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An Mq(T)-functional calculus for
power-bounded operators on certain UMD spaces

by

Earl Berkson (Urbana, IL) and T. A. Gillespie (Edinburgh)

Abstract. For 1 ≤ q < ∞, let Mq(T) denote the Banach algebra consisting of the
bounded complex-valued functions on the unit circle having uniformly bounded q-variation
on the dyadic arcs. We describe a broad class I of UMD spaces such that whenever X ∈ I,
the sequence space `2(Z,X) admits the classes Mq(T) as Fourier multipliers, for an ap-
propriate range of values of q > 1 (the range of q depending on X). This multiplier result
expands the vector-valued Marcinkiewicz Multiplier Theorem in the direction q > 1. More-
over, when taken in conjunction with vector-valued transference, this Mq(T)-multiplier
result shows that if X ∈ I, and U is an invertible power-bounded operator on X, then U
has an Mq(T)-functional calculus for an appropriate range of values of q > 1. The class
I includes, in particular, all closed subspaces of the von Neumann–Schatten p-classes Cp
(1 < p <∞), as well as all closed subspaces of any UMD lattice of functions on a σ-finite
measure space. The Mq(T)-functional calculus result for I, when specialized to the setting
of closed subspaces of Lp(µ) (µ an arbitrary measure, 1 < p < ∞), recovers a previous
result of the authors.

1. Introduction and notation. Throughout what follows, the symbols
R, C, T, N, and Z, respectively, will stand for the real line, the complex plane,
the unit circle in C, the set of positive integers, and the additive group of
all integers. The following notion will be central to our considerations.

Definition 1.1. If [a, b] is a compact interval of R, and 1 ≤ q <∞, the
q-variation of a function ψ mapping [a, b] into C is defined by putting

varq(ψ, [a, b]) = sup
{ N∑

k=1

|ψ(xk)− ψ(xk−1)|q
}1/q

,

where the supremum is extended over all partitions a = x0 < x1 < · · · <
xN = b of [a, b].

We denote by Vq([a, b]) the class of all functions ψ : [a, b]→ C such that
varq(ψ, [a, b]) < ∞. It is straightforward to see that Vq([a, b]) is a Banach
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algebra under pointwise operations and the norm

‖ψ‖Vq([a,b]) ≡ sup
x∈[a,b]

|ψ(x)|+ varq(ψ, [a, b]).

If ψ ∈ Vq([a, b]), then limx→y+ ψ(x) exists for each y ∈ [a, b), limx→y− ψ(x)
exists for each y ∈ (a, b], and the set of discontinuities of ψ in [a, b] is
countable. Note that var1(ψ, [a, b]) is identical to the usual total variation
var(ψ, [a, b]), and so the Banach algebras V1([a, b]) and BV([a, b]) coincide
(with identical norms).

Recall that the dyadic points relevant to the study of 2π-periodic func-
tions are the terms of the sequence {sk}∞k=−∞ ⊆ (0, 2π) given by

sk =
{

2k−1π if k ≤ 0,

2π − 2−kπ if k > 0.
(1.1)

The corresponding dyadic arcs of T, {∆k}∞k=−∞, are specified by

∆k = {eix : x ∈ [sk, sk+1]}.
Our main theme will be the multiplier actions on vector-valued functions
of the Marcinkiewicz q-classes Mq(T), 1 ≤ q < ∞, which are described as
follows. Given a function φ : T → C and k ∈ Z, we write varq(φ,∆k) to
stand for

varq(φ(ei(·)), [sk, sk+1]).

For 1 ≤ q < ∞, Mq(T) is defined as the class of all functions φ : T → C
such that

‖φ‖Mq(T) ≡ sup
z∈T
|φ(z)|+ sup

k∈Z
varq(φ,∆k) <∞.

