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Algebraic analysis
in structures with the Kaplansky–Jacobson property

by

D. Przeworska-Rolewicz (Warszawa)

Abstract. In 1950 N. Jacobson proved that if u is an element of a ring with unit
such that u has more than one right inverse, then it has infinitely many right inverses.
He also mentioned that I. Kaplansky proved this in another way. Recently, K. P. Shum
and Y. Q. Gao gave a new (non-constructive) proof of the Kaplansky–Jacobson theorem
for monoids admitting a ring structure. We generalize that theorem to monoids without
any ring structure and we show the consequences of the generalized Kaplansky–Jacobson
theorem for the theory of linear operators, and even for the classical Calculus. In order
to do that, we recall some multiplicative systems, called pseudocategories, very useful in
the algebraic theory of perturbations of linear operators. In the second part of the paper,
basing on the Kaplansky–Jacobson theorem, we show how to use the above mentioned
structures for building Algebraic Analysis of linear operators over a class of linear spaces.
We also define (non-linear) logarithmic and antilogarithmic mappings on these structures.

In 1950 N. Jacobson proved the following theorem:

If u is an element of a ring with unit e such that u has more than
one right inverse, then it has infinitely many right inverses (cf. [J1]).

Namely, all elements of the form wk = v0 + (e− v0u)uk (k ∈ N) are also
right inverses of u, for any fixed right inverse v0.

In the same paper [J1] it is mentioned that I. Kaplansky proved this
theorem in another way (private communication to Jacobson).

Recently, K. P. Shum and Y. Q. Gao gave a new (non-constructive) proof
of the Kaplansky–Jacobson theorem for monoids admitting a ring structure
(cf. [SG], also [B]). In this paper we generalize that theorem to monoids
without any ring structure and we show the deep consequences of the gener-
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alized Kaplansky–Jacobson theorem for the theory of linear operators, and
even for the classical Calculus.

In order to do that, we will recall some multiplicative systems, called
pseudocategories, very useful in the algebraic theory of perturbations of
linear operators. These were introduced in the monograph of the present
author and S. Rolewicz ([PRR1]), where pararings and paraalgebras were
defined for operators mapping a linear space into another. An axiomatics of
pseudocategories was given in [PR1]. Next, in [PR2], in a rather complicated
way, properties of pseudocategories were studied. It was shown that pseu-
docategories can be extended to concrete categories under some additional
assumptions. Furthermore pararings and paraalgebras, ideals and radicals
were defined by means of pseudocategories. Then, as in the above-mentioned
book, the algebraic theory of perturbations of linear operators over a class
of linear spaces was examined. This theory was simplified in an essential
way by H. Lausch in 1985 (cf. [LPR]).

It should be pointed out that in the theory of pseudocategories the notion
of objects does not play any role. The axiomatics contains only the notion
of morphisms. The existence of a unit is also not necessary. This is natural
in a sense. For instance, in a quotient paraalgebra of linear operators over
a class of linear spaces, the spaces under consideration are not objects. One
can introduce objects in this case, but in an artificial way.

In the second part of the present paper, due to the Kaplansky–Jacobson
theorem, it will be shown how to use the above mentioned structures for
building Algebraic Analysis of linear operators over a class of linear spaces.
We shall also define (non-linear) logarithmic and antilogarithmic mappings
on these structures.

1. Pseudocategories, pararings, paraalgebras and perturbations
of linear operators. We recall some notions and properties (without
proofs which can found in [LPR]) which will be used in what follows.

1a. Pseudocategories. The following definition is fundamental for all sub-
sequent considerations:

Definition 1a.1. A class P of morphisms is called a pseudocategory if
for some ordered pairs (x, y) of morphisms x, y ∈ P a product z ∈ P is
defined, denoted by z = xy, such that for all a, b, c, d ∈ P the following
axioms are satisfied:

A1: (ab, cd, cb exists)⇒ ad exists;
A2: (ab, bc exist) ⇒ [(ab)c, a(bc) exist and (ab)c = a(bc)]; call the last

element abc;
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A3: [∀a (ab exists⇒ (ab)c exists)]⇒ bc exists;
[∀b (bc exists⇒ a(bc) exists)⇒ ab exists (1);

A4: {x ∈ P : ax, xb exist} is a set.

Definition 1a.2. If P is a pseudocategory and a, b ∈ P then {x ∈ P :
ax, xb exist} is called a multiplicant and is denoted by Ma|b.

Proposition 1a.1. Let P be a pseudocategory.

(i) If a, ã, b, b̃, x, y ∈ P and ax, ãx, yb, yb̃ exist then Mã|b̃ = Ma|b;
(ii) if c, d ∈ P and Mc|c ∩Md|d 6= ∅ then Mc|c = Md|d;
(iii) if c, u, v ∈ P and uv exists then Mc|u = Mc|uv and Mv|c = Muv|c;
(iv) if a, x, y, z ∈ P and x, y ∈Ma|a then the existence of zx implies the

existence of zy and the existence of xz implies the existence of yz.

Definition 1a.3. A subclass Q of a pseudocategory P is a subpseudo-
category if whenever x, y ∈ P and xy exists then xy ∈ Q.

Note that any subpseudocategory Q of a pseudocategory P , equipped
with the multiplication of P , is itself a pseudocategory.

Proposition 1a.2. Let P be a pseudocategory and let a ∈ P . Then both

Pa = {x ∈ P : Ma|x 6= ∅} and P ′a = {y ∈ P : My|a 6= ∅}
are subpseudocategories of P .

Definition 1a.4. A pseudocategory P is proper if Ma|a 6= ∅ for all
a ∈ P .

Theorem 1a.1. If P is a proper pseudocategory then

(i) for all a, b ∈ P either Ma|b = ∅ or there exists a y ∈ P such that
Ma|b = My|y;

(ii) P =
⋃
y∈P My|y, i.e. the proper pseudocategory is the union of dis-

joint multiplicants of the form My|y, where y ∈ P .

Proposition 1a.3. Let P be a proper pseudocategory and let a ∈ P .
Then a · a = a2 exists if and only if a ∈ Ma|a. If a ∈ Ma|a then Ma|a is a
semigroup.

Definition 1a.5. Let P be a pseudocategory and let a ∈ P have the
property that a ∈Ma|a. A morphism ea ∈Ma|a is called a unit in P if

∀x ∈ P (xea exists⇒ xea = x and eax exists⇒ eax = x).

