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On the distance between 〈X〉 and L∞ in the space
of continuous BMO-martingales

by

Litan Yan (Shanghai) and Norihiko Kazamaki (Toyama)

Abstract. Let X = (Xt,Ft) be a continuous BMO-martingale, that is,

‖X‖BMO ≡ sup
T
‖E[|X∞ −XT | | FT ]‖∞ <∞,

where the supremum is taken over all stopping times T . Define the critical exponent
b(X) by

b(X) = {b > 0 : sup
T
‖E[exp(b2(〈X〉∞ − 〈X〉T )) | FT ]‖∞ <∞},

where the supremum is taken over all stopping times T . Consider the continuous martin-
gale q(X) defined by

q(X)t = E[〈X〉∞ | Ft]− E[〈X〉∞ | F0].

We use q(X) to characterize the distance between 〈X〉 and the class L∞ of all bounded
martingales in the space of continuous BMO-martingales, and we show that the inequal-
ities

1
4d1(q(X), L∞)

≤ b(X) ≤ 4
d1(q(X), L∞)

hold for every continuous BMO-martingale X.

1. Introduction and preliminaries. Throughout this paper, we fix a
filtered complete probability space (Ω,F , P, (Ft)) with the usual conditions,
and we assume that every martingale is uniformly integrable and continuous.

Recall that a uniformly integrable martingale X = (Xt,Ft) is said to be
in BMOp (p ≥ 1) if

‖X‖BMOp ≡ sup
T
‖E[|X∞ −XT |p | FT ]1/p‖∞ <∞,(1.1)

where the supremum is taken over all stopping times T . In particular,

‖X‖BMO2 = sup
T
‖E[〈X〉∞ − 〈X〉T | FT ]1/2‖∞.

Then, as is well known, ‖ · ‖BMOp is a norm for all p ≥ 1 and

‖X‖BMO1 ≤ ‖X‖BMOp ≤ Cp‖X‖BMO1 ,
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where Cp > 0 is a constant depending only on p. For these, see, for example,
[3, p. 28].

Now, let BMO be the class of all uniformly integrable martingales X
such that ‖X‖BMO1 < ∞. Then BMO is a Banach space with the norm
‖ · ‖BMO1 , and we call the martingale X in BMO a BMO-martingale. There
exist two important subclasses of BMO, namely, the class L∞ of all bounded
martingales and the classH∞ of all martingalesX such that 〈X〉 is bounded.

For X ∈ BMO, let a(X) be the supremum of the set of a > 0 for which

sup
T
‖E[exp(a|X∞ −XT |) | FT ]‖∞ <∞,

where the supremum is taken over all stopping times T , and for M,N ∈
BMO we set

dp(M,N) = ‖M −N‖BMOp (p ≥ 1).

Then there is a beautiful relationship between a(X) and d1(·, ·):
1

4d1(X,L∞)
≤ a(X) ≤ 4

d1(X,L∞)
(1.2)

for every X ∈ BMO. This is the Garnett–Jones theorem. For the proof,
see [1], [3], [4].

Let now b(X) denote the supremum of the set of b > 0 for which

sup
T
‖E[exp(b2(〈X〉∞ − 〈X〉T )) | FT ]‖∞ <∞

for X ∈ BMO, where T runs through all stopping times. Then we have
(see [3])

1√
2 d2(X,H∞)

≤ b(X) (X ∈ BMO).(1.3)

Furthermore, we shall see in Section 2 that
√

2 a(X) ≥ b(X) for every X ∈
BMO.

In this paper, we consider the continuous martingale q(X) defined by

q(X)t = E[〈X〉∞|Ft]−E[〈X〉∞ | F0],

where X is a continuous martingale. We use q(X) to characterize the dis-
tance between 〈X〉 and L∞ in the space of continuous BMO-martingales.

2. Results and proofs. In this section, we give the characterization of
the distance between 〈X〉 and L∞ in the space of BMO-martingales.

Lemma 1. Let X,Y ∈ BMO. Assume that q(X) and q(Y ) are defined
as in Section 1. Then

‖q(X)− q(Y )‖BMO1 ≤ 2(‖X‖BMO2 + ‖Y ‖BMO2)‖X − Y ‖BMO2 .

Proof. Observing that

〈X〉 − 〈Y 〉 = 〈X − Y,X〉+ 〈X − Y, Y 〉,
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we find

q(X)∞ − q(Y )∞ −E[q(X)∞ − q(Y )∞ | FT ]

= 〈X〉∞ − 〈Y 〉∞ − E[〈X〉∞ − 〈Y 〉∞ | FT ]

=
(
〈X − Y,X〉∞ − 〈X − Y,X〉T

)
− E[〈X − Y,X〉∞ − 〈X − Y,X〉T | FT ]

+ l(〈X− Y, Y 〉∞ − 〈X− Y, Y 〉T )− E[〈X− Y, Y 〉∞ − 〈X− Y, Y 〉T | FT ].

It follows from the Schwarz inequality that

E
[
|q(X)∞ − q(Y )∞ − E[q(X)∞ − q(Y )∞ | FT ]|

∣∣FT
]

≤ 2E[|〈X − Y,X〉∞ − 〈X − Y,X〉T | | FT ]

+ 2E[|〈X − Y, Y 〉∞ − 〈X − Y, Y 〉T | | FT ]

≤ 2E[|〈X − Y 〉∞ − 〈X − Y 〉T | | FT ]1/2E[〈X〉∞ − 〈X〉T | FT ]1/2

+ 2E[|〈X − Y 〉∞ − 〈X − Y 〉T | | FT ]1/2E[〈Y 〉∞ − 〈Y 〉T | FT ]1/2

≤ 2(‖X‖BMO2 + ‖Y ‖BMO2)‖X − Y ‖BMO2 .

