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Compact and continuous embeddings of
logarithmic Bessel potential spaces

by

David E. Edmunds (Brighton), Petr Gurka (Praha)
and Bohuḿır Opic (Praha)

Abstract. We establish compact and continuous embeddings for Bessel potential
spaces modelled upon generalized Lorentz–Zygmund spaces. The target spaces are either
of Lorentz–Zygmund or Hölder type.

1. Introduction. In a series of recent papers [EGO1–6] a systematic
investigation of embeddings of Bessel potential spaces modelled upon gen-
eralized Lorentz–Zygmund (GLZ) spaces was carried out. (Bessel potential
spaces of this kind are often called logarithmic Bessel potential spaces.) For
a survey of our results we refer to [O]. In [N] some of these results were
extended to the case when GLZ spaces are replaced by Lorentz–Karamata
spaces.

Let p, q ∈ (0,∞], m,n ∈ N, α1, . . . , αm ∈ R and let Ω be a domain in Rn.
Then Lp,q;α1,...,αm(Ω) is the GLZ space defined to be the set of all functions
f on Ω such that

∥∥∥t1/p−1/q
( m∏

j=1

`
αj
j (t)

)
f∗(t)

∥∥∥
Lq(0,∞)

<∞.

Here f∗ stands for the non-increasing rearrangement of f and

(1.1) `1(t) := 1 + |log t|, `j(t) := `1(`j−1)(t) (j > 1), t ∈ (0,∞),

are the logarithmic functions. These spaces contain many familiar objects
including Lebesgue, Lorentz, Zygmund and Lorentz–Zygmund spaces. Cor-
responding to each space X = X(Rn) = Lp,q;α1,...,αm(Rn) with p ∈ (1,∞),
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q ∈ [1,∞] and to each σ > 0, the logarithmic Bessel potential space
HσX is defined to be the set of all convolutions gσ ∗ f , where gσ is the
usual Bessel potential kernel and f ∈ X; this space is (quasi-)normed by
means of the (quasi-)norm of X. When σ ∈ N and p, q ∈ (1,∞), HσX
turns out to coincide with W σX, the Sobolev space of order σ modelled
upon X.

Embedding theorems for HσX obtained in [EGO1–6] extend the classi-
cal Sobolev theorems and give embeddings into GLZ spaces, Orlicz spaces
of multiple exponential type or Hölder-like spaces, depending on the pa-
rameter values. Although many results were obtained, the research is not
yet complete. For example, in the sublimiting situation (when 0 < σ < n
and 1 < p < n/σ) we established sharp continuous embeddings into GLZ
spaces and proved that such embeddings are not compact. On the other
hand, with the classical Sobolev embeddings in mind, we might expect that
these embeddings become compact if the parameters involved in the target
spaces are restricted in a proper way. One of our aims is to show that this is
really the case. While in the classical situation compactness is achieved by
restricting the parameter on the power-type level, in our general situation
we show (cf. Theorem 3.1 and Corollaries 3.2) that the same effect is caused
by each shift (in an appropriate way) of any parameter of the logarithmic
levels. Similar results are obtained in the limiting situation (when 0 < σ < n
and p = n/σ)—cf. Theorem 3.4 and Corollaries 3.5.

Another question which we answer concerns embeddings into classes of
λ(·)-Hölder continuous functions. Such embeddings for spaces HσX(Rn), X
still being a GLZ space, were established in [EGO4] and their sharpness
was proved in [EGO6], both provided that σ > 1. The second aim of this
paper is to analyse the situation when σ ∈ (0, 1]. In such a case one cannot
use the method in which a lifting argument (based on [EGO4; Lemma 4.1]
which extends the Calderón result [Ca; Thm. 7]) is applied to reduce the
superlimiting case to the sublimiting one. Nevertheless, we have succeeded in
establishing embeddings ofHσX into λ(·)-Hölder classes in the superlimiting
case even when σ ∈ (0, 1]—cf. Section 4.