We say that P has units if each multiplicant Ma|a with a ∈ Ma|a contains
a unit.

(1) This axiom is written here in a slightly modified form in comparison with [LPR].
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Theorem 1a.2. Let P be a proper pseudocategory. Then there exists a
proper pseudocategory P1 with units such that P is its subpseudocategory.

Corollary 1a.1. Every proper pseudocategory is a subpseudocategory
of some category.

Definition 1a.6. Two disjoint subclasses Q and R of a pseudocategory
P are said to be non-cooperating if y ∈ Q, z ∈ R implies that neither yz nor
zy exist. A proper pseudocategory P is said to be irreducible if P has no two
non-empty non-cooperating subpseudocategories (with respect to the same
multiplication).

Proposition 1a.4. Let P be an irreducible pseudocategory and let
a, b ∈ P . Then Ma|b 6= ∅.

Definition 1a.7. A pseudocategory P is said to be indexed if there
exists a set A and a map M : A×A→ {Mu|u : u ∈ P}, (α, β) 7→Mα,β , such
that

(i) Mα,β ∩Mα′,β′ = ∅ if (α, β) 6= (α′, β′);
(ii) M is surjective;
(iii) x ∈ Mα,β , y ∈ Mβ,γ (α, β, γ ∈ A) imply that xy exists and

xy ∈Mα,γ .

M is called an indexing of P .

Theorem 1a.3. If an irreducible pseudocategory P is a set then it is
indexed.

Definition 1a.8. Let M be a class of sets and P be a class of mappings
between sets of M. If P is a pseudocategory with respect to composition of
mappings then P is called a concrete pseudocategory.

Theorem 1a.4. Let P be a pseudocategory indexed by M : A × A →
{Mu|u : u ∈ P}. Then P is isomorphic (in the obvious sense) to a concrete
pseudocategory with the same indexing M.

A proper pseudocategory is said to be commutative if whenever ab exists
then ba exists and ba = ab.

An irreducible pseudocategory which is a set is a semigroup if

(1a.1) ab exists⇒ ba exists.

Let P be a proper pseudocategory with units and let x ∈ P . If there exist
xl ∈ P (respectively, xr ∈ P ) such that for some a ∈Ma|a we have xlx = ea
(respectively, xxr = ea) then x is said to be left invertible (respectively,
right invertible). The morphisms xl, xr are called left and right inverses
of x, respectively.
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Proposition 1a.5. If an x belonging to a proper pseudocategory with
units is simultaneously left and right invertible then its left inverse is equal
to its right inverse.

A morphism x satisfying the conditions of Proposition 1a.5 is said to
be invertible and we write x−1 = xl = xr. The morphism x−1 is called an
inverse. The inverse of every invertible morphism is, by definition, uniquely
determined and x−1 ∈Mx|x (for both xx−1 and x−1x exist).

A proper pseudocategory P with units is said to be a paragroup if every
x ∈ P is invertible. An irreducible paragroup which is a set satisfying con-
dition (1a.1) is a group.

It is easy to verify that if P is an irreducible pseudocategory then the
class of all multiplicants contained in P with multiplication defined as follows
is a Brandt grupoid :

(i) if a ∈Ma|a then Ma|a ·Ma|a = Ma|a;
(ii) if a 6∈ Ma|a and b ∈ Ma|a then Ma|a ·Mb|b = Mba|ba; Mb|b ·Ma|a =

Mab|ab; Ma|a · Mab|ab = Mba|ba · Ma|a = Ma|a; Mab|ab · Mb|b =
Mb|b ·Mba|ba = Mb,b (cf. H. Brandt [Bra], also R. H. Bruck [Bru]).

1b. Pararings. We start with

Definition 1b.1. A pararing P is a proper pseudocategory such that
for each a ∈ P an addition + is defined on Ma|a which turns Ma|a into an
Abelian group and this addition satisfies

A5: if x, y ∈Ma|a, z ∈ P , then

zx exists⇒ z(x+ y) = zx+ zy; xz exists⇒ (x+ y)z = xz + yz.

Note that, by Proposition 1a.1(iv), the existence of zx (respectively, xz)
implies the existence of zy and z(x+y) (respectively yz and (x+y)z). Hence
the right hand sides in A5 are always defined.

Definition 1b.2. A subclass P0 of a pararing P is said to be a subpara-
ring of P if P0 is a pararing with the addition and multiplication of P
restricted to P0. A subpararing J of a pararing P is an ideal of P if for all
x ∈ P and z ∈ J the existence of xz implies that xz ∈ J and the existence
of zx implies that zx ∈ J . If a ∈ P and x ∈ Ma|a then [x] = {x + y : y ∈
Ma|a ∩ J} is called the coset (with respect to J) determined by x.

Note that [x] ⊆Ma|a ∩ J for x ∈Ma|a.

Definition 1b.3. Let A,B be subsets of a pararing P . We write

A+B = {x+ y : x ∈ A, y ∈ B, x+ y exists},
AB = {xy : x ∈ A, y ∈ B, xy exists}.
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Theorem 1b.1. Let J be an ideal in a pararing P and let x1, x2, x3 ∈ P .
Suppose that x1 + x2 and x1x3 exist. Then [x1] + [x2] = [x1 + x2] and
[x1][x3] ⊆ [x1x3].

Definition 1b.4. Let J be an ideal of a pararing P . The quotient para-
ring P/J is the class of all cosets [x] with respect to J , for x ∈ P , with
addition and multiplication defined in the usual way.

Theorem 1b.1 tells us that P/J is a pararing and [x][y] exists if and only
if xy exists.

Theorem 1b.2. Suppose that P is a pararing and a ∈ P . Denote by 0a
the neutral morphism of the multiplicant Ma|a (1) and by N(P ) the class
of neutral morphisms belonging to P . Then

(i) if a ∈Ma|a then Ma|a is a ring ;
(ii) if a ∈ P then Max|ax and Mxa|xa are independent of the choice of

x ∈Ma|a;
(iii) if a ∈ P and x ∈ Ma|a then Ma|a is a right (left) module (2) over

the ring Max|ax (respectively , Mxa|xa); moreover ,

0xax = 0a, x0ax = 0a.

A pararing P has units if P considered as a pseudocategory has units. A
pararing with units is said to be a parafield if every non-neutral morphism
is invertible. Evidently, an irreducible parafield which is a set is a field.