This completes the proof.

As a consequence of the lemma, we see that X ∈ BMO implies q(X) ∈
BMO. Furthermore, we have

Theorem 1. Let X be a uniformly integrable continuous martingale and
let q(X) be defined as in Section 1. If X ∈ BMO, then

1
4d1(q(X), L∞)

≤ b(X) ≤ 4
d1(q(X), L∞)

,(2.1)

and furthermore, we have
√

2 a(X) ≥ b(X) for all X ∈ BMO.

Proof. Let X ∈ BMO. Then for any λ > 0 we have

E[exp(λ(〈X〉∞ − 〈X〉T )) | FT ]

= E[exp(λE[〈X〉∞ − 〈X〉T | FT ]) exp(λ(〈X〉∞ − E[〈X〉∞ | FT ])) | FT ]

≤ eλ‖X‖2BMO2E[exp(λ|〈X〉∞ − E[〈X〉∞ | FT ]|) | FT ]

≤ eλ‖X‖2BMO2E[exp(λ|q(X)∞ − q(X)T |) | FT ]

and

E[exp(λ|q(X)∞ − q(X)T |) | FT ]

= E[exp(λ|〈X〉∞ − E[〈X〉∞ | FT ]|) | FT ]

≤ E[exp(λ(〈X〉∞ − 〈X〉T )) exp(λE[〈X〉∞ − 〈X〉T | FT ]) | FT ]

≤ eλ‖X‖2BMO2E[exp(λ(〈X〉∞ − 〈X〉T )) | FT ],
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which shows that b(X) = a(q(X)). Thus, inequalities (2.1) follow from in-
equalities (1.2).

On the other hand, it is not difficult to show that the inequality

E[exp(λ|X∞ −XT |) | FT ] ≤ 2E[exp(2λ2(〈X〉∞ − 〈X〉T )) | FT ]1/2(2.2)

holds for all λ > 0. Indeed, by using the Schwarz inequality and noting that
for X ∈ BMO the continuous exponential martingale E(X) defined by

E(X) = exp
(
X − 1

2〈X〉
)

is uniformly integrable (see Theorem 2.3 in [3, p. 31]), for every real λ > 0
we have

E[exp(λ(X∞ −XT )) | FT ]

= E

[E(λX)∞
E(λX)T

exp(λ2(〈X〉∞ − 〈X〉T ))

∣∣∣∣FT
]

≤ E
[E(2λX)∞
E(2λX)T

∣∣∣∣FT
]1/2

E[exp
(
2λ2(〈X〉∞ − 〈X〉T )) | FT ]1/2

≤ E[exp(2λ2(〈X〉∞ − 〈X〉T )) | FT ]1/2.

The same argument works if X is replaced by −X. Thus, we obtain (2.2).
This shows that

√
2 a(X) ≥ b(X).

Corollary 1. If X ∈ BMO, then q(X) ∈ L∞ is equivalent to b(X)
=∞, where L∞ stands for the BMO-closure of L∞.

Recall that the continuous exponential martingale E(X) is said to satisfy
the (Ap)-condition (1 < p <∞), in symbols E(X) ∈ (Ap), if

sup
T

∥∥∥∥E
[{ E(X)T
E(X)∞

}1/(p−1) ∣∣∣∣FT
]∥∥∥∥
∞
<∞,

where the supremum is taken over all stopping times T . It is known (see
Theorem 3.12 of [3, p. 72]) that q(X) ∈ L∞ is equivalent to E(X) and
E(−X) satisfying all (Ap) (1 < p < ∞). Thus, the following corollary is
clear.

Corollary 2. If X ∈ BMO and 1 < p <∞, then b(X) =∞ is equiva-
lent to E(X) and E(−X) satisfying all (Ap).

Finally, we consider a subspace H of BMO,

H ≡ {X ∈ BMO : q(X) ∈ L∞}.
Corollary 3. Let H∞ denote the BMO-closure of H∞. Then

H∞ ⊂ H ⊂ L∞.
Proof. H∞ ⊂ H follows from (1.3) and Corollary 1, and H ⊂ L∞ follows

from Theorem 1.
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Lemma 2. The mapping q : X 7→ q(X) is continuous on BMO.

Proof. Let {Xn} be a sequence of BMO-martingales such that Xn → X
in BMO. Then

K ≡ sup
n
‖Xn‖BMO2 <∞ and ‖X‖BMO2 ≤ K.

It follows from Lemma 1 that

‖q(Xn)− q(X)‖BMO1 ≤ 4K‖Xn −X‖BMO2 → 0

as n→∞. This shows that the mapping q is continuous on BMO.

Theorem 2. H is a closed linear subspace of BMO.

Proof. The closedness of H follows from Lemma 2.
On the other hand, for any two real α, β and any two BMO-martingales

X,Y , we have

〈αX + βY 〉∞ − 〈αX + βY 〉T ≤ 2(α2(〈X〉∞ − 〈X〉T ) + β2(〈Y 〉∞ − 〈Y 〉T ))

and so, for any λ > 0,

E[exp(λ(〈αX + βY 〉∞ − 〈αX + βY 〉T )) | FT ]

≤ E[exp(4α2λ(〈X〉∞ − 〈X〉T )) | FT ]1/2

× E[exp(4β2λ(〈Y 〉∞ − 〈Y 〉T )) | FT ]1/2,

which shows that b(αX + βY ) = ∞ for b(X) = ∞, b(Y ) = ∞. Thus,
X,Y ∈ H implies that αX + βY ∈ H. This completes the proof.

Now, it is natural to ask if the relationship H∞ = H holds. But we have
not been able to settle this question so far.
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