The third goal of this paper concerns the embedding of HσX(Rn), X
being the GLZ space Lp,q;α1,...,αm , into spaces of λ(·)-Hölder continuous
functions in the limiting situation when σ = n/p, the logarithmic exponents
αj , j = 1, . . . ,m − 1, have limiting values 1/q′, and αm > 1/q′. Such em-
beddings are established in Theorem 4.3. As a corollary, we obtain an inter-
esting result which has no analogue in the classical theory of embeddings of
Sobolev–Orlicz spaces. Namely, Theorem 4.3 implies that the Sobolev–Orlicz
space W kLn/k(logL)α(Rn), k ∈ N and k < n (the Sobolev space modelled
upon the Orlicz space Ln/k(logL)α(Rn) ≡ LΦ(Rn), where the Young func-
tion satisfies Φ(t) = [t (1 + |log t|)α]n/k, t > 0), is continuously embedded
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into the λ(·)-Hölder class C0,λ(·)(Rn) with

(1.2) λ(t) = (1 + |log t|)−α+1−k/n, t > 0,

provided that α > 1−k/n (the function λ(t) tends to 0 as t→ 0+ more slowly
than any function tε with ε > 0). This complements Corollary 4.6 in [EGO4]
and illustrates the important role of the logarithmic term (logL)α involved
in the Sobolev–Orlicz space W kLn/k(logL)α(Rn). (By the classical results,
the Sobolev space W k,n/k(Rn) = W kLn/k(Rn), k ∈ N and k < n, is not even
continuously embedded into the space L∞(Ω) for any domain Ω ⊂ Rn.) If
k = 1 and Rn is replaced by a bounded strongly Lipschitz domain Ω ⊂ Rn,
then such a result also follows from [Ci; Thm. 3.15]. (Recall that Theo-
rem 3.15 of [Ci] is stronger than Theorem 8.36 of [A].) The embedding men-
tioned above (with λ from (1.2)) should also be compared with the following
corollary of [EGO4; Thm. 4.11] (which extends the result of [BW] about “al-
most Lipschitz continuity”): W k+1Ln/k(logL)α(Rn) ↪→ C0,λ(·)(Rn), k ∈ N
and k < n, with

λ(t) = t (1 + |log t|)−α+1−k/n, t > 0,

provided that α < 1− k/n.
The paper is organized as follows. Section 2 contains the notation and

auxiliary results. Compactness of sublimiting and limiting embeddings is
treated in Section 3, while Section 4 is devoted to embeddings into classes
of λ(·)-Hölder continuous functions. Some auxiliary results of Section 2 are
proved in the Appendix.

2. Notation and preliminaries. By c, C, C1, C2 etc. we denote pos-
itive constants independent of appropriate quantities. We write A . B (or
A & B) if A ≤ cB (resp. cA ≥ B), and A ≈ B if both A . B and A & B.
For p ∈ [1,∞], the conjugate number p′ is defined by 1/p + 1/p′ = 1 with
the convention that 1/∞ = 0. Throughout the paper we also adopt the
convention that 1/0 = +∞.

Let Ω be a measurable subset of Rn (with respect to n-dimensional
Lebesgue measure); by |Ω|n we mean its (n-)volume while χΩ stands for the
characteristic function of Ω. The volume and the surface area of the unit
ball Bn(0, 1) in Rn are denoted by ωn and by sn, respectively. The symbol
M(Ω) is used to denote the family of all scalar-valued (real or complex)
measurable functions on the set Ω; M+(Ω) stands for the subset of M(Ω)
consisting of those f which are non-negative a.e. in Ω. If Ω = (a, b) ⊆ R,
we write simply M(a, b) and M+(a, b) instead of M((a, b)) and M+((a, b)).
The symbol M+(a, b ; ↓) stands for the collection of all f ∈M+(a, b) which
are non-increasing on (a, b). Finally, by W(Ω) (or by W(a, b)) we mean the
class of weight functions on Ω (resp. on (a, b)) consisting of all measurable
functions which are positive a.e. on Ω (resp. on (a, b)).
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Embeddings. Given two quasi-Banach spaces X and Y , we write X = Y
(and say that X and Y coincide) if X and Y are equal in the algebraic
and the topological sense (their quasi-norms are equivalent). The symbol
X ↪→ Y or X ↪→↪→ Y means that X ⊂ Y and the natural embedding of X
in Y is continuous or compact, respectively.