Example 1b.1. Let X and Y be linear spaces over the same field of
scalars. Denote by L0(X → Y ) the space of all linear operators defined
on X and with range in Y . Write L0(X) = L0(X → X). The quadruple

L0(X 
 Y ) =

(
L0(X)

L0(X → Y ) L0(Y → X)
L0(Y )

)

is a pararing which has been considered by the present author and
S. Rolewicz in [PRR1]) (cf. also Example 1c.1).

One can prove that every pararing can be extended to an additive pseu-
docategory. However, this extension seems to be rather artificial (cf. [PR2]).
On the other hand, there is a pararing which is not an additive category, for
instance, the ring Z of all integers.

Definition 1b.5. Let P be a pararing with units. The subclass

R(P ) = {x ∈ P : ∀a, y, z ∈ P [a ∈Ma|a and yxz ∈Ma,a]

⇒ ea + yxz is invertible}
is called the radical of P .

(1) That is, a morphism in Ma|a such that 0ax = x0a = 0a for all x ∈ P .
(2) See Jacobson [J2].
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Theorem 1b.3. The radical R(P ) of a pararing P with units is an ideal
in P .

Open questions. Does every non-commutative pararing without divi-
sors of neutral morphisms have an extension to a parafield? Is every ideal
in a pararing with units contained in a maximal ideal? Is the radical of a
pararing with units an intersection of maximal ideals?

1c. Paraalgebras and perturbations of linear operators

Definition 1c.1. A pararing P with units is said to be a paraalgebra if

(i) every multiplicant Ma|a is a linear space over a field F of scalars;
(ii) whenever xy exists then t(xy) = (tx)y = x(ty) for t ∈ F.

Example 1c.1. Suppose that a class {Xα}α∈A of linear spaces (over a
field F of scalars) is given. It is easy to verify that

L0(Xα 
 Xβ;α, β ∈ A) =
⋃

α,β∈A

L0(Xα → Xβ)

is a paraalgebra. If A is a set then this paraalgebra is indexed by A. The
spaces L0(Xα → Xβ) are multiplicants, L0(Xα → Xα) are multiplicants
such that T 2 = T · T ∈ L0(Xα → Xα) whenever T ∈ L0(Xα → Xα).
The paraalgebra L0(Xα 
 Xβ;α, β ∈ A) has units, namely the identity
operators Iα of the spaces Xα (cf. Example 1b.1).

Example 1c.2. Let LT be the class of all linear topological spaces (over
C or R). The class LT (X 
 Y ;X,Y ∈ LT ) of all linear continuous operators
defined on spaces X ∈ LT and mapping X into spaces belonging to LT is a
paraalgebra which is not a set.

Note that Banach paraalgebras have been considered by K. H. Förster
(cf. [F]).

Example 1c.3. Let E(Em 
 En;m,n ∈ N) be the paraalgebra of all
m× nmatrices with coefficients from a field E of scalars. Ifm 6= n then a ma-
trix U ∈ E(Em 
 En;m,n ∈ N) is not invertible. This implies the following
fact: if L0(Xα 
 Xβ ;α, β ∈ A) is a paraalgebra defined in Example 1c.1 and
dim Xα < ∞ for all α ∈ A then an operator T ∈ L0(Xα 
 Xβ;α, β ∈ A)
is invertible if and only if T ∈ L0(Xα → Xα).

Let J be an ideal in a paraalgebra P and let a ∈ P . An element r is
called a left (right) regularizer to the ideal J if ra (respectively, ar) exists
and, for some c ∈ P such that c ∈Mc|c, ra ∈Mc|c (respectively, ar ∈Mc|c)
and ra = ec + b (respectively, ar = ec + b), where b ∈ J ∩Mc|c. This means
that in the quotient paraalgebra P/J the corresponding coset is left (right)
invertible. If r is simultaneously a left and right regularizer then r is called
a simple regularizer and the corresponding coset is invertible.
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Let A be a linear operator defined on a linear subset domA of a linear
space X, called the domain of A, and mapping domA into a linear space Y
(both over the same field F of scalars). The set of all such operators will be
denoted by L(X → Y ). Write

αA = dim kerA = dim{x ∈ domA : Ax = 0}, βA = codimEA = dimY/EA,

where EA = A(domA) ⊂ Y is the range of A; and

κA =





−∞ if αA =∞, βA <∞;

∞ if αA <∞, βA =∞;

βA − αA if αA, βA <∞.

The numbers αA, βA, κA are called the nullity, deficiency and index of the
operator A ∈ L(X → Y ), respectively. The ordered pair (αA, βA) is called
the d-characteristic (dimensional characteristic) of A (cf. [PRR1]). If both
αA and βA are finite then the d-characteristic is said to be finite.

Suppose that X is a class of linear spaces (over the same field of scalars).
Let L(X 
 Y ;X ) be the paraalgebra of linear operators mapping spaces
belonging to X into spaces from X . This paraalgebra has units, namely, the
identity operators IX of spaces X ∈ X .

If every operator A ∈ L(X 
 Y ;X ) with a finite d-characteristic has
a simple regularizer to an ideal J ⊂ L(X 
 Y ;X ) then we say that
L(X 
 Y ;X ) is regularizable to the ideal J . The paraalgebra L0(Xα 
 Xβ ;
α, β ∈ A) is regularizable to the ideal of all finite-dimensional operators con-
tained in this paraalgebra.

An ideal J in a paraalgebra L(X 
 Y ;X ) is said to be a quasi Fredholm
ideal if for all X ∈ X and for all T ∈ J ∩ L0(X → X) the operator IX + T
has a finite d-characteristic. If, moreover, κIX+T = 0 then J is said to be a
Fredholm ideal .

Theorem 1c.1. Suppose that a paraalgebra LX = L(X 
 Y ;X ) is reg-
ularizable to a quasi Fredholm ideal in J ⊂ LX . Denote by R(LX /J) the
radical of the quotient paraalgebra LX /J . Then the ideal J0 = {U ∈ LX :
[U ] ∈ R(LX /J)} is the maximal quasi Fredholm ideal , i.e. J ⊂ J0.