It is easily seen that Mq(T) is a Banach algebra under pointwise operations
and the norm ‖·‖Mq(T). For 1 ≤ r ≤ q <∞, Mr(T) ⊆Mq(T), since ‖·‖Mq(T)
≤ ‖ · ‖Mr(T). Note that M1(T) is the usual class of Marcinkiewicz multipli-
ers. For key properties of the notion of q-variation and of the Marcinkiewicz
q-classes, we refer the reader to [7], [9], [12], and [19]. In particular, when
1 < p <∞, both the unweighted and the Ap-weighted `p-spaces of bilateral
complex-valued sequences admit the classes Mq(T) as Fourier multipliers
for corresponding appropriate ranges of q (Corollary 4.12 of [7], Theorem 9
of [12]). (In the framework of the unweighted as well as of the Ap-weighted
Lebesgue spaces of complex-valued functions on T and R, corresponding
multiplier results hold for the relevant notions of the Marcinkiewicz q-
classes—see [7], [12], [13], [19].) We remark in passing that, in contrast to
M1(T), each function class Mq(T), 1 < q <∞, contains continuous, nowhere
differentiable functions of Weierstrass type (see 1.33 on p. 303 of [23], The-
orem (17.7) of [24]).

The natural venue for seeking to extend classical multiplier theorems to
Lebesgue spaces of vector-valued functions is the class of UMD spaces, which
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are characterized as the Banach spaces X such that the Hilbert transform
for R, T, or Z acts as a bounded convolution operator on the corresponding
spaces LpX when 1 < p < ∞. (For the salient features of UMD spaces, see,
e.g., [14], [16], [18], [29].) In particular, for an arbitrary UMD space X, the
classical forms of the Marcinkiewicz Multiplier Theorem (wherein q = 1)
have been extended to LpX , 1 < p < ∞ (see Theorem 4 of [17] and Theo-
rem (4.5) of [6]). Our first goal is to expand this vector-valued multiplier
result beyond q = 1 by identifying a broad class I of UMD spaces so that
whenever X ∈ I, the sequence space `2(Z,X) admits the classes Mq(T)
as Fourier multipliers, for an appropriate range of values q > 1 (depend-
ing on X). More specifically, this class I is described as follows. If a Hilbert
space X0 and a UMD space X1 constitute a compatible couple for Calderón’s
complex method of interpolation, we shall denote the corresponding scale of
interpolation spaces by [X0,X1]t, 0 ≤ t ≤ 1. By definition, the class I will
consist of all Banach spaces X such that

(1.2) X is isomorphic (in the Banach space sense) to a subspace of
[X0,X1]t, for some Hilbert space X0, some UMD space X1, and some
t in the open interval (0, 1).

Clearly X ∈ I implies that X is UMD, and that all closed subspaces of X
belong to I.

Examples 1.2. (i) From the standard interpolation properties of Lp-
spaces (Theorem 5.1.1 of [1]), it is obvious that for an arbitrary mea-
sure µ, and 1 < p <∞, any closed subspace of Lp(µ) belongs to I.

(ii) The Corollary of Theorem 4 in [29] establishes that every UMD
lattice of measurable functions on a σ-finite measure space is an
intermediate space [X0,X1]t, as described in (1.2), and hence be-
longs to I. Since a Banach space with an unconditional basis can be
equivalently renormed so as to become a Banach lattice by identi-
fying each vector with the coefficient sequence of its expansion, any
UMD space with an unconditional basis belongs to I.

(iii) In a direction away from lattices, consider the von Neumann–Schat-
ten classes Cp for the Hilbert space `2(N). The class C2, consisting
of the Hilbert–Schmidt operators, is itself a Hilbert space, and, as
is well known, Cp is UMD for 1 < p < ∞ (for the UMD prop-
erty of Cp via the Cotlar “bootstrap” method, see, e.g., III.6 of [21],
IV.4 of [22]). It is also well known (see, e.g., Proposition 8 on p. 44
of [28]) that any of the spaces Cp, 1 < p <∞, is a strictly intermedi-
ate interpolation space between C2 and some Cr, where 1 < r < ∞.
Consequently, for 1 < p < ∞, Cp ∈ I. (However, in contrast to ex-
ample (ii), for 1 < p <∞, p 6= 2, Cp is not isomorphic to a subspace
of a UMD lattice, by virtue of Theorem 2.1 in [27].)
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(iv) Problem 4 in §III.d of [29] poses the question of whether every
UMD space is an intermediate space [X0,X1]t as described in (1.2).
An affirmative answer would, of course, imply that the class UMD
coincides with I. However, it appears that this question remains
open.

