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A space C(K) where all nontrivial complemented
subspaces have big densities

by

Piotr Koszmider (São Paulo)

Abstract. Using the method of forcing we prove that consistently there is a Banach
space (of continuous functions on a totally disconnected compact Hausdorff space) of den-
sity κ bigger than the continuum where all operators are multiplications by a continuous
function plus a weakly compact operator and which has no infinite-dimensional comple-
mented subspaces of density continuum or smaller. In particular no separable infinite-
dimensional subspace has a complemented superspace of density continuum or smaller,
consistently answering a question of Johnson and Lindenstrauss of 1974.

1. Introduction. Let us start the paper by some quotations from a
paper of Johnson and Lindenstrauss ([JL]):

. . . it was shown in [AL] that if X is WCG and Y is a separable space of X
then there is a separable Z with X ⊃ Z ⊃ Y such that Z is complemented in
X. It is well known that for non WCG spaces X this assertion may fail to be
true. For example, l∞ has no complemented infinite-dimensional and separable
subspaces. Pełczyński raised the question whether l∞ is the worst example in the
sense that whenever X ⊃ Y , with Y separable, there is a Z so that X ⊃ Z ⊃ Y ,
Z complemented in X and Z isomorphic to a subspace of l∞. Example 1 shows
that this is not the case. . . .

Let X ⊃ Y be Banach spaces, with Y separable. Does there exist a space Z
with X ⊃ Z ⊃ Y , Z complemented in X and the density character of Z is less
than or equal to that of the continuum?

Assuming special properties of the Banach space in question the positive
answer to the above question has been obtained: the results of S. Heinrich
and P. Mankiewicz ([HM]) imply it for dual spaces, S. Gul’ko ([Gu]) proved
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it for C(K) where K is extremally disconnected, and A. Plichko [Pl] for
spaces whose dual balls are weak∗ angelic. [PY] contains a recent survey on
related questions where the following general two-cardinal property CP(λ, κ)
of a Banach space X is considered: every subspace of X of density character
at most λ is contained in a complemented subspace with density character
at most κ.

The main result of this paper is that the negative answer to the question
of Johnson and Lindenstrauss is consistent (1) even in the class of Banach
spaces of continuous functions on compact Hausdorff spaces.

We prove that CP(ω, κ) may be false for any κ < 2ω1 in the presence
of the continuum hypothesis, i.e., 2ω = ω1 (abbreviated CH in the sequel)
together with an arbitrarily big value of 2ω1 on the scale of alephs, i.e.,
CP(ω, (2ω)+), CP(ω, (2ω)++) etc. are consistently false as well. Actually
our spaces C(K) have much stronger properties which may be interesting
by themselves: they are of density 2ω1 but they have no infinite-dimensional
complemented subspaces of density κ < 2ω1 , and any linear operator defined
on them is of the form gI + S, where g ∈ C(K) and S is weakly compact
(or equivalently strictly singular).

It remains open if the counterexample can be obtained in ZFC or if
CP(ω, 2ω1) holds for any Banach space. We do not even know if CP(ω, κ)
holds for all Banach spaces for any κ like for example a measurable or a
supercompact cardinal.

The construction is a stepping-up of the construction from [Ko] where
new constructions of Banach spaces with few operators and so with few
complemented subspaces were presented. It is done by forcing (see [Ku]),
however, it seems that it can be done by using CH and the principles de-
veloped in [Ve1] which are true in Gödel’s constructible universe L. This
line has a potential (see [Ve2]) in moving on the scale of beths and provid-
ing counterexamples to CP(ω, 22ω), CP(ω, 222ω

) etc. It also suggests that,
assuming CH, large cardinals (in the sense like in [Ka]) may be necessary
to prove the consistency of statements like: CH + Every Banach space of
continuous functions on a compact Hausdorff space of density ω2 has a com-
plemented subspace of density 2ω = ω1, if they are consistent at all. This is
because the failure of the principles of R. Jensen like in [De] or [Ve2] implies
the consistency of the existence of an inaccessible cardinal. On the other
hand, the usefulness of large cardinals in proofs of the consistency of the
existence of small nice substructures of big structures is well known.

(1) By saying that an assertion is consistent we mean that if the usual axiomatization
of mathematics, i.e., the axioms of ZFC are consistent, then the theory obtained by adding
the assertion to ZFC is consistent as well. This is equivalent to the statement that the
negation of the assertion cannot be proved from ZFC, unless ZFC has contradictions. See
[Ku] for more explanations.
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The following versions of Johnson and Lindenstrauss’s question emerge
in the context of the results of [Ko] and the results of this paper:

1. Is there a compact totally disconnected Hausdorff space K of arbi-
trarily large weight without infinite retracts of weight continuum (or
any weight smaller than the weight of K)?

2. Is it consistent that every Banach space (of the form C(K)) has
C(ω, 2ω)?

3. Is it true that in Gödel’s constructible universe (where GCH holds)
there are compact Hausdorff spaces K of weight ωn for n > 2 such
that C(K) has no complemented subspaces of weight less than ωn?

4. Are there (consistently) indecomposable Banach spaces (of the form
C(K)) of arbitrarily large density (bigger than the continuum)?

Note that our K cannot have any infinite retracts of weight less than or
equal to the continuum and that hereditarily indecomposable spaces have
density less than or equal to the continuum (see [PY, Prop. 3.2]).

Complete understanding of the paper requires familiarity with the
method of forcing within Chapter 7 of [Ku]. However, forcing is just used to
do the final trick. We have chosen this heuristically more complex approach
since the other, via the principles like in [Ve1], seems much more technically
complex.