An ideal J in a paraalgebra LX = L(X 
 Y ;X ) is called a positive
(negative) semi-Fredholm ideal if for all X ∈ X and T ∈ J ∩ L0(X → X)
the operator IX + T has a finite nullity (deficiency). A paraalgebra LX =
L(X 
 Y ;X ) is called left (right) regularizable to an ideal J ⊂ LX if every
operator ∈ LX with a finite nullity (deficiency) has a left (right) regularizer
to the ideal J .

Let A be a class (not necessarily linear) of linear operators. A linear
operator B is called a perturbation of an operator A ∈ A if A+B ∈ A. B is
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said to be a perturbation of the class A if A+B ∈ A for all A ∈ A such that
the sum A+B is well defined.

Theorem 1c.2. Suppose that a paraalgebra LX = L(X 
 Y ;X ) is left
(right) regularizable to a positive (negative) semi-Fredholm ideal J ⊂ LX .
Then all operators belonging to a positive (negative) semi-Fredholm ideal
J1 ⊂ LX are perturbations of the class of all operators with a finite nullity
(deficiency) belonging to LX .

Corollary 1c.1. If a paraalgebra LX = L(X 
 Y ;X ) is regularizable
to a quasi Fredholm ideal J ⊂ LX then every T ∈ J is a perturbation of the
class of all operators with a finite d-characteristic. If J is a Fredholm ideal
then this perturbation preserves the index, i.e. for all A ∈ LX with a finite
d-characteristic and for all T ∈ J such the sum A + T is well defined , we
have κA+T = κA.

Regularizers of integral and singular integral operators have been in com-
mon use for several years (cf. for instance Nguyen Van Mau [N1], [N2]).

2. Pararings with the Kaplansky–Jacobson property. We start
with

Theorem 2.1. Let P be a pararing with units. Let x ∈ P be right in-
vertible and let xr be its right inverse. Then there is an a ∈ P such that the
morphism px = ea − xrx is well defined and px ∈Ma|a. Moreover , px is an
idempotent such that pxxr = 0 and xpx = 0 (1).

Proof. By definition, there is an a ∈ P such that a ∈Ma|a and xxr = ea.
By Proposition 1a.1(iv), xrx exists and belongs to Ma|a. Thus the morphism
px = ea − xrx is well defined and belongs to Ma|a. By Proposition 1a.3, p2

x

exists, belongs to Ma|a and

p2
x = (ea − xrx)2 = (ea − xrx)(ea − xrx)

= e2
a − (xrx)ea − ea(xrx) + (xrx)(xrx)

= ea − (eaxr)x− xr(xea) + xr(xxr)x

= ea − xrx− xrx+ xreax = ea − xrx = px,

i.e. px is an idempotent. Moreover, xpx = x(ea − xrx) = xea − (xxr)x =
x− eax = 0 and pxx

r = (ea − xrx)xr = eax
r − xr(xxr) = xr − xrea = 0.

Corollary 2.1. Let P be a pararing with units. Let x ∈ P be right
invertible and let xr be its right inverse, i.e. there is an a ∈ P such that the
idempotent px = ea − xrx ∈ Ma|a. Then every right inverse of x is of the

(1) Here and in what follows we denote all neutral morphisms 0a in P by 0, since this
does not lead to any misunderstanding.
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form xr1 = xr + pxy, where pxy exists and belongs to Ma|a. In particular ,
xrk = xr + pxx

k for k ∈ N are right inverses of x (1).

Proof. By Theorem 2.1, if pxy exists and belongs to Ma|a then xxr1 =
x(xr + pxy) = xxr + (xpx)y = ea + 0 = ea, i.e. xr1 is a right inverse of x.
A similar proof for xrk, since xrx and xk exist.

Theorem 2.2. Let P be a pararing with units. Let x ∈ P be right in-
vertible and let px = ea − xrx ∈ Ma|a be an idempotent corresponding to a
right inverse xr of x (a ∈ Ma|a ⊂ P ). Whenever yx exists and belongs to
Ma|a, the morphism p̃x = px(ea − yx) is an idempotent corresponding to a
right inverse x̃r = xr − p̃xxr of x such that xp̃x = 0 and p̃xx̃r = 0.

Proof. By definitions,

p̃xx̃
r = p̃x(xr − p̃xxr) = p̃xx

r − p̃2
xx

r = 0,

xp̃x = xpx(ea − yx) = xpx − (xpx)yx = 0,

xx̃r = x(xr − p̃xxr) = xxr − (xp̃x)xr = ea − 0 = ea,

i.e. x̃r is a right inverse of x. The morphism p̃x is an idempotent. Indeed,

p̃2
x = [px(ea − yx)]2 = (px − pxyx)2 = p2

x − p2
xyx− pxyxpx + (pxyx)(pxyx)

= px − (pxy)x− (pxy)(xpx) + (pxy)(xpxyx) = px.

Definition 2.1. A pararing P has the Kaplansky–Jacobson property
if P has units and the existence of a right inverse of a morphism x ∈ P
implies the existence of infinitely many right inverses. A pararing with this
property will be called briefly a K-J-pararing . A K-J-paraalgebra is a paraal-
gebra which, as a pararing, is a K-J-pararing.

This definition and Corollary 2.1 immediately imply

Corollary 2.2. Every pararing with units has the Kaplansky–Jacobson
property.

Corollary 2.3. Every irreducible pararing with units is a ring with the
Kaplansky–Jacobson property.

Corollary 2.4. Every paraalgebra has the Kaplansky–Jacobson prop-
erty.

In a similar manner we obtain dual results for left invertible operators:

Theorem 2.3. Let P be a pararing with units. Let x ∈ P be left in-
vertible and let xl be its left inverse. Then there is an a ∈ P such that the
morphism qx = ea − xxl is well defined and qx ∈ Ma|a. Moreover , qx is an
idempotent such that qxx = 0 and xlqx = 0.

(1) Cf. Jacobson [J1].
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Corollary 2.5. Let P be a pararing with units. Let x ∈ P be left in-
vertible and let xl be its left inverse, i.e. there is an a ∈ P such that the
idempotent qx = ea − xxl ∈ Ma|a. Then every left inverse of x is of the
form xl1 = xl + yqx, where yqx exists and belongs to Ma|a. In particular ,
xlk = xkqpx for k ∈ N are right inverses of x.