After having established (in Theorem 2.7) the Mq(T)-multiplier result
for `2(Z,X) (X ∈ I, and q > 1 in a suitable range depending only on X),
we apply it, via vector-valued transference ([15]), to an arbitrary invertible
power-bounded operator U on X. This procedure yields, for the same val-
ues of q, an Mq(T)-functional calculus for U (Theorem 3.8). The outcome
extends to I the Mq(T)-functional calculus result in Theorem 4.10 of [7] for
Lp(µ)-subspaces (µ an arbitrary measure, 1 < p <∞), and also expands in
the direction q > 1 the M1(T)-functional calculus result for arbitrary UMD
spaces in Theorem (1.1)-(ii) of [6].

Throughout all that follows, the symbol K with a (possibly empty) set of
subscripts will stand for a constant which depends only on those subscripts,
and which may change in value from one occurrence to another. For a given
Banach space Y , we shall denote by B(Y ) the Banach algebra of all bounded
linear mappings of Y into Y . The identity operator of Y will be symbolized
by I. The Fourier transform (respectively, inverse Fourier transform) of a
function f will be written as f̂ (respectively, f∨).

2. The multiplier theorem for Mq(T) when X ∈ I. In treating
Fourier multipliers for Lebesgue spaces of vector-valued functions, we shall
follow the presentation of this topic in §3 of [6]. If G is a locally com-
pact abelian group with dual group Γ , Y is a Banach space, and 1 ≤
p < ∞, then the algebra of Fourier multipliers for Lp(G,Y ) (denoted by
Mp,Y (Γ )) consists of all bounded, measurable, complex-valued functions φ
on Γ such that the mapping Tφ, initially defined on {L1(G) ∩ L∞(G)} ⊗ Y
by putting

Tφ

( N∑

j=1

fjyj

)
=

N∑

j=1

(φ f̂j)∨yj ,

extends to an element of B(Lp(G,Y )) (also denoted by Tφ, and called the
multiplier transform on Lp(G,Y ) corresponding to φ). In this case, we define
the multiplier norm ‖φ‖Mp,Y (Γ ) of φ to be ‖Tφ‖B(Lp(G,Y )). Regularization of
Fourier multipliers for Lp(G,Y ) is furnished by Proposition A in §3 of [6]: if
k ∈ L1(Γ ) and φ ∈Mp,Y (Γ ), then the convolution k∗φ belongs to Mp,Y (Γ ),
and

‖k ∗ φ‖Mp,Y (Γ ) ≤ ‖k‖L1(Γ ) ‖φ‖Mp,Y (Γ ).(2.1)
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Notice that if Z is a closed subspace of Y , then Mp,Y (Γ ) ⊆ Mp,Z(Γ ),
and

‖φ‖Mp,Z(Γ ) ≤ ‖φ‖Mp,Y (Γ ) for all φ ∈Mp,Y (Γ ).(2.2)

It will be convenient to record here, for later use, the following lemma.

Lemma 2.1. Suppose G is a locally compact abelian group with dual
group Γ , Y is a Banach space, 1 ≤ p <∞, {φn}∞n=1 ⊆Mp,Y (Γ ), and

sup
n∈N
‖φn‖Mp,Y (Γ ) <∞.

If φ is a bounded measurable function on Γ such that φn → φ a.e. on Γ ,
then φ ∈Mp,Y (Γ ), and

‖φ‖Mp,Y (Γ ) ≤ sup
n∈N
‖φn‖Mp,Y (Γ ).

Proof. Apart from the trivial case where Y = {0}, we have, for each
k ∈ N,

|φk| ≤ sup
n∈N
‖φn‖Mp,Y (Γ ) locally a.e. on Γ.(2.3)

It follows from our hypothesis of a.e. convergence and (2.3) that if

f ∈ {L1(G) ∩ L∞(G)} ⊗ Y,
then Tφnf → Tφf in L2(G,Y ). Consequently, we can choose a subsequence
{Tφnk f}

∞
k=1 convergent to Tφf a.e. An application of Fatou’s Lemma com-

pletes the proof.

For a given Banach space Y , the multipliers for the sequence spaces
`p(Z, Y ), 1 ≤ p <∞, are easily seen to have the following simple character-
ization in terms of convolution operators.