As in [Ko], one can construct a Boolean algebra A as the union of an in-
creasing sequence (Aα)α<2ω of its subalgebras. If K denotes its Stone space,
then C(K), especially under CH, has remarkable properties, in particular ev-
ery projection in C(K) is a restriction to a clopen set plus a weakly compact
operator. This implies that infinite-dimensional complemented subspaces of
C(K) have densities equal to weights of clopen sets. Here, we construct a
Boolean algebra A with similar properties where the weights of clopen sets
are bigger than the continuum, i.e., the densities of infinite-dimensional com-
plemented subspaces are bigger than the continuum. Of course the algebra
has to have cardinality bigger than the continuum, but constructing it as
the union of an increasing sequence (A)α<κ of its subalgebras for κ > 2ω is
not the way we choose, since our techniques of [Ko] similar to those of [Fe],
[Ha] or [Ta] do not work for a subalgebra of cardinality continuum. Instead
we construct the algebra as the union of a directed system (Ap)p∈G, where
G is a partial order isomorphic to a certain family of countable subsets of
κ > 2ω with the inclusion as the order. That is, we replace the countable
ordinals (in the case of 2ω = ω1) which are also countable sets of ordinals
(less than the ordinal) by general countable sets of ordinals of a cardinal
bigger than 2ω. This allows us to construct a big structure (of size bigger
than 2ω) without going through uncountable intermediate stages.
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The construction has two stages. In the first (Section 2) we construct a
partial order of countable algebras (Ap)p∈P with some associated objects;
not all algebras of this order are compatible, however some situations when
they are compatible are indicated (Lemma 3). Section 2 also contains some
facts about this partial order needed later. Then (Section 3) we use the
method of forcing to obtain a G ⊆ P which gives rise to a directed system
of compatible algebras which can be amalgamated into one Boolean algebra
with the required properties. Section 4 contains topological and analytic con-
sequences of the construction. Thus, the understanding of forcing is needed
just for verifying the short Section 3, however an extra effort is made to make
the statements of this section understandable to mathematicians unfamiliar
with forcing.

The notation is intended to be standard, some doubtful points are f |A
for the restriction of f to A and f [A] for the image of A under f , and N for
the set of natural numbers.

We will consider a classical chain of inter-related structures: a Boolean
algebra A, its Stone space K, the Banach space C(K) of continuous func-
tions on K with the supremum norm, its dual, and the Banach space M(K)
of Radon measures on K with the variation norm. Boolean algebras will be
denoted by A, B, etc. The Boolean algebraic operations will be denoted ∨,
∧, −, the complement by A−1, also A1 = A; the minimal and the maximal
elements will be denoted by 0 and 1 respectively, ≤ denotes the Boolean
order. Most of the time the Boolean algebras we consider are subalgebras of
the completion of a free algebra, so they are not fields of sets, but we will
say that a family of their elements is pairwise disjoint when the meet of any
two elements is 0 of the algebra. The subalgebra generated by a set X is
denoted by 〈X〉.

The Stone space K of a Boolean algebra A consists of all ultrafilters and
its basis consists of sets of the form

[A] := {u ∈ K : A ∈ u} for A ∈ A.
Thus x ∈ [A] is equivalent to A ∈ x. Note that we always have identities like
[A] ∪ [B] = [A ∨ B], but in general

⋃
n∈N [An] 6= [

∨
n∈N An] since the latter

set is equal to
⋃
n∈N [An] if the supremum exists, which will be used quite

often. Books like [Si] can be consulted regarding Boolean algebras and the
Stone duality.

The terminology concerning Banach spaces of continuous functions and
linear operators follows [Se], [DS] and [Di]. Recall that a Radon measure on
K is a signed, Borel, scalar-valued, countably additive and regular measure.
If K is the Stone space of a Boolean algebra A, then there is a unique
Radon measure which extends a finitely additive bounded measure on the
algebra A; the latter is called a bounded measure on the algebra A. The
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variation of a Radon measure µ is |µ|(K), where |µ(B)| for a Borel set
B ⊆ K is defined by

|µ|(B) = sup
{∑

A∈F
|µ(A)| : F is a pairwise disjoint

finite family of Borel subsets of B
}
.

It is well known that Radon measures on compact spaces have finite varia-
tion, that |µ| is a Radon measure assuming nonnegative values (and hence
monotone) and that |µ| is the norm of a continuous linear functional on
C(K) given by

�
f dµ for all f ∈ C(K) (see [Se]). The regularity condition

for a signed measure is that for any Borel A ⊆ K and for any ε > 0 there
are compact F ⊆ A and open U ⊇ A such that |µ|(U − F ) < ε.

The Banach space of Radon measures with the variation norm will be
denoted by M(K). The terminology concerning partial orders is taken from
forcing theory and follows [Ku]; another classical textbook is [Je]. In par-
ticular, incompatible conditions are two elements p, q of a partial order such
that there is no r ≤ p, q.

2. The partial order of countable approximations. Throughout
this paper we are assuming the continuum hypothesis CH. We may also
assume that 2ω1 = κ for a previously chosen cardinal κ of cofinality bigger
than ω1. The consistency of such an assumption was proved by P. Cohen
(see [Ku]). For convenience, we will be assuming that κ is a regular cardinal.
We will be using a fact in ZFC, due to F. Hausdorff ([H]), that for any
cardinal λ there is a family of 2λ independent sets, i.e., we need a family
(Fξ : ξ < κ) of subsets of ω1 such that

(∗) F ε1ξ1 ∩ · · · ∩ F
εn
ξn
6= ∅

for any ξ1 < · · · < ξn < κ and εi ∈ {1,−1} and 1 ≤ i ≤ n. In particular
we will be using the free Boolean algebra generated by an independent set
of generators of cardinality κ (which is the algebra of clopen sets of 2κ

with the Tikhonov topology). By the above facts we may conclude that
(under our assumption) the Stone space of such an algebra has a dense set
of ultrafilters of cardinality ω1. We will be working with the algebra A,
the completion of the free Boolean algebra with κ generators (Fξ : ξ < κ),
which by the above has a dense set of cardinality ω1 in its Stone space whose
points (ultrafilters) will be denoted by xξ for ξ < ω1. However, we should no
longer use the interpretation of Fξ’s as subsets of ω1, because the infinitary
operations in A do not coincide with the infinitary intersections or unions
in ℘(ω1). Two more facts about A which will be used are that A does not
have a countable dense set, since 2ω < κ, nor an uncountable set of pairwise
disjoint elements; both facts follow from the topological interpretation of the
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free algebra as the algebra of clopen sets on 2κ. This implies, in particular,
that each element of A is the supremum of a countable family of Boolean
combinations like in (∗).

