposition of U. Then there is a real number q_{0}, depending only on X, satisfying $1<q_{0}<\infty$, and such that whenever $1 \leq q<q_{0}$, the following assertions are valid:
(i) For each $\phi \in \mathfrak{M}_{q}(\mathbb{T})$, the spectral integral $\int_{[0,2 \pi]} \phi\left(e^{i t}\right) d \mathcal{E}(t)$ exists.
(ii) The mapping $\phi \in \mathfrak{M}_{q}(\mathbb{T}) \mapsto \int_{[0,2 \pi]}^{\oplus} \phi\left(e^{i t}\right) d \mathcal{E}(t)$ is a homomorphism of the Banach algebra $\mathfrak{M}_{q}(\mathbb{T})$ into $\mathfrak{B}(X)$ such that

$$
\left\|\int_{[0,2 \pi]}^{\oplus} \phi\left(e^{i t}\right) d \mathcal{E}(t)\right\| \leq c^{2} K_{X, q}\|\phi\|_{\mathfrak{M}_{q}(\mathbb{T})} \quad \text { for all } \phi \in \mathfrak{M}_{q}(\mathbb{T})
$$

Proof. Fix the number q_{0} furnished by Theorem 2.7. Let $Q: \mathbb{T} \rightarrow \mathbb{C}$ be a trigonometric polynomial:

$$
Q(z) \equiv \sum_{j=-\infty}^{\infty} \widehat{Q}(j) z^{j}
$$

where $\widehat{Q}(j)=0$ for all but finitely many j. In view of (3.1), we can now specialize Theorem 3.6 to the representation R of \mathbb{Z} in X given by

$$
R_{j}=U^{j} \quad \text { for all } j \in \mathbb{Z}
$$

taking $k \in \ell^{1}(\mathbb{Z})$ to be the sequence $\left\{Q^{\vee}(j)\right\}_{j=-\infty}^{\infty}$. Under these circumstances, the operator H_{k} appearing in (3.4) is $Q(U)$, and so with the aid of Remark 3.7, we have

$$
\begin{equation*}
\|Q(U)\| \leq c^{2}\|Q\|_{M_{2, X}(\mathbb{T})} \tag{3.5}
\end{equation*}
$$

If $\psi \in \operatorname{BV}(\mathbb{T})$, and $\left\{\kappa_{n}\right\}_{n=0}^{\infty}$ is the Fejér kernel for \mathbb{T}, we infer from (3.5) that for each $n \geq 0$, the trigonometric polynomial $\kappa_{n} * \psi$ satisfies

$$
\begin{equation*}
\left\|\sum_{j=-n}^{n} \widehat{\kappa}_{n}(j) \widehat{\psi}(j) U^{j}\right\|=\left\|\left(\kappa_{n} * \psi\right)(U)\right\| \leq c^{2}\left\|\kappa_{n} * \psi\right\|_{M_{2, X}(\mathbb{T})} \tag{3.6}
\end{equation*}
$$

We now apply (2.1) and Theorem 2.7 to the right-hand member of (3.6) to
get, for $1 \leq q<q_{0}$,

$$
\left\|\sum_{j=-n}^{n} \widehat{\kappa}_{n}(j) \widehat{\psi}(j) U^{j}\right\| \leq c^{2} K_{X, q}\|\psi\|_{\mathfrak{M}_{q}(\mathbb{T})}
$$

Using this in Proposition 3.4, we see that for $1 \leq q<q_{0}$ and $\psi \in \operatorname{BV}(\mathbb{T})$,

$$
\begin{equation*}
\left\|\int_{[0,2 \pi]}^{\oplus} \psi^{\#}(t) d \mathcal{E}(t)\right\| \leq c^{2} K_{X, q}\|\psi\|_{\mathfrak{M}_{q}(\mathbb{T})} \tag{3.7}
\end{equation*}
$$

The proof is completed by observing that if $1 \leq q<q_{0}$, we can set $\beta=$ $\left(q+q_{0}\right) / 2$, apply (3.7) to β in place of q, and then appeal to Theorem 3.5.

REmARK 3.9. If $X \in \mathcal{I}$, and $U_{0} \in \mathfrak{B}(X)$ is a trigonometrically wellbounded operator which does not satisfy the power-boundedness assumption described by (3.1), then the conclusions of Theorem 3.8 can fail to hold. Specifically, (5.36) in [6] furnishes the spectral decomposition $E_{0}(\cdot)$ of a trigonometrically well-bounded operator U_{0} on Hilbert space such that for some $\phi \in \mathfrak{M}_{1}(\mathbb{T})$, the spectral integral $\int_{[0,2 \pi]} \phi\left(e^{i t}\right) d E_{0}(t)$ does not exist.