Proposition 2.2. Suppose Y is a Banach space, and 1 ≤ p <∞. Then
a bounded measurable function ψ : T→ C belongs to Mp,Y (T) if and only if
its inverse Fourier transform ψ∨ satisfies the following two conditions:

(i) For each sequence x = {xj}∞j=−∞ ∈ `p(Z, Y ), and each k ∈ Z, the
series

(ψ∨ ∗ x)(k) ≡
∞∑

j=−∞
ψ∨(k − j)xj

converges unconditionally in Y .
(ii) The mapping Sψ : x ∈ `p(Z, Y ) 7→ ψ∨ ∗ x belongs to B(`p(Z, Y )).

If this is the case, then Sψ is the multiplier transform on `p(Z, Y ) corre-
sponding to ψ.

In the case of a UMD space Y , the vector-valued Marcinkiewicz Theorem
for `p(Z, Y ) takes the following form (see Theorem (4.5) of [6]).
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Theorem 2.3. Suppose Y is a UMD space, and 1 < p < ∞. If φ ∈
M1(T), then φ ∈Mp,Y (T), and

‖φ‖Mp,Y (T) ≤ Kp,Y ‖φ‖M1(T).(2.4)

The following interpolation result sets the stage for showing that ifX ∈ I,
then for suitable values of q > 1 we have Mq(T) ⊆M2,X(T).

Theorem 2.4. Let F = [X0,X1]t, where X0 is a Hilbert space, X1 is a
UMD space, and 0 < t < 1. Then for each φ ∈M1(T),

‖φ‖M2,F (T) ≤ Kt
X1

(sup
z∈T
|φ(z)|)1−t ‖φ‖tM1(T).(2.5)

Proof. By Theorem 5.1.2 of [1], we have, with equal norms,

[`2(Z,X0), `2(Z,X1)]t = `2(Z, F ).(2.6)

Since X0 is a Hilbert space and φ is bounded, it follows from Proposition
2.2 and the Parseval formula for L2(T,X0) that

‖φ‖M2,X0(T) ≤ sup
z∈T
|φ(z)|.(2.7)

By Theorem 2.3, φ ∈M2,X1(T), and

‖φ‖M2,X1(T) ≤ KX1 ‖φ‖M1(T).(2.8)

Now a complex interpolation based on (2.6)–(2.8) concludes the proof.

In order to implement Theorem 2.4, we shall require the following version
of Lemma 3 in [25]; a proof for the generality stated here can be obtained
by suitable modifications to the argument on pp. 209–210 of [26].

Lemma 2.5. Let [a, b] be a compact interval in R, and suppose that
1 ≤ q <∞. Then for each complex-valued function f on [a, b] such that
varq(f, [a, b]) ≤ 1, and for each real number ε such that 0 < ε < 1, there
is a function fε ∈ BV([a, b]) such that :

sup
x∈[a,b]

|f(x)− fε(x)| ≤ ε,(2.9)

var(fε, [a, b]) ≤ 4ε1−q.(2.10)

The function fε can be chosen so that

fε(a) = f(a), fε(b) = f(b).(2.11)

Theorem 2.6. Let F = [X0,X1]t, where X0 is a Hilbert space, X1 is a
UMD space, and 0 < t < 1. Suppose that 1 ≤ q < 1/t. Then

Mq(T) ⊆M2,F (T).

For each φ ∈Mq(T),

‖φ‖M2,F (T) ≤ KX1,q,t ‖φ‖Mq(T).
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Proof. (Compare the method of proof used for the Theorem in [25].) Let
{sk}∞k=−∞ be the sequence of dyadic points of (0, 2π) specified in (1.1), and
suppose that 1 ≤ q < 1/t, φ ∈ Mq(T), and ‖φ‖Mq(T) ≤ 1. Let n ∈ N, and
for each k ∈ Z, apply Lemma 2.5 (including (2.11)) to the function φ(ei(·))
restricted to the interval [sk, sk+1], taking ε = 2−n. This procedure allows
us to construct a function φn : T→ C such that φn(1) = φ(1), and

sup
z∈T
|φ(z)− φn(z)| ≤ 2−n,(2.12)

sup
k∈Z

var1(φn,∆k) ≤ 4(2n(q−1)).(2.13)

Now we define the functions ψn, n ∈ N, on T by putting:

ψ1 = φ1, ψn = φn − φn−1 for n ≥ 2.

