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On the distance between (X) and L* in the space
of continuous BMO-martingales

by

L1TAN YAN (Shanghai) and NORIHIKO KAzZAMAKI (Toyama)

Abstract. Let X = (X¢, Ft) be a continuous BMO-martingale, that is,
[XIBmo = sup IE[| Xoo = X7|[ Frllloc < oo,
where the supremum is taken over all stopping times 7. Define the critical exponent
b(X) by
b(X)={b>0: Sup [ Blexp(b*((X)oo — (X)1)) | Frllloc < o0},
where the supremum is taken over all stopping times 7. Consider the continuous martin-
gale ¢(X) defined by
q(X)t = E[(X)oo | Fi] = E[(X)oo | Fol-

We use ¢(X) to characterize the distance between (X) and the class L™ of all bounded
martingales in the space of continuous BMO-martingales, and we show that the inequal-
ities 1 4

— <V X)) ————

1. 2%) =" = a6 1)

hold for every continuous BMO-martingale X.

1. Introduction and preliminaries. Throughout this paper, we fix a
filtered complete probability space (£2, F, P, (F;)) with the usual conditions,
and we assume that every martingale is uniformly integrable and continuous.

Recall that a uniformly integrable martingale X = (X, F) is said to be
in BMO, (p > 1) if

(1.1) 1 X[BMmoO, = Sup 1E[| Xoo — X7l”| F1]'7||c < o0,

where the supremum is taken over all stopping times 7. In particular,
1X1Brt0, = sup | E[{X)o0 = (X)7| Fr] oo
Then, as is well known, || - [[Bmo, is @ norm for all p > 1 and
[ X|Bymo, < [[X|IBymo, < Cpll XlBMO, S
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where C}, > 0 is a constant depending only on p. For these, see, for example,
(3, p. 28].

Now, let BMO be the class of all uniformly integrable martingales X
such that || X|Bmo, < oo. Then BMO is a Banach space with the norm
Il - [[BMO, , and we call the martingale X in BMO a BMO-martingale. There
exist two important subclasses of BMO, namely, the class L™ of all bounded
martingales and the class H of all martingales X such that (X) is bounded.

For X € BMO, let a(X) be the supremum of the set of a > 0 for which

sup [ Efexp(a|Xoo — X7|) [ Frlloc < 00,
T

where the supremum is taken over all stopping times 7', and for M, N €
BMO we set
dp(M,N) = |M = Nllgmo, (p=1).
Then there is a beautiful relationship between a(X) and d;(-,):
1 4
X, =N = I
for every X € BMO. This is the Garnett—Jones theorem. For the proof,
see [1], [3], [4].
Let now b(X) denote the supremum of the set of b > 0 for which

Sup 1E[exp(b*((X) oo — (X)7)) [ Frlllo0 < 00

(1.2)

for X € BMO, where T runs through all stopping times. Then we have
(see [3])

(1.3) ! <H(X) (X €BMO).

\/§ d? (X7 Hoo) B
Furthermore, we shall see in Section 2 that v/2a(X) > b(X) for every X €
BMO.

In this paper, we consider the continuous martingale ¢(X) defined by
q(X): = E[{(X)oo| Ft] = E[{X) o0 | Fol,

where X is a continuous martingale. We use ¢(X) to characterize the dis-
tance between (X) and L*° in the space of continuous BMO-martingales.

2. Results and proofs. In this section, we give the characterization of
the distance between (X) and L* in the space of BMO-martingales.

LEMMA 1. Let X,Y € BMO. Assume that q(X) and q(Y') are defined
as in Section 1. Then

lg(X) — a(Y)llBmo, < 2([1X[[BMOo, + (Y [IBMO,) X — YlBMO, -
Proof. Observing that
(X) - (V)= (X -V, X) + (X -V)Y),
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we find
U(X)oo = 4(Y)oo = E[q(X)oo = q(Y)oo | 7]
= (X)oo = (Y)oo = E[(X)oo = (Y)oo | F1]
=((X-Y, X)oo — (X =Y, X)1) — E[(X =Y, X)oo — (X = Y, X)7 | Fr]
+l(<X_Y7Y>oo - <X_Y7Y>T) _E[<X_Ky>w - <X_KY>T|fT]'
It follows from the Schwarz inequality that
El¢(X)oo = a(Y)oo — Ela(X)oo — a(Y)eo | Fr]| | Fr]
<2E[[(X =Y, X)oo — (X =Y, X)7[| Fr]
+2E[(X =Y, Y)oo — (X =Y, Y)7|| F7]
<2E[[(X = Y)oo — (X = Y)2| | Fr]2E[(X)oo — (X)r | Fr]'/?
+2E[[(X = Y)oo — (X = Y)2|| Fr] P E[(Y)oo — (V)1 | Fr]'/?
< 2( X lBmo, + [[Y [lBMO)IX = Y|BMO, -
This completes the proof. m