Spaces of continuous functions. By the symbol CB(Ω) we denote the
space of bounded continuous functions on a domain Ω ⊂ Rn, that is,

CB(Ω) := C(Ω) ∩ L∞(Ω),

equipped with the L∞(Ω) norm.
Let L be the class of all continuous functions λ: (0,∞)→ (0,∞) which

are increasing on some interval (0, δ), with δ = δ(λ) > 0, and satisfy
limλ→0+ λ(t) = 0. Let λ ∈ L and let Ω be a domain in Rn. The space
C0,λ(·)(Ω) of λ(·)-Hölder continuous functions consists of those functions
u ∈ C(Ω) for which the norm

‖u‖C0,λ(·)(Ω) := sup
x∈Ω
|u(x)|+ sup

x,y∈Ω
x6=y

|u(x)− u(y)|
λ(|x− y|)

is finite; here C(Ω) stands for the family of all functions which are bounded
and uniformly continuous on Ω. As usual, by the space of Hölder continuous
functions with exponent α ∈ (0, 1] we mean the space C0,α(Ω) := C0,λ(·)(Ω),
where λ(t) = tα, t > 0; when α = 1 this space is usually called the space of
Lipschitz continuous functions. For more information about such spaces see
[A] or [KJF].

Lorentz-type spaces. Let p, q ∈ (0,∞], let Ω be a domain in Rn and let
b ∈ W(0, |Ω|n) be such that

(2.1) Bp,q;b(t) := ‖τ1/p−1/q b(τ)‖q;(0,t) <∞ for all t ∈ (0, |Ω|n),

where ‖ · ‖q;E is the usual Lq-(quasi-)norm on the measurable set E. The
Lorentz-type space Lp,q;b(Ω) consists of all functions f ∈ M(Ω) for which
the quantity

(2.2) ‖f‖p,q;b;Ω := ‖t1/p−1/qb(t)f∗(t)‖q;(0,|Ω|n)

is finite; here f∗ denotes the non-increasing rearrangement of f given by

(2.3) f∗(t) = inf{λ > 0; |{x ∈ Ω; |f(x)| > λ}|n ≤ t}, t ≥ 0.

We shall also need the inequality (cf. [BS; p. 41])

(2.4) (f + g)∗(t) ≤ f∗(t/2) + g∗(t/2), t ≥ 0,
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and the maximal function f∗∗ of f∗ defined by

f∗∗(t) =
1
t

t�

0

f∗(s) ds, t > 0.

(Clearly, f∗ ≤ f∗∗; we refer to [BS; Chapt. 2] for more properties of f ∗

and f∗∗.)
One can show that the functional (2.2) is a quasi-norm on Lp,q;b(Ω) if

and only if the function Bp,q;b given by (2.1) satisfies

(2.5) Bp,q;b ∈ ∆2,

that is, Bp,q;b(2t) . Bp,q;b(t) for all t ∈ (0, |Ω|n/2). (This follows, e.g., from
[CS; Cor. 2] if q ∈ (0,∞). When q = ∞, then arguments similar to those
used in the proof of [CS; Cor. 2] together with inequality (2.4) and the fact
that

(2.6) ‖f‖p,∞;b;Ω = ‖Bp,∞;b(t) f∗(t)‖∞,(0,|Ω|n) for all f ∈ Lp,∞;b(Ω)

yield the result. Note also that equality (2.6) follows on interchanging the
essential suprema involved on its right-hand side.)

In particular, one can easily verify that (2.5) is satisfied provided that

(2.7) b(2t) . b(t) for a.e. t ∈ (0, |Ω|n/2).

Moreover, since the relation b ∈ W(0, |Ω|n) yields Bp,q;b(t) > 0 for all t ∈
(0, |Ω|n), one can prove that the space Lp,q;b(Ω) is complete (cf. the proof
of Proposition 2.2.9 in [CRS]; if q =∞ one makes use of (2.6) again).

If q ∈ [1,∞), the spaces Lp,q;b(Ω) are particular cases of the classical
Lorentz spaces Λq(w) introduced by Lorentz [L] (see also [DL]). On the
other hand, if b is a slowly varying function (cf. [GOT]), then Lp,q;b(Ω) is
the Lorentz–Karamata space. In particular, if

b(t) =
m∏

j=1

`
αj
j (t), t > 0,

where m ∈ N, α1, . . . , αm ∈ R and the logarithmic functions are defined
on (0,∞) by (1.1), then the space Lp,q;b(Ω) coincides with the generalized
Lorentz–Zygmund (GLZ) space Lp,q;α1,...,αm(Ω) from [EGO4]. Let us note
that when each αj = 0, the space Lp,q;α1,...,αm(Ω) is the Lorentz space
Lp,q(Ω), which is just the Lebesgue space Lp(Ω) when p = q. If m = 1,
then Lp,q;α1(Ω) is the Lorentz–Zygmund space Lp,q(logL)α1(Ω) introduced
in [BR] which, when p = q, is the Zygmund class Lp(logL)α1(Ω). For more
information about GLZ spaces Lp,q;α1,...,αm(Ω) see [EGO1–6] and [OP].