It is readily seen from (2.12) and (2.13) that for each n ∈ N,

sup
z∈T
|ψn(z)| ≤ 3 · 2−n,(2.14)

‖ψn‖M1(T) ≤ Kq2n(q−1).(2.15)

Moreover, it follows from (2.12) that
∞∑

n=1

ψn converges to φ uniformly on T.(2.16)

Applying Theorem 2.4 to (2.14) and (2.15), we see that for each n ∈ N,

‖ψn‖M2,F (T) ≤ KX1,q,t 2−n(1−qt).(2.17)

Since qt < 1, (2.17) implies that

sup
N∈N

∥∥∥
N∑

n=1

ψn

∥∥∥
M2,F (T)

≤ KX1,q,t.(2.18)

In view of (2.16) and (2.18), the desired conclusions (for ‖φ‖Mq(T) ≤ 1) now
follow from Lemma 2.1.

Our main multiplier theorem is now readily deduced.

Theorem 2.7. Suppose that X belongs to the class of Banach spaces I
defined by (1.2). Then there is a real number q0, depending only on X, such
that 1 < q0 <∞, and for 1 ≤ q < q0,

Mq(T) ⊆M2,X(T).

Moreover , if 1 ≤ q < q0, and φ ∈Mq(T), then

‖φ‖M2,X(T) ≤ KX,q ‖φ‖Mq(T).

Proof. Let t ∈ (0, 1) be as in (1.2), set q0 = 1/t , and use Theorem 2.6
together with (2.2).
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3. The Mq(T)-functional calculus. Let X ∈ I, and suppose that
U ∈ B(X) is an invertible operator which is power-bounded, i.e.,

c ≡ sup
k∈Z
‖Uk‖ <∞.(3.1)

We shall show that for a suitable range of q > 1, U has a norm-continuous
Mq(T)-functional calculus. In order to accomplish this it will be necessary
to review beforehand relevant background items concerned with spectral
decomposability.

Definition 3.1. A spectral family in a Banach space Y is an idempotent-
valued function E(·) : R→ B(Y ) with the following properties:

(i) E(λ)E(τ) = E(τ)E(λ) = E(λ) if λ ≤ τ ;
(ii) sup{‖E(λ)‖ : λ ∈ R} <∞;

(iii) with respect to the strong operator topology of B(Y ), E(·) is right
continuous and has a left-hand limit E(λ−) at each point λ ∈ R;

(iv) E(λ) → I as λ → ∞ and E(λ) → 0 as λ → −∞, each limit being
with respect to the strong operator topology of B(Y ).

If, in addition, we have a, b ∈ R with a ≤ b, E(λ) = 0 for λ < a, and
E(λ) = I for λ ≥ b, then E(·) is said to be concentrated on [a, b].

Given a spectral family E(·) in Y concentrated on a compact interval
J = [a, b], an associated theory of spectral integration can be developed
as follows. For each bounded function ϕ : J → C and each partition P =
(λ0, λ1, . . . , λn) of J , where a = λ0 < λ1 < · · · < λn = b, set

S(P;ϕ,E) =
n∑

k=1

ϕ(λk){E(λk)− E(λk−1)}.(3.2)

If the net {S(P;ϕ,E)} converges in the strong operator topology of B(Y )
as P increases with respect to refinement through the set of partitions
of J , then the strong limit is called the spectral integral of ϕ with respect
to E(·) (over J) and is denoted by

�
J ϕ(λ) dE(λ). In this case, we define� ⊕

J ϕ(λ) dE(λ) by writing
� ⊕

J

ϕ(λ) dE(λ) ≡ ϕ(a)E(a) +
�

J

ϕ(λ) dE(λ).

The Banach algebra BV(J) consists of the functions ϕ : J → C having
bounded variation on J , with norm

‖ϕ‖BV(J) = sup
x∈J
|ϕ(x)|+ var(ϕ, J).

It can be shown that the spectral integral
�
J ϕ(λ) dE(λ) exists for each
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ϕ ∈ BV(J), and that the mapping

ϕ ∈ BV(J) 7→
� ⊕

J

ϕ(λ) dE(λ)

is an identity-preserving algebra homomorphism of BV(J) into B(Y ) satis-
fying ∥∥∥

� ⊕

J

ϕ(λ) dE(λ)
∥∥∥ ≤ ‖ϕ‖BV(J) sup{‖E(λ)‖ : λ ∈ R}.(3.3)

(See [20, Chapter 17], or the simplified account in [5, §2].) We shall also con-

sider the Banach algebra BV(T), which consists of all ψ : T→ C such that
the function ψ̃(t) ≡ ψ(eit) belongs to BV([0, 2π]), and which is furnished
with the norm ‖ψ‖BV(T)=‖ψ̃‖BV([0,2π]).