References

[1] J. Bergh and J. Löfström, Interpolation Spaces - An Introduction, Grundlehren Math. Wiss. 223, Springer, Berlin, 1976.
[2] E. Berkson, J. Bourgain, and T. A. Gillespie, On the almost everywhere convergence of ergodic averages for power-bounded operators on L^{p}-subspaces, Integral Equations Operator Theory 14 (1991), 678-715.
[3] E. Berkson and T. A. Gillespie, AC functions on the circle and spectral families, J. Operator Theory 13 (1985), 33-47.
[4] -, -, Fourier series criteria for operator decomposability, Integral Equations Operator Theory 9 (1986),767-789.
[5] -, -, Stečkin's theorem, transference, and spectral decompositions, J. Funct. Anal. 70 (1987), 140-170.
[6] -, -, Spectral decompositions and harmonic analysis on UMD spaces, Studia Math. 112 (1994), 13-49.
[7] -, -, The q-variation of functions and spectral integration of Fourier multipliers, Duke Math. J. 88 (1997), 103-132.
[8] -, -, Mean-boundedness and Littlewood-Paley for separation-preserving operators, Trans. Amer. Math. Soc. 349 (1997), 1169-1189.
[9] -, -, Multipliers for weighted L^{p}-spaces, transference, and the q-variation of functions, Bull. Sci. Math. 122 (1998), 427-454.
[10] —, —, Spectral integration from dominated ergodic estimates, Illinois J. Math. 43 (1999), 500-519.
[11] -, -, A Tauberian theorem for ergodic averages, spectral decomposability, and the dominated ergodic estimate for positive invertible operators, Positivity 7 (2003), 161-175.
[12] -, -, The q-variation of functions and spectral integration from dominated ergodic estimates, J. Fourier Anal. Appl. 10 (2004), 149-177.
[13] E. Berkson and T. A. Gillespie, On restrictions of multipliers in weighted settings, Indiana Univ. Math. J. 52 (2003), 927-961.
[14] E. Berkson, T. A. Gillespie, and P. S. Muhly, Abstract spectral decompositions guaranteed by the Hilbert transform, Proc. London Math. Soc. (3) 53 (1986), 489-517.
[15] -, 一, 一, Generalized analyticity in UMD spaces, Ark. Mat. 27 (1989), 1-14.
[16] J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, ibid. 21 (1983), 163-168.
[17] -, Vector-valued singular integrals and the $H^{1}-B M O$ duality, in: Probability Theory and Harmonic Analysis (Cleveland, OH, 1983), Monogr. and Textbooks Pure Appl. Math. 98, Dekker, New York, 1986, 1-19.
[18] D. L. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, in: Conf. on Harmonic Analysis in Honor of Antoni Zygmund (Chicago, IL, 1981), Wadsworth, Belmont, CA, 1983, 270-286.
[19] R. Coifman, J. L. Rubio de Francia, and S. Semmes, Multiplicateurs de Fourier de $L^{p}(\mathbb{R})$ et estimations quadratiques, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), 351-354.
[20] H. R. Dowson, Spectral Theory of Linear Operators, London Math. Soc. Monogr. 12, Academic Press, New York, 1978.
[21] I. C. Gohberg and M. G. Krein, Theory and Applications of Volterra Operators in Hilbert Space, Transl. Math. Monogr. 24, Amer. Math. Soc., Providence, RI, 1970.
[22] J. A. Gutiérrez, On the boundedness of the Banach space-valued Hilbert transform, thesis, Univ. of Texas (Austin), 1982.
[23] G. H. Hardy, Weierstrass's non-differentiable function, Trans. Amer. Math. Soc. 17 (1916), 301-325.
[24] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer, New York, 1969.
[25] I. I. Hirschman, Jr., Multiplier transformations. III, Proc. Amer. Math. Soc. 13 (1962), 851-857.
[26] A. A. Kruglov and M. Z. Solomjak, Interpolation of operators in the spaces V_{p}, Vestnik Leningrad Univ. 1971, no. 13, 54-60 (in Russian); English transl.: Vestnik Leningrad Univ. Math. 4 (1977), 209-216.
[27] G. Pisier, Some results on Banach spaces without local unconditional structure, Compositio Math. 37 (1978), 3-19.
[28] M. Reed and B. Simon, Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975.
[29] J. L. Rubio de Francia, Martingale and integral transforms of Banach space valued functions, in: Probability and Banach Spaces (Zaragoza, 1985), Lecture Notes in Math. 1221, Springer, Berlin, 1986, 195-222.

Department of Mathematics
University of Illinois
1409 W. Green St.
Urbana, IL 61801, U.S.A.
E-mail: berkson@math.uiuc.edu

School of Mathematics University of Edinburgh James Clerk Maxwell Building Edinburgh EH9 3JZ, Scotland, U.K.

E-mail: alastair@maths.ed.ac.uk

[^0]: 2000 Mathematics Subject Classification: Primary 42A45, 46B70, 46E40, 47B40.
 Key words and phrases: UMD space, multiplier, complex interpolation, q-variation, spectral decomposition, spectral integral.