We define a partial order P whose elements will be called conditions and
will be of the form p = (Ap,Pp), where

(a) Ap is a countable subalgebra of A,
(b) Pp is a countable set of pairs of the form (L,R), where L and R are

disjoint countable subsets of ω1,
(c) for every (L,R) ∈ Pp the set {xξ ∩ Ap : ξ ∈ L ∪ R} is relatively

discrete in the Stone space of Ap,
(d) {xξ ∩ Ap : ξ ∈ L} ∩ {xξ ∩ Ap : ξ ∈ R} 6= ∅

for every (L,R) ∈ Pp, where the closures are taken in the Stone space
of Ap.

The elements of Pp will be called promises. One can express the property of
being a condition without referring to the Stone space of Ap.

Lemma 1. (Ap,Pp) is a condition of P if and only if (a), (b) are satisfied
and

(c′) for every (L,R) ∈ Pp there is an antichain (Aξ : ξ ∈ L ∪ R) in Ap
such that Aξ ∈ xη if and only if ξ = η,

(d′) there is no element A of Ap such that A ∈ xξ if ξ ∈ L and A 6∈ xξ if
ξ ∈ R.

An element A like in (d′) is said to separate L and R.

Proof. This follows from the fact that Stone spaces are compact and
totally disconnected.

The order is defined by p ≤ q if and only if Ap ⊇ Aq and Pp ⊇ Pq. Note
that bigger in the combinatorial sense means smaller in the order sense, but
we will call it stronger, following an established convention in forcing which
has a good justification (see [Ku]).

Lemma 2. P is σ-closed , i.e., any decreasing countable sequence of con-
ditions of P has a lower bound in P .

Proof. Assume that pn’s are in P and pn+1 ≤ pn for all n ∈ N . Define
p = (Ap,Pp) by Ap =

⋃
n∈N Apn and Pp =

⋃
n∈N Ppn . Clearly Ap is a

countable subalgebra of A bigger than all subalgebras Apn . By Lemma 1
the separation of any (L,R) ∈ Ppn would be witnessed by some element
of Apm for some m, which would contradict the fact that (Apk ,Ppk) is a
condition of P for k = max(n,m).

Lemma 3. P satisfies the ω2-chain condition, i.e., there is no pairwise
incompatible set of conditions of P of cardinality ω2.
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Proof. Suppose that (pξ : ξ < ω2) is a sequence of distinct elements of P .
By CH we may assume without loss of generality that Ppξ = P for some
P and all ξ < ω2 and that L ∪ R ⊆ α for some α < ω1 for all (L,R) ∈ P.
Further thinning out the original sequence and using CH we may assume
without loss of generality that for any ξ < ξ′ < ω2 for a set X ⊆ α the
existence of an A ∈ Apξ such that A ∈ xη if and only if η ∈ X is equivalent
to the existence of an A′ ∈ Apξ′ such that A′ ∈ xη if and only if η ∈ X.
Now let us see that p is a stronger condition than two pξ and pξ′ , where Ap
is the Boolean algebra generated by Apξ and Apξ′ , and Pp = P is as above.

For this we need to check condition (d′). But all elements of Ap are of
the form

∨
i≤n(Ai ∧ Bi), where Ai ∈ Apξ and Bi ∈ Apξ′ , so by the above

obtained properties of the sequence of our conditions we have
{
η ∈ α :

∨

i≤n
(Ai ∧Bi) ∈ xη

}
=
{
η ∈ α :

∨

i≤n
(Ai ∧ A′i) ∈ xη

}

=
{
η ∈ α :

∨

i≤n
(B′i ∧Bi) ∈ xη

}

for some A′i ∈ Apξ and B′i ∈ Apξ′ . So, among the above sets there cannot
appear a set which separates L and R for some (L,R) from Pp = Ppξ = Pp′ξ .
This shows that the original sequence has two (actually ω2) compatible
conditions, completing the proof of the lemma.

The remaining lemmas of this section are “density lemmas”, that is, they
show that for any condition p ∈ P , there is a stronger condition q ≤ p with
some interesting properties. q is going to “force” the final construction to
have the interesting property. Recall that a subset D of a partial order P ,
in forcing theory, is called dense if and only if for every p ∈ P there is d ∈ D
satisfying d ≤ p.

Lemma 4. Suppose that S ⊆ κ with |S| < κ, p ∈ P and 0 6= A ∈ Ap.
Then there is q ≤ p and 0 6= B ∈ Aq with B ≤ A such that B = F ε1ξ1 ∧
· · · ∧ F εnξn for some ξ1 < · · · < ξn < κ satisfying {ξ1, . . . , ξn} 6⊆ S, for some
εi ∈ {1,−1}, 1 ≤ i ≤ n.

Proof. [A] is not separable, hence there is a B ≤ A such that [B] is
disjoint from the closure of {xξ : ξ ∈ L ∪ R, (L,R) ∈ Pp}. By taking
a smaller B we can assume that it is a Boolean combination as in the
statement of the lemma.

It is clear that q = (〈Ap ∪ {B}〉,Pp) is a condition of P since all the
promises from Pp are preserved by the choice of B.