If Ω = Rn, we sometimes omit this symbol in the notation and, for ex-
ample, write ‖ · ‖p,q;α1,...,αm or Lp,q;α1,...,αm instead of ‖ · ‖p,q;α1,...,αm;Rn or
Lp,q;α1,...,αm(Rn), respectively.
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Convergence in measure. Let Ω be a measurable subset of Rn. We say
that the sequence {ui}∞i=1 of functions converges in measure to a measurable
function u on Ω (notation ui

meas−−→ u on Ω) if, for every ε > 0,

lim
i→∞

|{x ∈ Ω; |ui(x)− u(x)| ≥ ε}|n = 0.

Uniform absolute continuity. Let Y = Y (Ω) be a Lorentz-type space.
We say that a subset K of Y has uniformly absolutely continuous norm in
the space Y , written K ⊂ UAC(Y ), if for every ε > 0 there exists δ > 0
such that

(2.8) ‖uχM‖Y ≤ ε for all u ∈ K and every M ⊂ Ω with |M |n < δ.

We shall need the following two assertions.

Lemma 2.1. Let Ω be a domain in Rn. Suppose that a sequence {ui}i ⊂
L1(Ω) converges to u in L1(Ω). Then ui

meas−−→ u on Ω.

For the proof see [A; proof of Theorem 8.23].

Lemma 2.2. Let K ⊂ UAC(Y ), where Y = Lp,q;b(Ω) is a Lorentz-type
space such that Bp,q;b ∈ ∆2 and ‖χΩ‖Y ≡ Bp,q;b(|Ω|n) < ∞. Then every
sequence {ui}i ⊂ K which converges in measure on Ω converges also in the
quasi-norm of Y .

Proof. Take ε > 0 and {ui}i ⊂ K. Since K ⊂ UAC(Y ), there is δ > 0
such that (2.8) holds with u replaced by ui (for all i). Assume that ui

meas−−→u
on Ω and put

Ωij(ε) = {x ∈ Ω; |ui(x)− uj(x)| ≥ ε}, i, j ∈ N.
Since Ωij(ε) ⊆ Ωi(ε/2) ∪Ωj(ε/2), where

Ωk(ε/2) = {x ∈ Ω; |uk(x)− u(x)| ≥ ε/2}, k ∈ N,
the assumption ui

meas−−→ u on Ω implies that there is N ∈ N such that
|Ωij(ε)|n < δ for every i, j ∈ N, i, j > N . Thus, using also the lattice
property of Y and the inequality ‖χΩ‖Y <∞, we obtain

‖ui − uj‖Y . ‖(ui − uj)χΩij(ε)‖Y + ‖(ui − uj)χΩ\Ωij(ε)‖Y
. ‖ui χΩij(ε)‖Y + ‖uj χΩij(ε)‖Y + ‖(ui − uj)χΩ\Ωij(ε)‖Y
. ε+ ε+ ε‖χΩ‖Y . ε.

Consequently, {ui}i is a Cauchy sequence in Y and the result follows since
Y is complete.

Logarithmic Bessel potential spaces. The Bessel kernel gσ, σ > 0, is
defined to be the function on Rn whose Fourier transform ĝσ is

ĝσ(ξ) = (2π)−n/2(1 + |ξ|2)−σ/2, ξ ∈ Rn,
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where by the Fourier transform f̂ of a function f we mean

f̂(x) = (2π)−n/2
�

Rn
e−ix·yf(y) dy, x ∈ Rn.

Let σ > 0, p ∈ (1,∞), q ∈ [1,∞], α1, . . . , αm ∈ R. The logarithmic Bessel
potential space HσLp,q;α1,...,αm(Rn) is defined by

(2.9) HσLp,q;α1,...,αm(Rn) := {u = gσ ∗ f ; f ∈ Lp,q;α1,...,αm(Rn)},
and is equipped with the (quasi-)norm

(2.10) ‖u‖σ;p,q;α1,...,αm := ‖f‖p,q;α1,...,αm .