As a consequence of the lemma, we see that X € BMO implies ¢(X) €
BMO. Furthermore, we have

THEOREM 1. Let X be a uniformly integrable continuous martingale and
let ¢(X) be defined as in Section 1. If X € BMO, then

1 4
1), =) = S S ey

and furthermore, we have v/2a(X) > b(X) for all X € BMO.
Proof. Let X € BMO. Then for any A > 0 we have
Elexp(A((X)oo = (X)1)) | F7]
= Elexp(AE[(X)oo — (X)7 | Fr]) exp(A({X) oo — E[(X)oo | F7))) | F7]
< MXIEn0; Blexp(A(X) oo — E[(X)oo | Frll) | Fr]

(2.1)

< MNXIEvo; Blexp(Ag(X ) — a(X)7]) | Fr]

and

Elexp(M¢(X)oo — ¢(X)1]) | F7]
= Elexp(A\[(X)oo — E[(X)oo [ F1l|) | F7]

< Elexp(A\({(X)oo — (X)7)) exp(AE[(X) oo — (X)7| Fr]) | Fr]
< M Ubn0s Blexp(A((X) oo — (X)7)) | Frl,



132 L. T. Yan and N. Kazamaki

which shows that b(X) = a(¢(X)). Thus, inequalities (2.1) follow from in-
equalities (1.2).

On the other hand, it is not difficult to show that the inequality
(22)  Elexp(AXoo — X7|) | Fr] < 2E[exp(2A*((X)oo — (X)1)) | Fr]'/?

holds for all A > 0. Indeed, by using the Schwarz inequality and noting that
for X € BMO the continuous exponential martingale £(X) defined by

E(X) = exp(X — (X))

is uniformly integrable (see Theorem 2.3 in [3, p. 31]), for every real A > 0
we have

Elexp(\(Xoo — X7)) | Fr]

_ E[% exp(N((X)oo — (X)1)) ‘fT]
1/2
< E{% fT] Blexp(2A2((X)oe — (X)1)) | Fr]/2

< Elexp(2N*((X)oo — (X)7)) | Fr]'/2,
The same argument works if X is replaced by —X. Thus, we obtain (2.2).
This shows that v/2a(X) > b(X). =
COROLLARY 1. If X € BMO, then q(X) € L*® is equivalent to b(X)
= 00, where L>® stands for the BMO-closure of L*°.

Recall that the continuous exponential martingale £(X) is said to satisfy
the (A,)-condition (1 < p < 00), in symbols £(X) € (4,), if

1/(p—1)
gl €&
E(X)oo
where the supremum is taken over all stopping times 7'. It is known (see
Theorem 3.12 of [3, p. 72]) that ¢(X) € L is equivalent to £(X) and

E(—X) satisfying all (4,) (1 < p < 00). Thus, the following corollary is
clear.

sup
T

< 00,

7|

‘ o

COROLLARY 2. If X € BMO and 1 < p < oo, then b(X) = oo is equiva-
lent to £(X) and E(—X) satisfying all (A,).

Finally, we consider a subspace H of BMO,
H={X € BMO: ¢(X) € L*}.
COROLLARY 3. Let H® denote the BMO-closure of H>®. Then
H> CH C L>.

Proof. H> C H follows from (1.3) and Corollary 1, and H C L follows
from Theorem 1. m
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LEMMA 2. The mapping q : X — q(X) is continuous on BMO.

Proof. Let {X"} be a sequence of BMO-martingales such that X™ — X
in BMO. Then

K =sup || X"|lpmo, < oo and || X|Bmo, < K.
n

It follows from Lemma 1 that

lg(X™) —q(X)|lBMO, < 4K X" — X|BMO, — 0

as n — oo. This shows that the mapping ¢ is continuous on BMO. u
THEOREM 2. H is a closed linear subspace of BMO.

Proof. The closedness of H follows from Lemma 2.

On the other hand, for any two real a, 8 and any two BMO-martingales
X,Y, we have

(X + fY)oe — (aX + BY)7r < 2(a*((X)oo — (X)7) + B2((Y)oc — (Y)1))
and so, for any A > 0,

Elexp(A({aX + 8Y)oo — (aX + 8Y)1)) | Fr]
< Elexp(4a®M((X) oo — (X)1)) | F1]'/?

x Blexp(46°A(Y)oo — (Y)7)) | Fr]'/2,

which shows that b(aX + BY) = oo for b(X) = oo, b(Y) = oco. Thus,
X,Y € H implies that X + Y € H. This completes the proof. m

Now, it is natural to ask if the relationship H> = H holds. But we have
not been able to settle this question so far.
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