Lemma 5. Suppose that B is a countable subalgebra of A and that both
(xξk ∩ B)k∈N and (xηk ∩ B)k∈N are sequences of distinct elements which
converge to one point in the Stone space of B. Suppose that C is an element
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of A such that there are infinitely many k’s satisfying Ak ∈ (xξk ∩ B) and
Ak ≤ C as well as there are infinitely many k’s satisfying Bk ∈ (xηk ∩ B)
and Bk ≤ C. Then in the Stone space of 〈B ∪ {C}〉 we have

{xξk ∩ 〈B ∪ {C}〉 : k ∈ N} ∩ {xηk ∩ 〈B ∪ {C}〉 : k ∈ N} 6= ∅.
Proof. As in Lemma 1, it is enough to see that there is no element in

〈B∪{C}〉 which separates {xξk ∩〈B∪{C}〉 : k ∈ N} from {xηk ∩〈B∪{C}〉 :
k ∈ N}. But any element of 〈B∪{C}〉 is of the formG = (D∧C)∨(E−C)∨F ,
where D,E,F are pairwise disjoint elements of B, i.e., only one of them can
belong to the limit point of the sequences (xξk ∩ B)k∈N and (xηk ∩ B)k∈N ,
i.e., either G does not belong to all but finitely many terms of the sequences
or one and only one of the elements D,E,F belongs to all but finitely many
terms of the sequences.

Considering the three cases and the fact that C belongs to infinitely many
points xξk ∩〈B∪{C}〉 as well as to infinitely many points xηk ∩〈B∪{C}〉 we
conclude that G cannot separate the sequences, which completes the proof
of the lemma.

Note that the algebras 〈B ∪{C}〉 and 〈B ∪{1−C}〉 are the same, so the
condition Ak ≤ C for infinitely many k’s and Bk ≤ C for infinitely many
k’s may be replaced in Lemma 5 by the condition that requires Ak ∧C = 0
for infinitely many k’s and Bk ∧ C = 0 for infinitely many k’s.

Lemma 6. Suppose p ∈ P , {xαn ∩ Ap : n ∈ N} is relatively discrete
in the Stone space of Ap and An ∈ Ap are pairwise disjoint and such that
Am 6∈ xαn for all n,m ∈ N and there are at most finitely many ξ’s in
{L ∪R : (L,R)∈Pp} ∪ {αn : n ∈ N} satisfying

xξ ∩ Ap ∈
⋃

n∈N
[An]−

⋃

n∈N
[An],

where the closures and unions are taken in the Stone space of Ap. Then
there is an infinite M ⊆ N such that for every infinite M ′ ⊆M and for any
two pairwise disjoint infinite L,R ⊆ {αn : n ∈ N} satisfying

{xαn ∩ Ap : αn ∈ L} ∩ {xαn ∩ Ap : αn ∈ R} 6= ∅,
an element

qM ′ =
(〈
Ap ∪

{ ∨

m∈M ′
Am

}〉
,Pp ∪ {L,R}

)

is a condition of P .

Proof. The only problem to worry about is keeping the promises from
Pp ∪ {L,R}. As Ap is countable, the Stone space of Ap is metrizable, hence
the condition (d) translates into the existence of points xm of the Stone space
of Ap and pairs of convergent sequences of distinct elements xmk , y

m
k → xm,
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um, vm → w, where xmk ∈ {xξ ∩ Ap : ξ ∈ Lm}, ymk ∈ {xξ ∩ Ap : ξ ∈ Rm},
Pp={(Lm, Rm) : m ∈ N}, {um : m ∈ N} ⊆ {xξ : ξ ∈ L} and {vm : m ∈ N}
⊆ {xξ : ξ ∈ R}.

Since {xαn ∩ Ap : n ∈ N} is relatively discrete,

{xαn ∩ Ap : αn ∈ L− F} ∩ {xαn ∩ Ap : αn ∈ R− F} 6= ∅
holds for any finite F , and so without loss of generality we may assume that
no xαn belongs to ⋃

n∈N
[An]−

⋃

n∈N
[An].

By the fact that Am 6∈ xαn for all n,m ∈ N , this means that there are
A′n ∈ Ap ∩ xαn satisfying

A′n ∧
∨

m∈N
Am = 0,

which by the observation made after Lemma 5 and by Lemma 5 means that
the promise (L,R) is always kept. Thus we will only deal with the remaining
promises.

If xm 6∈
⋃
n∈N [An] − ⋃n∈N [An], then there is A ∈ Ap such that A

belongs to eventually all ultrafilters xmk and ymk and A ≤ ∨
m∈M ′ Am or

A ∧∨m∈M ′ Am = 0 for any M ′ ⊆ N . This means, by Lemma 5, that there
is no element of the algebra 〈Ap ∪ {

∨
m∈M ′ Am}〉 which separates Lm and

Rm for such an m.
Thus, by the above and the assumption we may assume without loss of

generality that

xm ∈
⋃

n∈N
[An]−

⋃

n∈N
[An],

which implies that each of our convergent sequences may have at most
finitely many points in any fixed set [An] and

xmk , y
m
k 6∈

⋃

n∈N
[An]−

⋃

n∈N
[An]

for all m,k ∈ N . For m ∈ N define

TmL = {n ∈ N : ∃k ∈ N, xmk ∈ [An]},
TmR = {n ∈ N : ∃k ∈ N, ymk ∈ [An]}.

Let M be any infinite subset of N whose complement intersects in an infinite
set each infinite TmL and each infinite TmR . It is easy to obtain such a set
since there are only countably many TmL ’s and TmR ’s. Any infinite subset M ′

of M has the same property. This means that for every m there are infinitely
many k’s such that there is a Bmk ∈ xmk satisfying Bmk ≤ 1 − ∨m∈M ′ Am
and there are infinitely many k’s such that there is a Cmk ∈ ymk satisfying
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Cmk ≤ 1−∨m∈M ′ Am. This means by Lemma 5 that the promises (Lm, Rm)
are preserved in AqM′ , i.e., qM ′ is a condition.