(By f ∗ g we mean the convolution of functions f and g.) If Ω ⊂ Rn is a
domain, then

HσLp,q;α1,...,αm(Ω) := {ũ|Ω; ũ ∈ HσLp,q;α1,...,αm(Rn)}
and this space is endowed with the (quasi-)norm

‖u‖σ;p,q;α1,...,αm;Ω := inf{‖ũ‖σ;p,q;α1,...,αm ; u = ũ|Ω}.

Properties of the Bessel kernel. Let us summarize the basic properties
of the Bessel kernel gσ:

(2.11) gσ is a positive, integrable function which is analytic except at the
origin;

(2.12) gσ(x) ≤ C1|x|σ−ne−C2|x| for 0 < σ < n and all x ∈ Rn;
(2.13) gσ(x) ≈ |x|σ−n as |x| → 0 if 0 < σ < n;

(2.14)
∣∣ ∂
∂xj

gσ(x)
∣∣ ≤ C|x|σ−n−1 for 0 < σ ≤ n + 1, j ∈ {1, . . . , n}, x ∈

Rn \ {0};
(2.15) g∗σ(t) . t(σ−n)/ne−Ct

1/n
for 0 < σ < n and all t > 0;

(2.16) g∗∗σ (t) .
{
t(σ−n)/n for all t ∈ (0, 1)

t−1 for all t > 1
and 0 < σ < n.

For the proof of (2.11)–(2.14) see [AMS], for (2.15) and (2.16) see [EGO2].

O’Neil’s inequality. Let f, g ∈M(Rn). Then

(f ∗ g)∗(t) ≤ (f ∗ g)∗∗(t) ≤ tf∗∗(t)g∗∗(t) +
∞�

t

f∗(τ)g∗(τ) dτ, t > 0.

For the proof we refer to [O’N] or [Z].

Together with (2.15) and (2.16), this immediately yields the following
result.
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Corollary 2.3. Let 0 < σ < n. Then there is a positive constant c
such that , for all f ∈M(Rn),

(gσ ∗ f)∗(t) ≤ c
(
t(σ−n)/n

t�

0

f∗(τ) dτ +
∞�

t

f∗(τ)τ (σ−n)/ne−Cτ
1/n

dτ
)

for all t ∈ (0, 1],

and

(gσ ∗ f)∗(t) ≤ c
(
f∗∗(t) +

∞�

t

f∗(τ)τ (σ−n)/ne−Cτ
1/n

dτ
)

for all t ∈ (1,∞).

Hardy inequalities. Let 1 ≤ q ≤ ∞, −∞ ≤ a < b ≤ ∞ and let w1, w2, v ∈
W(a, b).

(i) The inequality

(2.17)
∥∥∥w1(t)

t�

a

w2(τ)ϕ(τ) dτ
∥∥∥
q;(a,b)

. B1(a, b)‖vϕ‖q;(a,b)

holds for all ϕ ∈M+(a, b) if and only if

B1(a, b) := sup
a<R<b

‖w1‖q;(R,b)‖w2v
−1‖q′;(a,R) <∞.

(ii) The inequality

(2.18)
∥∥∥w1(t)

b�

t

w2(τ)ϕ(τ) dτ
∥∥∥
q;(a,b)

. B2(a, b)‖vϕ‖q;(a,b)

holds for all ϕ ∈M+(a, b) if and only if

B2(a, b) := sup
a<R<b

‖w1‖q;(a,R)‖w2v
−1‖q′;(R,b) <∞.

For the proof we refer to [OK; pp. 13, 55 and 63].

We shall make use of the following lemma whose proof can be found in
the Appendix.

Lemma 2.4. Let 0 < σ < n, 1 < p < ∞, q ∈ [1,∞], m ∈ N and
α1, . . . , αm ∈ R. Let Ω be a bounded domain in Rn. Then

HσLp,q;α1,...,αm(Rn) ↪→↪→ L1(Ω). (1)

Difference operator. For each h ∈ Rn, the first difference operator ∆h is
defined on functions on Rn by

∆hf(x) = f(x+ h)− f(x), x ∈ Rn.

(1) This means that the mapping u 7→ u|Ω from HσLp,q;α1,...,αm (Rn) into L1(Ω) is
compact.
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We shall need the following two estimates involving the first difference of gσ.
For their proofs see the Appendix.

Lemma 2.5. Let 0 < σ < n, max{1, n/σ} < p, and p < n/(σ − 1) if
σ > 1. Assume that 1 < q < ∞, m ∈ N and α1, . . . , αm ∈ R. Then, for all
h ∈ Rn with |h| > 0,

‖∆hgσ‖p′,q′;−α1,...,−αm . |h|σ−n/p
m∏

j=1

`
−αj
j (|h|).