Definition 3.2. Let Y be a Banach space. An operator V ∈ B(Y ) is
said to be trigonometrically well-bounded if there is a spectral family E(·)
in Y concentrated on [0, 2π] such that V =

� ⊕
[0,2π] e

iλ dE(λ). In this case, it is
possible to arrange that E((2π)−) = I, and with this additional property the
spectral family E(·) is uniquely determined by V , and is called the spectral
decomposition of V .

The class of trigonometrically well-bounded operators was introduced
in [3], and its theory further developed in [4]. Trigonometrically well-bound-
ed operators occur naturally in fundamental structural roles, since every in-
vertible power-bounded operator on a UMD space is trigonometrically well-
bounded (Theorem (4.5) of [14]). (In particular, the operator U ∈ B(X)
in (3.1) is trigonometrically well-bounded, since X is UMD.) For a vari-
ety of natural examples of trigonometrically well-bounded operators which
are not power-bounded, see, e.g., §4 of [8]. For some further applications
of trigonometrically well-bounded operators to ergodic theory, see [2] and
[10]–[12].

The next proposition (Theorem (3.10)-(i) of [5]) provides a vector-valued
variant of Fejér’s theorem valid for trigonometrically well-bounded opera-
tors.

Definition 3.3. Given a function ψ∈BV(T), we define ψ#∈BV([0, 2π])
by writing

ψ#(t) =
1
2
{ lim
s→t+

ψ(eis) + lim
s→t−

ψ(eis)} for all t ∈ [0, 2π].

Proposition 3.4. Suppose that Y is a Banach space, and V is a trigo-
nometrically well-bounded operator on Y with spectral decomposition E(·).
Then for each ψ ∈ BV(T), and each y ∈ Y , we have, in the notation of
Definition 3.3,
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∥∥∥
n∑

j=−n
κ̂n(j)ψ̂(j)V jy −

� ⊕

[0,2π]

ψ#(t) dE(t)y
∥∥∥→ 0 as n→∞,

where {κn}∞n=0 is the Fejér kernel for T:

κn(z) =
n∑

j=−n

(
1− |j|

n+ 1

)
zj for all n ≥ 0 and all z ∈ T.

The discussion leading up to (3.3) shows that a trigonometrically well-
bounded operator V has a norm-continuous BV(T)-functional calculus ΨV :
ψ ∈ BV(T) 7→

� ⊕
[0,2π] ψ(eit) dE(t), where E(·) is the spectral decomposition

of V . The following theorem (contained in Theorem 14 of [12]) provides a
simplifying condition for the existence of values q > 1 such that ΨV can be
extended to a norm-continuous Mq(T)-functional calculus for V .

Theorem 3.5. Suppose that Y is a Banach space, V ∈ B(Y ) is trigono-
metrically well-bounded , E(·) is the spectral decomposition of V , and 1 <
β <∞. If there is a constant η such that (with notation as in Definition 3.3)

∥∥∥
� ⊕

[0,2π]

ψ#(t) dE(t)
∥∥∥ ≤ η‖ψ‖Mβ(T) for all ψ ∈ BV(T),

then whenever 1 ≤ q < β, the integral
�
[0,2π] φ(eit) dE(t) exists for each

φ ∈ Mq(T), and the mapping φ ∈ Mq(T) 7→
� ⊕
[0,2π] φ(eit) dE(t) is a homo-

morphism of the Banach algebra Mq(T) into B(Y ) such that
∥∥∥

� ⊕

[0,2π]

φ(eit) dE(t)
∥∥∥ ≤ Kη‖φ‖Mq(T) for all φ ∈Mq(T).

In order to relate the multiplier result in Theorem 2.7 to the trigonomet-
rically well-bounded operator U ∈ B(X) in (3.1), we shall also require the
following vector-valued version of transference (Theorem (2.8) of [15]).