Theorem 2.4. Let P be a pararing with units. Let x ∈ P be left invert-
ible and let qx = ea − xxl ∈ Ma|a be an idempotent corresponding to a left
inverse xl of x (a ∈ Ma|a ⊂ P ). Whenever xy exists and belongs to Ma|a,
the morphism q̃x = (ea − xy)qx is an idempotent corresponding to a left
inverse x̃l = xl − xlq̃x of x such that x̃lq̃x = 0 and q̃xx = 0.

Definition 2.2. A pararing P has the dual Kaplansky–Jacobson prop-
erty if P has units and the existence of a left inverse of a morphism x ∈ P
implies the existence of infinitely many left inverses. A pararing with this
property will be called briefly a dual K-J-pararing . A dual K-J-paraalgebra
is a paraalgebra which, as a pararing, is a dual K-J-pararing.

This definition and Corollary 2.5 immediately imply

Corollary 2.6. Every pararing with units has the dual Kaplansky–Ja-
cobson property.

Corollary 2.7. Every irreducible pararing with units is a ring with the
dual Kaplansky–Jacobson property.

Corollary 2.8. Every paraalgebra has the dual Kaplansky–Jacobson
property.

If the projectors px (respectively, qx) are well defined for some x ∈ P
then they induce partitions of units. Namely, every morphism of the form
ea − px = xrx (respectively, ea − qx = xxl) is also an idempotent and

xy exists⇒ y = pxy + (ea − px)y (resp. zx exists⇒ z = zqx + z(ea − qx)).

Theorem 2.5. Let P be a K-J pararing. Let x ∈ P be right (left) in-
vertible and let px = ea − xrx ∈ Ma|a (respectively , qx = ea − xxl) be
an idempotent corresponding to a right inverse xr (respectively , a left in-
verse xl) of x (a ∈Ma|a ⊂ P ). Whenever x+ y exists and belongs to Ma|a,
the morphism y is called an x-perturbation if x + y is again right (left)
invertible. Then all morphisms of the form y = x′px (respectively , y = qxx

′,
if they exist) are x-perturbations.

Proof. By Theorem 2.4, (x+ y)xr = xxr + (x′px)xr = ea+x′(pxxr) = ea.
A similar proof for left invertible morphisms.

3. Algebraic Analysis in Kaplansky–Jacobson paraalgebras. Let
X be a linear space over a field F of scalars (of characteristic zero). Suppose
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that D ∈ R(X), i.e. D is a right invertible operator with domD ⊂ X
and range also in X. (For all notions and properties connected with right
invertible operators cf. [PR3].) Note that, by definition, D is a surjective
mapping.

Write N0 = {0} ∪ N, N∞ = {0, 1, 2, . . . ,+∞} and

(3.1) D0 = X, Dk = domDk for k ∈ N, D∞ =
⋂

k∈N0

Dk.

Clearly,

D∞ ⊂ · · · ⊂ Dk = domDk ⊂ · · · ⊂ D1 = domD ⊂ D0 = X

and Dj 6= Dk if domD 6= X (j, k ∈ N∞).
For a given D ∈ R(X) we denote by I the identity operator and

• kerD = {z ∈ domD : Dz = 0}, the kernel of D, also called the space
of constants;
• RD = {R ∈ L0(X) : DR = I}, the set of right inverses of D;
• FD = {F ∈ L0(X) : F 2 = F, FX = kerD, ∃R∈RD FR = 0}, the set

of initial operators for D.

We have domD = RX ⊕ kerD for all R ∈ RD.
F is an initial operator for D ∈ R(X) corresponding to an R ∈ RD, i.e.,

F ∈ FD, if and only if

(3.2) F = I −RD on domD.

Even more, any projection F ′ onto kerD is an initial operator for D corre-
sponding to a right inverse R′ = R− FR′, for any R ∈ RD.

If we know at least one right inverse R then we also have the general
forms of the sets of right inverses and initial operators for a right invertible
operator D. Namely,

RD = {R+ FA : A ∈ L0(X)}, FD = {F (I − AD) : A ∈ L0(X)},
where F is any initial operator for D corresponding to R (cf. Theorem 2.1
and Corollary 2.1).

If two right inverses (respectively, initial operators) commute with each
other, then they are equal.

Write RD = {Rγ}γ∈Γ . Then, by (3.2), RD induces the family FD =
{Fγ}γ∈Γ of initial operators defined by

(3.3) Fγ = I −RγD on domD (γ ∈ Γ ).

Formula (3.3) yields (by a two-lines induction) the Taylor–Gontcharov For-
mula, which plays a fundamental role in our theory. Namely, let {γn} ⊂ Γ be
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an arbitrary sequence. Then for all positive integers N the following identity
holds:

(3.4) I = Fγ0 +
N−1∑

k=0

Rγ0 · · ·Rγk−1FγkD
k +Rγ0 · · ·RγN−1D

N

on domDN (N ∈ N).

Let F be an initial operator for D corresponding to an R ∈ RD. Putting
in (3.4) Rγn = R and Fγn = F (n ∈ N), we obtain the Taylor Formula:

(3.5) I =
n−1∑

k=0

RkFDk +RnDn on domDn (n ∈ N).

Formula (3.5) gives partitions of units, since the operators RkFDk (k =
0, 1, . . . , n− 1), RnDn are projections onto the kernel of Dn. Thus it is easy
to see the following

Theorem 3.1. The paraalgebra

D(Dk;N∞) = L0(Dk 
 Dj ; j, k ∈ N∞)

has the Kaplansky–Jacobson property (cf. Corollary 2.4).

Theorem 2.5 immediately implies

Theorem 3.2. Let A ∈ D(Dk;N∞). Then A is a D-perturbation if
A = TF , where domT ⊃ kerD and F is an initial operator for D cor-
responding to a right inverse R.

Corollary 3.1. Suppose that J is a quasi Fredholm ideal in the paraal-
gebra D(Dk;N∞). Then

JFD = {TF ∈ FD : T ∈ J, domD ⊃ kerD} ⊂ J,
i.e. if A = TF is a D-perturbation with T ∈ J then TF ∈ J and the
operator I + TF has a finite d-characteristic.

The following question arises: Are all D-perturbations of the form TF?
Suppose that D1, . . . ,Dm ∈ R(X) and that the superposition D =

D1 · · ·Dm is well defined. Let Fj be an initial operator for Dj corresponding
to an Rj ∈ RDj (j = 1, . . . ,m). Write

R = Rm · · ·R1, F = Fm +RmFm−1Dm + · · ·+Rm · · ·R2F1D2 · · ·Dm.