Lemma 2.6. Let 0 < σ < n and p = n/σ. Assume that 1 < q < ∞,
m ∈ N,

(2.19) αm > 1/q′ and , if m > 1, let αj = 1/q′ for j = 1, . . . ,m− 1.

Then, for all h ∈ Rn with |h| > 0,

‖∆hgσ‖p′,q′;−α1,...,−αm . `1/q
′−αm

m (|h|).

3. Compact embeddings into Lorentz-type spaces

Theorem 3.1. Let 0 < σ < n, 1 < p < n/σ, 1/pσ = 1/p − σ/n,
q ∈ [1,∞], m ∈ N and α1, . . . , αm ∈ R. Let Ω be a bounded domain in Rn.
Assume that b ∈ W(0, |Ω|n) is such that Bpσ ,q;b ∈ ∆2, Bpσ ,q;b(|Ω|n) < ∞
and

(3.1) lim
t→0+

b(t)∏m
j=1 `

αj
j (t)

= 0.

Then
HσLp,q;α1,...,αm(Rn) ↪→↪→ Lpσ,q;b(Ω).

Proof. By [EGO4; Thm. 4.8],

(3.2) HσLp,q;α1,...,αm(Rn) ↪→ Lpσ,q;α1,...,αm(Ω).

Put
K = {u ∈ HσLp,q;α1,...,αm ; ‖u‖σ;p,q;α1,...,αm ≤ 1}.

If {u′i}i ⊂ K, then Lemma 2.4 implies that there is a subsequence {ui}i ⊂
{u′i}i such that ui → u in L1(Ω). Thus, by Lemma 2.1, {ui}i converges
to u in measure on Ω. In view of Lemma 2.2, it is sufficient to show that
K ⊂ UAC(Lpσ,q;b(Ω)).

Let ε > 0. By (3.1), there is δ ∈ (0, |Ω|n) such that

(3.3) b(t) ≤ ε
m∏

j=1

`
αj
j (t) for all t ∈ (0, δ).
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Assume that u ∈ K and let M ⊂ Ω satisfy |M |n < δ. Since u = gσ ∗ f ,
where ‖f‖p,q;α1,...,αm ≤ 1 (cf. (2.9), (2.10)) and

(3.4) (uχM )∗ ≤ u∗χ(0,δ),

we deduce from (3.3) and (3.2) that

‖uχM‖pσ,q;b;Ω ≤ ‖t1/pσ−1/qb(t)u∗(t)‖q;(0,δ)

≤ ε
∥∥∥t1/pσ−1/q

( m∏

j=1

`
αj
j (t)

)
u∗(t)

∥∥∥
q;(0,δ)

. ε‖f‖p,q;α1,...,αm ≤ ε
and the result follows.

Corollaries 3.2. Let 0 < σ < n, 1 < p < n/σ, 1/pσ = 1/p − σ/n,
q ∈ [1,∞], m ∈ N and α1, . . . , αm ∈ R. Let Ω be a bounded domain in Rn.

(i) Assume that βj ∈ Rn, j ∈ {1, . . . ,m}, satisfy

either β1 < α1

or β1 = α1, β2 < α2

...

or β1 = α1, β2 = α2, . . . , βm−1 = αm−1, βm < αm.

Then
HσLp,q;α1,...,αm(Rn) ↪→↪→ Lpσ,q;β1,...,βm(Ω).

(ii) Assume that 0 < p < pσ and βj ∈ Rn, j ∈ {1, . . . ,m}. Then

HσLp,q;α1,...,αm(Rn) ↪→↪→ Lp,q;β1,...,βm(Ω).

Proof. For t > 0, put

b(t) =





m∏

j=1

`
βj
j (t) in case (i),

t1/p−1/pσ
m∏

j=1

`
βj
j (t) in case (ii).

Then the result follows from Theorem 3.1.

Remark 3.3. The results of Theorem 3.1 and Corollary 3.2(i) are opti-
mal. This follows from the fact that the embedding

HσLp,q;α1,...,αm(Rn) ↪→ Lpσ,q;α1,...,αm(Ω).

is continuous (and sharp) but not compact (cf. [EGO6; Thm. 3.1]).