Theorem 3.6. Let u 7→ Ru be a strongly continuous representation of a
locally compact abelian group G in a Banach space Y such that

τ ≡ sup{‖Ru‖ : u ∈ G} <∞.
Let k ∈ L1(G), and let Hk denote the bounded linear mapping of Y into Y
defined (via Bochner integration with respect to Haar measure du on G) by

Hky =
�

G

k(u)R−uy du for all y ∈ Y.

Then for 1 ≤ p <∞,

‖Hk‖ ≤ τ2Np,Y (k),(3.4)

where Np,Y (k) denotes the norm of convolution by k on Lp(G,Y ).
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Remark 3.7. If G is a locally compact abelian group with dual group Γ ,
Y is a Banach space, 1 ≤ p < ∞, and k ∈ L1(G), then it is clear that
k̂ ∈ Mp,Y (Γ ), the multiplier transform of k̂ coinciding on Lp(G,Y ) with
convolution by k. Hence we can replace Np,Y (k) in (3.4) by ‖k̂‖Mp,Y (Γ ).

The stage is now set for establishing the following theorem, which con-
stitutes the Mq(T)-functional calculus result described at the outset of this
section.

Theorem 3.8. Suppose that X belongs to the class I of Banach spaces
defined by (1.2), and U ∈ B(X) is an invertible operator such that (3.1)
holds. (It follows, in particular , that U is trigonometrically well-bounded.)
Let E(·) denote the spectral decomposition of U . Then there is a real num-
ber q0, depending only on X, satisfying 1 < q0 <∞, and such that whenever
1 ≤ q < q0, the following assertions are valid :

(i) For each φ ∈Mq(T), the spectral integral
�
[0,2π] φ(eit) dE(t) exists.

(ii) The mapping φ ∈Mq(T) 7→
� ⊕
[0,2π] φ(eit) dE(t) is a homomorphism of

the Banach algebra Mq(T) into B(X) such that
∥∥∥

� ⊕

[0,2π]

φ(eit) dE(t)
∥∥∥ ≤ c2KX,q‖φ‖Mq(T) for all φ ∈Mq(T).

Proof. Fix the number q0 furnished by Theorem 2.7. Let Q : T → C be
a trigonometric polynomial:

Q(z) ≡
∞∑

j=−∞
Q̂(j)zj ,

where Q̂(j) = 0 for all but finitely many j. In view of (3.1), we can now
specialize Theorem 3.6 to the representation R of Z in X given by

Rj = U j for all j ∈ Z,
taking k ∈ `1(Z) to be the sequence {Q∨(j)}∞j=−∞. Under these circum-
stances, the operator Hk appearing in (3.4) is Q(U), and so with the aid of
Remark 3.7, we have

‖Q(U)‖ ≤ c2‖Q‖M2,X(T).(3.5)

If ψ ∈ BV(T), and {κn}∞n=0 is the Fejér kernel for T, we infer from (3.5)
that for each n ≥ 0, the trigonometric polynomial κn ∗ ψ satisfies

∥∥∥
n∑

j=−n
κ̂n(j)ψ̂(j)U j

∥∥∥ = ‖(κn ∗ ψ)(U)‖ ≤ c2 ‖κn ∗ ψ‖M2,X(T).(3.6)

We now apply (2.1) and Theorem 2.7 to the right-hand member of (3.6) to
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get, for 1 ≤ q < q0,
∥∥∥

n∑

j=−n
κ̂n(j)ψ̂(j)U j

∥∥∥ ≤ c2KX,q‖ψ‖Mq(T).

Using this in Proposition 3.4, we see that for 1 ≤ q < q0 and ψ ∈ BV(T),
∥∥∥

� ⊕

[0,2π]

ψ#(t) dE(t)
∥∥∥ ≤ c2KX,q‖ψ‖Mq(T).(3.7)

The proof is completed by observing that if 1 ≤ q < q0, we can set β =
(q + q0)/2, apply (3.7) to β in place of q, and then appeal to Theorem 3.5.

Remark 3.9. If X ∈ I, and U0 ∈ B(X) is a trigonometrically well-
bounded operator which does not satisfy the power-boundedness assumption
described by (3.1), then the conclusions of Theorem 3.8 can fail to hold.
Specifically, (5.36) in [6] furnishes the spectral decomposition E0(·) of a
trigonometrically well-bounded operator U0 on Hilbert space such that for
some φ ∈M1(T), the spectral integral

�
[0,2π] φ(eit) dE0(t) does not exist.
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