The hypothesis of the following lemma mentions bounded measures on a
Boolean algebra. The statement of the lemma mentions the variation of the
measures, which is usually defined for Radon measures. One needs to use
the fact that there is a one-to-one correspondence between these concepts,
i.e., we can extend the measure on the Boolean algebra to the unique Radon
measure on the Borel sets and use the variation for this measure. However
one can also define variation for a bounded measure (see [Se, 17.2.1]) on a
Boolean algebra which by the regularity condition coincides with the varia-
tion of its Radon extension.

Lemma 7. Suppose that p ∈ P and that we are given

(a) a sequence of pairwise disjoint elements (An : n ∈ N) of Ap,
(b) a sequence (αn : n ∈ N) ⊆ ω1 such that Am 6∈ xαn for all n,m ∈ N ,

and (xαn ∩ Ap)n∈N is relatively discrete,
(c) an ε > 0,
(d) a sequence (µn : n ∈ N) of bounded measures on the algebra Ap such

that |µn(An)| > ε for each n ∈ N .

Then there are q ≤ p, δ > 0, infinite b ⊆ a ⊆ N and elements A′n ≤ An of
Ap for n ∈ a such that

(e) the supremum
∨{A′n : n ∈ b} belongs to Aq,

(f) |µn(A′n)| > δ and
∑{|µn|(A′m) : m 6= n, m ∈ a} < δ/3 for all n ∈ a,

(g) ({αn : n ∈ b}, {αn : n ∈ a− b}) ∈ Pq.
Proof. Let {ξn : n ∈ N} =

⋃{L∪R : (L,R) ∈ Pp}∪{αn : n ∈ N}. First
we will be working in the Stone space of Ap. We need to thin out the An’s
to A′n’s for n in some infinite subset N1 ⊆ N so that

(1) A′n ⊆ An, |µn(A′n)| > δ′ for some δ′ > 0 and n ∈ N1 and either
(2)

⋃
n∈N1

A′n −
⋃
n∈N1

A′n is one point in the Stone space of Ap, or

(3) none of the points xξn ∩ Ap for n ∈ N is in
⋃
n∈N1

A′n −
⋃
n∈N1

A′n.

In either case (2) or (3) the hypothesis of Lemma 6 will be satisfied.

Case 1: There is δ′ > 0 and a point x in the Stone space of Ap such that
for each clopen neighbourhood A of x and for every m ∈ N there is k > m
such that |µk|(Ak ∧ A) > δ′. As An’s are pairwise disjoint we may assume
without loss of generality that x does not belong to any of them. Since
the neighbourhood basis at x is countable we can construct by induction a
pairwise disjoint sequence (A′n)n∈N1 of clopen sets of the form Ak ∧ A as
above which do not contain x, such that any neighbourhood of x includes
almost all sets A′n, i.e., (2) is satisfied and A′n ⊆ An and |µn|(A′n) > δ′ for
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n ∈ N1. Applying [Se, 17.2.2] and the regularity of the measures we may
assume without loss of generality that |µn(A′n)| > δ′ for n ∈M .

Case 2: Case 1 does not hold. For every n ∈ N and for every δ′ > 0
there is an m(n, δ′) ∈ N and A(n, δ′) in xξn ∩ Ap such that

(∗) |µk|(Ak ∧ A(n, δ′)) < δ′

for k > m(n, δ′). Thus, one can choose by induction a strictly increasing
sequence of integers (kn)n∈N such that kn > m(j, ε/2j+2) for all j < n.
Consider

A′kn = Akn −
∨
{A(j, ε/2j+2) : j < n}.

By (∗) we have |µkn |(Akn ∧ A(j, ε/2j+2)) < ε/2j+2 for j < n and so

(∗∗) |µkn |(A′kn) > ε/2 = δ.

Now, note that A(n, ε/2n+2) is disjoint from A′ki for i > n and hence
xξn ∩Ap’s do not belong to the closure of the set as in (3), where N1 = {kn :
n ∈ N} as required in (3).

Thus in both cases we have (1) and either (2) or (3). Now we apply
Rosenthal’s lemma (see [Ro, Lemma 1.1]; for the stronger version that we
are using see [Di, p. 82]) to find an infinite N2 ⊆ N1 such that

(∗∗∗)
∑
{|µn|(A′m) : n 6= m, m ∈ N2} < δ/3.

Finally, note that (2) or (3) imply that the hypothesis of Lemma 6 is satis-
fied. Let M be as in Lemma 6.

For every infinite a ⊆ M there is an infinite b ⊆ a such that the set
{xαn ∩ Ap : n ∈ b} intersects {xαn ∩ Ap : n ∈ a− b}, where the closures are
taken in the Stone space of Ap. This follows from the fact that the topolog-
ical weight of the Stone space of Ap is countable, and in a compact space
separations of closed sets can be done by finitely many basic open sets. De-
fine L = {αn : n ∈ b} and R = {αn : n ∈ a − b} for such a and b. By
Lemma 6,

q =
(〈
Ap ∪

{ ∨

m∈b
A′m
}〉
,Pp ∪ {(L,R)}

)

is a condition of P , by the construction (e), (g) hold, and (f) holds by (∗∗)
and (∗∗∗), which completes the proof of the lemma.

Lemma 8. Let p ∈ P and An and Bn be elements of Ap for n ∈ N such
that

(a) An ∩Bm = ∅ for n,m ∈ N ,
(b)

⋃{[An] : n ∈ N} ∩⋃{[Bn] : n ∈ N} 6= ∅.
Then there is q ≤ p with (L1, R1), (L2, R2) ∈ Pq and an A ∈ Aq such that

(c) ∀α ∈ L1 ∪ L2 ∃n ∈ N An ∈ xα ∩ Ap,
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(d) ∀α ∈ R1 ∪R2 ∃n ∈ N Bn ∈ xα ∩ Ap,
(e) ∀α ∈ L1 ∪R1 ∀β ∈ L2 ∪R2 A ∈ xα, A 6∈ xβ.