Theorem 3.4. Let 0 < σ < n, p = n/σ, q ∈ [1,∞], m ∈ N, αm <
1/q′, βm = αm − 1 and , if m > 1, let α1 = · · · = αm−1 = 1/q′ and
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β1 = · · · = βm−1 = −1/q. Let Ω be a bounded domain in Rn. Assume that
b ∈ W(0, |Ω|n) is such that B∞,q;b ∈ ∆2, B∞,q;b(|Ω|n) <∞ and

(3.5) lim
t→0+

b(t)
∏m
j=1 `

βj
j (t)

= 0.

Then
HσLp,q;α1,...,αm(Rn) ↪→↪→ L∞,q;b(Ω).

Proof. Put X = Lp,q;α1,...,αm(Rn). As in the proof of Theorem 3.1, it is
sufficient to verify that

K := {u ∈ HσX; ‖u‖HσX ≤ 1} ⊂ UAC(L∞,q;b(Ω)).

Let ε > 0. By (3.5), there is δ ∈ (0,min{1, |Ω|n}) such that

(3.6) b(t) ≤ ε
m∏

j=1

`
βj
j (t) for all t ∈ (0, δ).

Assume that u ∈ K and let M ⊂ Ω satisfy |M |n < δ. From (3.4) and (3.6)
we obtain

(3.7) ‖uχM‖∞,q;b;Ω ≤ ε
∥∥∥t−1/q

( m∏

j=1

`
βj
j (t)

)
u∗(t)

∥∥∥
q;(0,δ)

.

Consequently, since u = gσ ∗ f with ‖f‖X ≤ 1, it is enough to prove that

(3.8)
∥∥∥t−1/q

( m∏

j=1

`
βj
j (t)

)
u∗(t)

∥∥∥
q;(0,δ)

. ‖f‖X for all f ∈ X.

Such an estimate is a consequence of [N; Cor. 5.2], where a more general
result is proved in the context of Bessel potential spaces modelled upon
Lorentz–Karamata spaces.

For the convenience of the reader, we give a proof of (3.8) here. By
Corollary 2.3,

(3.9)
∥∥∥t−1/q

( m∏

j=1

`
βj
j (t)

)
u∗(t)

∥∥∥
q;(0,δ)

. J1 + J2 + J3,

where

J1 :=
∥∥∥t−1/q

( m∏

j=1

`
βj
j (t)

)
t(σ−n)/n

t�

0

f∗(τ) dτ
∥∥∥
q;(0,δ)

,

J2 :=
∥∥∥t−1/q

( m∏

j=1

`
βj
j (t)

) δ�

t

f∗(τ)τ (σ−n)/n dτ
∥∥∥
q;(0,δ)

,
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J3 :=
∥∥∥t−1/q

( m∏

j=1

`
βj
j (t)

)∞�

δ

f∗(τ)τ (σ−n)/ne−Cτ
1/n

dτ
∥∥∥
q;(0,δ)

.

To estimate J1, we use the Hardy inequality (2.17):

J1 =
∥∥∥t−1/p′−1/q

( m∏

j=1

`
βj
j (t)

) t�

0

f∗(τ) dτ
∥∥∥
q;(0,δ)

. D1(δ)
∥∥∥t1/p−1/q

( m∏

j=1

`
αj
j (t)

)
f∗(t)

∥∥∥
q;(0,δ)

,

where

D1(δ) := sup
0<R<δ

∥∥∥t−1/p′−1/q
m∏

j=1

`
βj
j (t)

∥∥∥
q;(R,δ)

∥∥∥
(
t1/p−1/q

m∏

j=1

`
αj
j (t)

)−1∥∥∥
q′;(0,R)

.

Since, for all R ∈ (0, δ),

∥∥∥t−1/p′−1/q
m∏

j=1

`
βj
j (t)

∥∥∥
q;(R,δ)

. R−1/p′
m∏

j=1

`
βj
j (R)

and
∥∥∥
(
t1/p−1/q

m∏

j=1

`
αj
j (t)

)−1∥∥∥
q′;(0,R)

=
∥∥∥t1/p′−1/q′

m∏

j=1

`
−αj
j (t)

∥∥∥
q′;(0,R)

. R1/p′
m∏

j=1

`
−αj
j (R),

we obtain

D1(δ) . sup
0<R<δ

m∏

j=1

`
βj−αj
j (R) = sup

0<R<δ

m∏

j=1

`−1
j (R) ≤ 1,

which implies that

(3.10) J1 . ‖f‖X .
To estimate J2, we apply the Hardy inequality (2.18):