Then D ∈ R(X), R ∈ RD and F is an initial operator for D corresponding
to R.

If X is an algebra, D ∈ R(X) and xy, yx ∈ domD whenever x, y ∈
domD then we write D ∈ A(X). If X is a commutative algebra and D ∈
A(X) then we write D ∈ A(X). If D ∈ A(X) then we may write

D(xy) = cD[xDy + (Dx)y] + fD(x, y) for x, y ∈ domD,
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where cD is a scalar depending on D only, fD is called the non-Leibniz
component and fD (by its definition) is a bilinear mapping of domD×domD
into X. In commutative algebras the mapping fD is symmetric. If cD = 1
and fD = 0 then X is said to be a Leibniz algebra, because

D(xy) = xDy + (Dx)y for x, y ∈ domD.

In commutative Leibniz algebras the generalized Leibniz formula holds:

(3.6) Dk(xy) = ckD(xDky + yDkx) + fkD(x, y) for x, y ∈ Dk (k ∈ N),

where

f1
D = fD = 0, fkD(x, y) =

k−1∑

j=1

(
k

j

)
(Dk−jx)(Djy) for k ≥ 2.

Definition 3.1. Suppose that D ∈ R(X). The paraalgebra D(Dk;N∞)
= L0(Dk 
 Dj ; j, k ∈ N∞) is said to be a D-paraalgebra if D ∈ A(X). The
paraalgebra D(Dk;N∞) is a Leibniz paraalgebra if X is a Leibniz algebra.

Clearly, if domD = X then D(Dk;N∞) is an algebra, since

D(Dk;N∞) = L0(Dk 
 Dj ; j, k ∈ N∞) = L0(X → X) = L0(X).

Note that the multiplication in X is not necessarily commutative.
Some results can also be proved for left invertible operators. Write

• Λ(X) is the set of all left invertible operators belonging to L0(X) (we
assume that domT = X for T ∈ Λ(X));
• LT = {S ∈ L(X) : ST = I} is the set of all left inverses to T ∈ Λ(X);
• GT = {G ∈ L(X) : G2 = G, kerG = TX, ∃S∈LT SQ = 0} is the set

of all co-initial operators for T ∈ Λ(X) (cf. Theorem 2.4 and Corol-
lary 2.8).
• I(X) = R(X) ∩ Λ(X) is the set of invertible operators (1).

Clearly, if kerD 6= {0}, then the operator D is right invertible, but not
invertible. Here the invertibility of an operator A ∈ L(X) means that the
equation Ax = y has a unique solution for every y ∈ X. If D ∈ I(X) then
FD = GD = {0} and RD = LD = {D−1}.

The sets defined above are, in a sense, dual. Namely, if D ∈ R(X) and
F ∈ FD corresponds to an R ∈ RD, i.e. FR = 0, then R ∈ Λ(X) and
F ∈ GD corresponds to D ∈ LD.

With these facts one can obtain Calculus and solutions to linear equa-
tions (under appropriate assumptions on the equations considered). If the

(1) Note that the domain of a left invertible operator is the whole space X, so, in this
case, instead of a paraalgebra we have an algebra.
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field F is algebraically closed then solutions of linear equations with scalar
coefficients can be calculated by a decomposition of a rational function into
vulgar fractions (as in Operational Calculus).

Recall that any solution of the equation

Dx = y, y ∈ X, D ∈ R(X),

is of the form x = Ry + z, where R ∈ RD and z ∈ kerD is arbitrary. This
form is independent of the choice of R. Indeed, if R′ ∈ RD and R′ 6= R then
for all x ∈ X we have R′x − Rx ∈ kerD. So a change of R implies only a
change of the constant z.

The equation
Tx = y, y ∈ TX, T ∈ Λ(X),

has a unique solution x = Sy which is independent of the choice of S ∈ LT .
Indeed, by definition, x = STx = Sy and kerT = {0}. Write

Q(D) =
N∑

k=0

QkD
k, where D ∈ R(X), Q0, . . . , QN−1 ∈ L(X), QN = I.

If there is an R ∈ RD such that the operator

Q(I,R) =
N∑

k=0

QkR
N−k

is invertible, then Q(D) ∈ R(X) and RN [Q(I,R)]−1 ∈ RQ(D). Thus an
initial value problem for Q(D), that is, the problem of finding solutions of
the equation Q(D)x = y, y ∈ X, with the initial conditions

FDkx = yk, where yk ∈ kerD are given (k = 0, 1, . . . , N − 1),

has for every y, y0, . . . , yN−1 a unique solution of the form

x = RN [Q(I,R)]−1
[
y −

N−1∑

m=0

( m∑

k=0

QkR
m−k

)
ym

]
+
N−1∑

k=0

Rkyk,

i.e. this problem is well-posed.
An A ∈ L0(X) is said to be a Volterra operator if the operators I − λA

are invertible for every λ ∈ F, i.e. if for every λ ∈ F \ {0} the number 1/λ
is a regular value of A. The set of all Volterra operators belonging to L(X)
will be denoted by V (X).

Main advantages of Algebraic Analysis are: (i) simplifications of proofs due
to an algebraic description of problems under consideration; (ii) algorithms
for solving “similar” problems, although these similarities could be rather
far from one another and very formal, and (iii) several new results even
in the classical case of the operator d/dt, which was, indeed, unexpected
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(for various extensions of the above results, examples and applications cf.
[PR3]–[PR13], [PRW1], [PRW2], [M1], [M2], [N2], [T], [V], and others).

There are several applications to ordinary and partial differential equa-
tions with scalar and variable coefficients, functional-differential equations
and discrete analogues of these equations, for instance, difference equations.
There are also some results for non-linear equations.

It should be pointed out that in Algebraic Analysis a notion of convo-
lution is not necessary. Also there is no need to have a structure of the
Mikusiński field. This, together with the noncommutativity of right inverses
and initial operators, shows the essential distinction of Algebraic Analysis
from Operational Calculus.

Example 3.1. Let X = C[0, 1] over F, where F = R or C, and let D =
d/dt. Then kerD consists of all constant functions. The operators Ra =

� t
a
,

a ∈ [0, 1], are Volterra right inverses of D. Observe that dim kerD = 1. The
family of initial operators induced by Ra is defined as follows: (Fax)(t) =
x(a) for x ∈ X and a ∈ [0, 1]. Consider operators of the form

(F̃ax)(t) =

� 1
a
m(s)x(s) ds

� 1
a
m(s) ds

for x ∈ X, a ∈ [0, 1], m ∈ X,

λFa + (1− λ)F̃b, λFa + (1− λ)Fb, for b ∈ [0, 1], λ ∈ F.
These are also initial operators, because they are projections onto the space
of constants. In several particular cases the corresponding right inverses have
eigenvalues.