Proof. Since the Stone space of Ap is metrizable, there are distinct ξm
and ηm in ω1 such that both (xξm ∩Ap)m∈N and (xηm ∩Ap)m∈N converge
to a single point x of the Stone space of Ap and for each m ∈ N there are
nm, n

′
m ∈ N such that Anm ∈ xξm and Bn′m ∈ xηm .

Since the neighbourhood basis at x is countable, one can find pairwise
disjoint A′m and B′m such that A′m ∈ xξm and B′m ∈ xηm and A′m ⊆ Anm
and B′m ⊆ Bn′m and every neighbourhood of x contains all but finitely many
A′m and B′m. The latter implies that

⋃

m∈N
[A′m ∨B′m]−

⋃

m∈N
[A′m ∨B′m]

is just the single point x. Hence, by Lemma 6, there is an infinite M ′ ⊆ 2N
such that

qM ′ =
(〈
Ap ∪

{ ∨

m∈M ′
(A′m ∨B′m)

}〉
,Pp

)

is a condition. Note that by Lemma 5,

q =
(〈
Ap ∪

{ ∨

m∈M ′
(A′m ∨B′m)

}〉
,Pp ∪ {(L1, R1), (L2, R2)}

)

is a condition, where L1 = {ξm : m ∈ M ′}, R1 = {ηm : m ∈ M ′}, L2 =
{ξm : m ∈ N − 2N}, R2 = {ηm : m ∈ N − 2N}.

Now A =
∨
m∈M ′(A

′
m ∨B′m)} satisfies the assertion of the lemma.

3. The generic construction. By Lemmas 2 and 3, forcing with P
does not collapse cardinals and does not add any new countable subsets of
the universe (see [Ku]), i.e., the ground set-theoretic universe V and the
generic extension V [G] have the same countable sets of V and the same
cardinals.

Let G be a P -generic filter over a set-theoretic universe V . That is, for
any two p, p′ ∈ G we have q ≤ p, p′ for some q ∈ G, and G ∩ D 6= ∅ for
any dense set D ⊆ P in the ground set-theoretic universe V . In the generic
extension V [G] we consider the Boolean algebra A∗ =

⋃{Ap : p ∈ G}
generated in A. The fact that for any finite collection of elements of a generic
filter G there is a stronger condition in G implies that A∗ is a Boolean
algebra. Note that A is still a completion of the free Boolean algebra with
κ generators, since it is a c.c.c. algebra and there are no new countable sets
of A in V [G].

Lemma 9. The algebra A has the following properties:

(A) Below any 0 6= A ∈ A∗ there are κ distinct elements of A.



A space C(K) 121

(B) Given

(a) a sequence of pairwise disjoint elements (An : n ∈ N) of A∗,
(b) a sequence (αn : n ∈ N) ⊆ ω1 such that Am 6∈ xαn for all n,m ∈ N ,

and {xαn : n ∈ N} is relatively discrete,
(c) an ε > 0,
(d) a sequence (µn : n ∈ N) of bounded measures on the algebra A∗

such that |µn(An)| > ε for each n ∈ N ,

there are δ > 0, infinite b ⊆ a ⊆ N and elements A′n ≤ An of A∗ for
n ∈ a such that

(e) the supremum A =
∨{A′n : n ∈ b} exists in A∗,

(f) |µn(A′n)| > δ and
∑{|µn|(A′m) : m 6= n, m ∈ a} < δ/3 for all

n ∈ a,
(g) there is no B in A∗ such that n ∈ b implies B ∈ xαn and n ∈ a− b

implies B 6∈ xαn .

(C) If U1, U2 are two open subsets of the Stone space of A, then U1∩U2 = ∅
or U1 ∩ U2 has at least two points.

Proof. Suppose that (A) is false; sinceA and so A∗ are c.c.c., this implies
that there is a condition p ∈ P which forces that 0 6= A ∈ A∗ and that the
family of elements of A∗ smaller than A is included in the completion of the
algebra generated by {Fξ : ξ ∈ S} for some S ⊆ κ of cardinality less than κ.
Since P is ω2-c.c. and κ is regular we may assume that S is in the ground
model.

Lemma 4 implies that there is a q ≤ p which forces that there is an
element in A∗ smaller than A which is not in the completion of the algebra
generated by {Fξ : ξ ∈ S}, a contradiction.

To get (B) work in V and fix p ∈ P . Let Ȧn, µ̇n, ε̇ be P -names for the
objects mentioned in items (a)–(d) of (B). We will produce q ≤ p which will
force (e)–(g) of the lemma. Since P forces that Ȧn’s are in Ȧ∗, there are
An’s and a strictly decreasing sequence (pn)n∈N of conditions of P such that
pn ‖−Ȧn = Ǎn. We may assume without loss of generality that An ∈ Apn .
By Lemma 2 there is p stronger than all pn’s. Note that An’s are in Ap. We
can also assume that the value of ε̇ > 0 is decided as no reals are added by P .
Using a procedure as above we may construct another decreasing sequence
of pn’s such that for any n ∈ N and A ∈ Apm there is a k ∈ N such that
the value of µ̇n(A) is decided by pk. Now for p such that Ap =

⋃
n∈N Apn

there exist functions µn : Ap → R such that

∀A ∈ Ap p ‖−µ̌n(A) = µ̇n(A).

This in particular implies that µn’s are measures on Ap. Now Lemma 7
implies that there is q ≤ p which forces (e)–(g).
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To get (C), assume that U1∩U2 6= ∅ and note that by the c.c.c. of A∗ we
have countable sequences {An : n ∈ N} and {Bn : n ∈ N} of elements of A∗
such that [An] ⊆ U1 and [Bn] ⊆ U2 and

⋃{[An] : n ∈ N}∩⋃{[Bn] : n ∈ N}
6= ∅. Using the procedure like in the proof of (B) one can assume without loss
of generality that there is a condition p ∈ P and sequences {An : n ∈ N} and
{Bn : n ∈ N} of elements ofAp with

⋃{[An] : n ∈ N}∩⋃{[Bn] : n ∈ N} 6= ∅
in the Stone space of Ap such that p forces that An ⊆ U1 and Bn ⊆ U2.
Lemma 8 implies that there is q ≤ p which forces that there are at least two
points in U1 ∩U2, one in A and the other in the complement of A, where A
is as in Lemma 8.

4. Consequences of Boolean algebraic properties of A∗. In this
section K stands for the Stone space of the algebra A∗ constructed in the
previous section. All the properties of the algebra used in this section are
stated in Lemma 9. All the arguments of this section are minor modifications
of the arguments from [Ko]. When possible we will provide the exact refer-
ence, otherwise we will repeat an analogous argument for the convenience
of the reader.

Proposition 10. The Stone space K of the algebra A∗ has the following
properties:

(a) K has no convergent sequences.
(b) Nonempty open sets and infinite closed sets in K are uncountable.
(c) If A is as in the statement of Lemma 9(e) we may assume that µn(A)

=
∑
m∈b µn(A′m) for each n ∈ a.

(d) C(K) is a Grothendieck space.
(e) If x is a point of K then K − {x} is C∗-embedded in K.

Proof. For (a) suppose (xn : n ∈ N) is a convergent sequence in K.
Consider the Dirac measures µn concentrated at xn, An some sets around
xn, and (αn : n ∈ N) satisfying the hypothesis of Lemma 9. We have
ε = 1/2. Now let A and b ⊆ a ⊆ N be as in (e)–(g) of Lemma 9. We
conclude that A ∈ xn if n ∈ b and A 6∈ xn if n ∈ b − a. So (xn : n ∈ N) is
not convergent.

Clause (b) is a consequence of a general fact that compact countable
spaces are metrizable and so have convergent sequences if they are infinite.
Since by Lemma 9(C), K has no isolated points, and compact spaces are
normal, open sets contain infinite closed sets and so they are uncountable.

To prove (c) let {Nξ : ξ < ω1} be a family of infinite subsets of N such
that Nξ ∩ Nξ′ is finite whenever ξ 6= ξ′. We may apply Lemma 9(a)–(g)
to {An : n ∈ N} for N = Nξ for each ξ < ω1, obtaining bξ ⊆ aξ ⊆ Nξ,
Aξn and Aξ like in Lemma 9(b). It will be sufficient to note that we have
(c) for one of these families {Aξn : n ∈ bξ}. Note that for any sequence of
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pairwise disjoint elements Am the set
⋃
m∈N [Am] − ⋃m∈N [Am] is exactly

the set of all those points of K every neighbourhood of which intersects
infinitely many sets [Am]. In particular removing from the family of Am’s
finitely many elements does not affect the set. Consequently,
( ⋃

m∈bξ
[Aξm]−

⋃

m∈bξ
[Aξm]

)
∩
( ⋃

m∈bξ′
[Aξ

′
m]−

⋃

m∈bξ′
[Aξ

′
m]
)

=
( ⋃

m∈bξ−bξ′
[Aξm]−

⋃

m∈bξ−bξ′
[Aξm]

)
∩
( ⋃

m∈bξ′−bξ
[Aξ

′
m]−

⋃

m∈bξ′−bξ
[Aξ

′
m]
)

⊆
(
Aξ −

⋃

m∈bξ∩bξ′
[Am]

)
∩
(
Aξ′ −

⋃

m∈bξ∩bξ′
[Am]

)
= ∅.

So the sets above are pairwise disjoint, and hence one of them is null with
respect to all the measures. For this set we have

µn(Aξ) = µn

( ∨

m∈bξ
Aξm

)
= µn

( ⋃

m∈bξ
[Aξm]

)

=
∑

m∈bξ
µn(Aξm) + µn

( ⋃

m∈bξ
[Aξm]−

⋃

m∈bξ
[Aξm]

)
=
∑

m∈bξ
µn(Aξm),

which completes the proof of (c).
To see that C(K) is Grothendieck, i.e., that convergent sequences of

Radon measures in the (weak∗) topology induced by C(K) are also conver-
gent in the (weak) topology induced by the dual to the space of measures,
assume that (µn)n∈N is not weakly convergent but is weak∗ convergent to µ.

If (µn)n∈N were relatively weakly compact, but not a convergent se-
quence, by the Eberlein–Šmulian theorem it would be relatively sequentially
weakly compact and there would exist disjoint infinite c0, c1 ⊆ N such that
(µn)n∈ci would be weakly convergent to νi for i ∈ {0, 1}, where ν0 6= ν1.
But weakly convergent sequences are weak∗ convergent, a contradiction.

So we may assume that (µn)n∈N is not relatively weakly compact; thus
as a bounded sequence (applying the principle of uniform boundedness,
since it is weak∗ convergent), by the Dieudonné–Grothendieck theorem ([Di,
VII.14]) without loss of generality we may assume that there is a sequence
(An)n∈N of pairwise disjoint clopen subsets of K such that |µn(An)| > ε.
The points xαn could be chosen artificially so that the hypothesis of Lem-
ma 9(B) is satisfied. Let A ∈ A∗ be as in Lemma 9(B)(e); we may assume
that A satisfies (c) of Proposition 10. By Lemma 9(B)(f), χA separates
(µn)n∈b from (µn)n∈a−b in the weak∗ topology, i.e., (µn)n∈N is not conver-
gent in the weak∗ topology.