If we consider the space C[0, 1] over C then the only continuous Volterra
right inverses are

� t
a
, a ∈ [0, 1]. However, if F = R, then one can find a

Volterra right inverse which is not of that form (cf. [PRR2], [PRR3]).
The Taylor formula applied to a function x ∈ domDN = CN [0, 1] gives a

classical Taylor formula with remainder in integral form. In order to obtain
remainders either in the Lagrange form or in the Cauchy form it is enough to
apply the Darboux property of continuous functions satisfying two different
estimates, without any intermediate value theorem, like the Rolle theorem
or Lagrange theorem.

Observe that X = C[0, 1] is a commutative algebra (a linear ring) with
respect to the usual pointwise multiplication. The operator D satisfies the
so-called Leibniz condition:

D(xy) = xDy + yDx for x, y ∈ domD = C1[0, 1].

By this condition, D(Ck[0, 1];N∞) is a Leibniz paraalgebra.
We point out that the restriction to the interval [0, 1] is not essential. The

same considerations are valid also for any interval [a, b] and for a half-axis
or the real line.
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Example 3.2. Let X = C[0, T ] with multiplication defined by convolu-
tion ∗ and let D = d/dt. Then X is not a Leibniz algebra, for the following
Duhamel condition holds:

(3.7)
d

dt
(x ∗ y)(t) =

(
x ∗ d

dt

)
(t) + x(t)y(0)− x(0)y(t),

x ∈ C[0, T ), y ∈ C1(0, T ).

If we write a similar formula for y ∗ x then, by commutativity, we find

x ∗ y =
1
2

(x ∗ y + y ∗ x) =
1
2

(
x ∗ d

dt
+
d

dt
x ∗ y

)
,

which implies that the non-Leibniz component fD is 0, but cD = 1
2 . Thus

D(Ck[0, T ]; k ∈ N∞) is a paraalgebra, but it is not a Leibniz paraalgebra.

Note that in both examples we have domD ⊂ X but domD 6= X. We
should point out that in order to solve some problems, it is necessary to
assume that the field F of scalars under consideration is algebraically closed .
Clearly, if F = R, we may consider a natural extension to C.

4. Logarithms and antilogarithms in paraalgebras with the Ka-
plansky–Jacobson property. Let X be an algebra (over a field of scalars
F with characteristic zero) and let D ∈ A(X). As in the previous section,
consider the paraalgebra

D(Dk;N∞) = L0(Dk 
 Dj ; j, k ∈ N∞),

which, by Corollary 2.4, has the Kaplansky–Jacobson property. Write I(X)
for the set of all invertible elements in X.

Lemma 4.1. Suppose that a ∈ D(Dk;N∞), a ∈ Ma|a and u,Dx ∈
Ma|a ∩ domD. Then uDx, (Dx)u exist and belong to Ma|a.

Proof. By the axiom A1, the existence of u = uea, ea = e2
a, eaDx implies

the existence of uDx. Moreover, a(uDx)a = (au)[(Dx)]a, i.e. uDx ∈ Ma|a.
A similar proof for (Dx)u.

Definition 4.1. Suppose that a ∈ D(Dk;N∞) and u,Dx ∈ Ma|a ∩
domD for all a such that a ∈ Ma|a. Let Ωr, Ωl : domD → 2domD be
multifunctions defined as follows: for u ∈ domD,

Ωru = {x ∈ domD : uDx exists⇒ Du = uDx},(4.1)

Ωlu = {x ∈ domD : (Dx)u exists⇒ Du = (Dx)u}.(4.2)

The equations

(4.3)
Du = uDx for (u, x) ∈ graphΩr,

Du = (Dx)u for (u, x) ∈ graphΩl



182 D. Przeworska-Rolewicz

are said to be the right and left basic equations, respectively. Clearly,

Ω−1
r x = {u ∈ domD : uDx exists⇒ Du = uDx},(4.4)

Ω−1
l x = {u ∈ domD : (Dx)u exists⇒ Du = (Dx)u}(4.5)

for x ∈ domD.
If D ∈ A(X) then Ωr = Ωl and we write Ωr = Ωl = Ω. Clearly, in this

case we have domΩr = domΩl = domΩ.

The multifunctions Ωr, Ωl, Ω are well defined. If D is right (left) in-
vertible or invertible, their domains are non-empty (cf. [PR4] for the case of
algebras). By definition, if x, y ∈ Ωr (respectively, Ωl, Ω) then x−y ∈ kerD,
i.e. it is a constant . Moreover, these multifunctions map kerD into it-
self.

Suppose that (ur, xr) ∈ graph Ωr, (ul, xl) ∈ graph Ωl, Lr, Ll are selec-
tors of Ωr, Ωl, respectively, and Er, El are selectors of Ω−1

r , Ω−1
l , respec-

tively. By definition, Lrur ∈ domΩ−1
r , Erxr ∈ domΩr, Llul ∈ domΩ−1

l ,
Elxl ∈ domΩl and the following equations are satisfied:

Dur = urDLrur, DErxr = (Erxr)Dxr;

Dul = (DLlul)ul, DElxl = (Dxl)Elxl.

Let F be an initial operator for D corresponding to an R ∈ RD and let
ur, ul ∈ I(X). Then these equations can be written in equivalent forms

Lrur = R[u−1
r Dur] + FLrur, Erxr −R[(Erxr)(Dxr)] = FErxr;

Llul = R[(Dul)u−1
l ] + FLlul, [I −R(Dxl)]Elxl = FElxl.

Definition 4.2. Any invertible selector Lr of Ωr is said to be a right
logarithmic mapping and its inverse Er = L−1

r is said to be a right antilog-
arithmic mapping . If (ur, xr) ∈ graph Ωr and Lr is an invertible selector of
Ωr then the element Lrur is said to be a right logarithm of ur and Erxr
is said to be a right antilogarithm of xr. By G[Ωr] we denote the set of all
pairs (Lr, Er), where Lr is an invertible selector of Ωr and Er = L−1

r . Simi-
larly, any invertible selector Ll of Ωl is said to be a left logarithmic mapping
and its inverse El = L−1

l is said to be a left antilogarithmic mapping . If
(ul, xl) ∈ graph Ωl and Ll is an invertible selector of Ωl then the element
Llu is said to be a left logarithm of ul and Elxl is said to be a left antiloga-
rithm of xl. By G[Ωl] we denote the set of all pairs (Ll, El), where Ll is an
invertible selector of Ωl and El = L−1

l .
If D ∈ A(X) then Ωl = Ωr = Ω and we write

Lr = Ll = L, Er = El = E, (L,E) ∈ G[Ω].

Selectors L,E of Ω are said to be logarithmic and antilogarithmic mappings,
respectively. For any (u, x) ∈ graph Ω, (L,E) ∈ G[Ω] the elements Lu,Ex
are said to be the logarithm of u and the antilogarithm of x, respectively.
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Note that in the paraalgebra defined in Example 3.2 invertible selectors
of the multifunction Ω, hence also logarithms, do not exist.

Clearly, by definition, for all (Lr, Er) ∈ G[Ωr], (ur, xr) ∈ graph Ωr,
(Ll, El) ∈ G[Ωl], (ul, xl) ∈ graph Ωl we have

(4.6) ErLrur = ur, LrErxr = xr; ElLlul = ul, LlElxl = xl;

(4.7)
DErxr = (Erxr)Dxr, Dur = urDLrur;

DElxl = (Dxl)(Elxl), Dul = (DLlul)ul.

Moreover,

(4.8) uDLru− (DLlu)u = 0 for all u ∈ domΩr ∩ domΩl.

If D ∈ R(X) (respectively, Λ(X), I(X)) then the right (left) logarithm of
zero is not defined. On the other hand, Er(0), El(0), E(0) ∈ kerD.

Definition 4.3. A right logarithmic mapping Lr (left logarithmic map-
ping Ll, logarithmic mapping L, respectively) is said to be of the exponential
type if whenever uv exists, then

Lr(uv) = Lru+ Lrv for u, v ∈ domΩr;

Ll(uv) = Llu+ Llv for u, v ∈ domΩl;

L(uv) = Lu+ Lv for u, v ∈ domΩ,

respectively.

Theorem 4.1. Let D ∈ R(X).

(i) If D ∈ A(X), (Lr, Er) ∈ G[Ωr], (Ll, El) ∈ G[Ωl] and Lr (Ll, re-
spectively) is of the exponential type then

Er(x+ y) = (Erx)(Ery), El(x+ y) = (Elx)(Ely),

whenever x, y ∈ domΩ−1
r (x, y ∈ domΩ−1

l , respectively);
(ii) if D ∈ A(X), (L,E) ∈ G[Ω] and L is of the exponential type then

E(x+ y) = (Ex)(Ey) for x, y ∈ domΩ−1;

(iii) if Lr ∈ M(X) (1) then Er ∈ M(X), if Ll ∈ M(X) then El ∈
M(X), if L ∈M(X) then E ∈M(X);

(iv) if D ∈ A(X) ∩ML(X) then L,E ∈M(X).

By Theorem 4.1(ii), if left (right) logarithmic mappings are of the expo-
nential type, then the corresponding left (right) antilogarithmic mappings

(1) By M(X) we denote the class of all multiplicative mappings of X into itself, i.e.
mappings A such that A(xy) = (Ax)(Ay) whenever xy and (Ax)(Ay) exist.
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satisfy the same functional equation as the usual exponential functions ceαt,
c, α ∈ R (cf. M. Kuczma [K])). A similar conclusion for logarithmic map-
pings.

Definition 4.4. Let D ∈ A(X). By Lgr(D) (Lgl(D), respectively)
we denote the class of those D-paraalgebras with units ea ∈ domΩr
(e∈ domΩl, respectively), a ∈Ma|a, for which there exist invertible selectors
of Ωr (Ωl, respectively), i.e. there exist (Lr, Er) ∈ G[Ωr] ((Ll, El) ∈ G[Ωl],
respectively). If D ∈ A(X) then Lgr(D) = Lgl(D). This class is denoted by
Lg(D).

Theorem 4.2. Let either X ∈ Lgr(D) or X ∈ Lgl(D). Let R ∈ RD
and g = Re. Then g ∈ domΩr (g ∈ domΩl, g ∈ domΩ, respectively) if
g ∈ I(X). In other words: a right logarithm (left logarithm, logarithm) of
g = Re exists if g is invertible.

Theorem 4.3. Let X ∈ Lgr(D) (X ∈ Lgl(D), X ∈ Lg(D), respec-
tively). Then right (left) logarithms and antilogarithms (logarithms and an-
tilogarithms, respectively) are uniquely determined up to a constant. These
constants are additive for right (left) logarithms and logarithms and multi-
plicative for right (left) antilogarithms and antilogarithms.

Theorem 4.4. Suppose that D ∈ A(X), X ∈ Lg(D) and (L,E) ∈ G[Ω].
Then L is of the exponential type if and only if X is a Leibniz algebra.

In other words: In commutative algebras with unit the Leibniz condition
is a necessary and sufficient condition for logarithms to be of the exponen-
tial type. Thus, by Proposition 2.6, the Leibniz condition is a necessary and
sufficient condition for the corresponding antilogarithms to satisfy the clas-
sical functional equation for exponential functions: E(x + y) = (Ex)(Ey)
whenever x, y ∈ domΩ−1 (cf. Theorem 4.2).

Theorem 4.4 motivates the use of the name antilogarithmic mapping for
the mapping inverse to a logarithmic mapping, since, in general, antiloga-
rithmic mappings are not exponentials.

Theorem 4.5. Suppose that D ∈ R(X) and X ∈ Lg(D) is a Leibniz
algebra with unit e. Let u ∈ domD. Then u ∈ I(X) if and only if u ∈
domΩ.

In other words: An essential property of Leibniz commutative algebras
with right invertible operators is that their elements have logarithms if and
only if they are invertible. Note that in noncommutative algebras (hence also
paraalgebras) Theorem 4.5 does not hold, as shown by a counterexample of
A. Di Bucchianico (cf. [DB1], [DB2], also [PR4]).

Proofs are similar to those of [PR4] and following papers (cf. [PR7]–
[PR13]).
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