To prove (e) recall that X ⊆ Y is C∗-embedded in Y if and only if any
bounded continuous function on X extends to a continuous function on X.
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It is easy to see that if K − {x} is not C∗-embedded in K, then there is a
continuous function f : K − {x} → [0, 1] and reals 0 < r1 < r2 < 1 such
that x ∈ f−1[[0, r1)] ∩ f−1[(r2, 1]]. But x can be the unique point of this
intersection, which contradicts Lemma 9(C).

Definition 11 ([Ko]). Suppose that K is a totally disconnected com-
pact space. An operator T : C(K)→ C(K) is called a weak multiplier if and
only if for every sequence ([An] : n ∈ N) of pairwise disjoint clopen subsets
of K we have

lim
n→∞

‖T (χ[An])|(K − [An])‖ = 0.

Lemma 12. Every operator T : C(K)→ C(K) is a weak multiplier.

Proof. This is very much like Lemma 3.2 of [Ko]. Suppose that a bounded
linear operator T : C(K) → C(K) is not a weak multiplier, i.e., that there
exist a bounded sequence of pairwise disjoint clopen sets ([An] : n ∈ N)
such that there is ε > 0 and points xn ∈ K such that xn 6∈ [An] and
|T (χ[An])(xn)| > ε for infinitely many n. Since finite sums of the character-
istic functions of [An]’s are of norm one, if xn were constant for infinitely
many n, we would get a contradiction with the fact that T is bounded.
Thus, we may assume without loss of generality that |T (χ[An])(xn)| > ε
holds for all n ∈ N and that xn = xξn for some sequence (ξn : n ∈ N) of
distinct countable ordinals, since {xξ : ξ ∈ ω1} is dense in K. By going to a
subsequence we can assume that (xξn : n ∈ N) is relatively discrete.

We may also assume without loss of generality that the points xξn are
not in the sets [Am] for n,m ∈ N : if there is an n0 such that xξn ∈ [An0 ]
for n’s from an infinite set M ⊆ N , we may consider M − {n0} and use the
disjointness of An’s. Otherwise, one can construct by induction an infinite
set of indices as required. Thus (An : n ∈ N) and (xξn : n ∈ N) satisfy (a)
and (b) of Lemma 9.

Let µn be the Radon measure on K which corresponds (see [Se, §18]),
by the Riesz representation theorem, to the linear bounded functional φn
on C(K) given by the relation

φn(f) = T (f)(xξn) = �
K

f dµn

which holds for all f ∈ C(K), i.e., µn = T ∗(δxξn ). In particular, we have
|µn([An])| > ε. We will be abusing notation and will use the same symbol
µn for the measure on the Boolean algebra defined by µn(A) = µn([A]) for
any A ∈ A∗. Thus (B)(c), (d) of Lemma 9 are satisfied as well. So we may
apply the lemma obtaining b ⊆ a ⊆ N , δ > 0 and a supremum A and An’s
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like in Lemma 9. By Proposition 10(c) we may assume that

(∗) µn(A) =
∑

m∈b
µn(Am).

Since [A] is clopen, χ[A] is continuous; let us analyze T (χ[A]). By (∗) and
Lemma 9(B)(f) we conclude that if n ∈ b we have

|T (χ[A])(xξn)| = |µn(A)| =
∣∣∣µn(An) +

∑
{µn(Am) : m 6= n, m ∈ b}

∣∣∣
≥ ε− ε/3 = 2ε/3.

But if n ∈ a− b, we have

|T (χ[A])(xξn)| = |µn(A)| =
∣∣∣
∑
{µn(Am) : m ∈ b}

∣∣∣ ≤ ε/3.

Since T (χ[A]) is continuous, we have that the closures of the sets {xξn :
n ∈ b} and {xξn : a−b} are disjoint, hence can be separated by a clopen set;
but this contradicts Lemma 9(B)(g) and completes the proof of Lemma 12.

Corollary 13. Any operator on C(K) is of the form gI + S, where
g ∈ C(K) and S is weakly compact or equivalently strictly singular.

Proof. It is proved in [Ko, 2.7] that a C(K) space where all operators
are weak multipliers and K − {x} is C∗-embedded in K for every x ∈ K
has the property that all operators are of the form as in the corollary. The
fact that weakly compact operators on C(K)’s are exactly strictly singular
operators (i.e., those which are not an isomorphism when restricted to any
infinite-dimensional space) was first proved in [Pe].

Corollary 14. Any complemented subspace of C(K) is finite-dimen-
sional or of density κ.

Proof. Suppose that X ⊆ C(K) is an infinite-dimensional complemented
subspace of C(K) and let Y be its complement. It is well known (see [Se])
that this is equivalent to the existence of a bounded projection P :C(K)→X
onto X and that 1− P is a projection onto Y . A projection is an operator
such that P 2 = P . Applying the previous results about decompositions of
operators on C(K) to the last equation we obtain a continuous function g
and a strictly singular operator S such that P = gI + S and

g2I + Sg + gS + S2 = gI + S.

That is, multiplication by g2−g is strictly singular, which means that g2−g
cannot be nonzero over any infinite open set, that is, g2 − g is always 0, as
our K has no isolated points. This implies that g assumes only values 1 or 0,
i.e., g = χA for some clopen A. If A is empty, then P is strictly singular and
X finite-dimensional. Thus A is nonempty, hence by Lemma 9(A), C(A),
the range of gI, has density κ.
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Now we need to note that as K has a dense subset of cardinality ω1,
the ranges of weakly compact operators on C(K) have density at most ω1.
Take any Z ⊆ C(K) which is weakly compact and observe that φ : Z →
Rω1 defined by φ(f)(xξ) is continuous with respect to weak and product
topologies. It is also one-to-one, hence a homeomorphism, since Z is compact
in the weak topology. But Rω1 has weight ω1 and hence φ[Z] has weight and
so density ω1. As the range of S is a countable union of weakly compact
sets, it has density less than or equal to ω1.

Finally, as gI = P − S, the density of the range of P must be κ.

Remark. As in [Ko] one could prove several other interesting properties
of C(K).
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