J2 =
∥∥∥t−1/q

( m∏

j=1

`
βj
j (t)

) δ�

t

f∗(τ)τ−1/p′dτ
∥∥∥
q;(0,δ)

. D2(δ)
∥∥∥t1/p−1/q

( m∏

j=1

`
αj
j (t)

)
f∗(t)

∥∥∥
q;(0,δ)

,



Compact and continuous embeddings 241

where

D2(δ) := sup
0<R<δ

∥∥∥t−1/q
m∏

j=1

`
βj
j (t)

∥∥∥
q;(0,R)

×
∥∥∥t−1/p′

(
t1/p−1/q

m∏

j=1

`
αj
j (t)

)−1∥∥∥
q′;(R,δ)

.

Since, for all R ∈ (0, δ],

∥∥∥t−1/q
m∏

j=1

`
βj
j (t)

∥∥∥
q;(0,R)

=
∥∥∥t−1/q

(m−1∏

j=1

`
−1/q
j (t)

)
`αm−1
m (t)

∥∥∥
q;(0,R)

(3.11)

≈ `αm−1/q′
m (R)

and
∥∥∥t−1/p′

(
t1/p−1/q

m∏

j=1

`
αj
j (t)

)−1∥∥∥
q′;(R,δ)

=
∥∥∥t−1/q′

(m−1∏

j=1

`
−1/q′

j (t)
)
`−αmm (t)

∥∥∥
q′;(R,δ)

. `−αm+1/q′
m (R),

we arrive at

(3.12) J2 . ‖f‖X .
Now, we are going to derive an upper estimate of J3. Since

V (δ) :=
∥∥∥τ−1/q′

( m∏

j=1

`
−αj
j (τ)

)
e−Cτ

1/n
∥∥∥
q′;(δ,∞)

.
∥∥∥τ−1/q′

m∏

j=1

`
−αj
j (τ)

∥∥∥
q′;(δ,1)

+ 1

=
∥∥∥τ−1/q′

(m−1∏

j=1

`
−1/q′

j (τ)
)
`−αmm (τ)

∥∥∥
q′;(δ,1)

+ 1 ≈ `−αm+1/q′
m (δ),

the Hölder inequality yields
∞�

δ

f∗(τ)τ−1+1/pe−Cτ
1/n
dτ ≤ V (δ)‖f‖X . `−αm+1/q′

m (δ)‖f‖X .

Together with (3.11), this implies that

(3.13) J3 . `−αm+1/q′
m (δ)‖f‖X

∥∥∥t−1/q
m∏

j=1

`
βj
j (t)

∥∥∥
q;(0,δ)

≈ ‖f‖X .

Combining estimates (3.9), (3.10), (3.12) and (3.13), we arrive at (3.8).



242 D. E. Edmunds, P. Gurka and B. Opic

Corollaries 3.5. Let 0 < σ < n, q ∈ [1,∞], m ∈ N, αm < 1/q′,
βm = αm − 1 and , if m > 1, let α1 = · · · = αm−1 = 1/q′ and β1 = · · · =
βm−1 = −1/q. Let Ω be a bounded domain in Rn.

(i) Assume that γj ∈ R, j ∈ {1, . . . ,m}, satisfy

either γ1 < β1,

or γ1 = β1, γ2 < β2,

...

or γ1 = β1, γ2 = β2, . . . , γm−1 = βm−1, γm < βm.

Then
HσLn/σ,q;α1,...,αm(Rn) ↪→↪→ L∞,q;γ1,...,γm(Ω).

(ii) Assume that α < αm − 1/q′. Then

(3.14) HσLn/σ,q;α1,...,αm(Rn) ↪→↪→ EXPmL−1/α(Ω),

where EXPm L−1/α(Ω) := LΦ(Ω) and LΦ is the Orlicz space with the Young
function Φ given by

Φ(t) = (exp ◦ · · · ◦ exp︸ ︷︷ ︸
m times

)(t−1/α) for all large t > 0.

(iii) Assume that 0 < p <∞ and γj ∈ R for j ∈ {1, . . . ,m}. Then

HσLn/σ,q;α1,...,αm(Rn) ↪→↪→ Lp,q;γ1,...,γm(Ω).

Proof. For t > 0, put

b(t) =





m∏

j=1

`
γj
j (t) in case (i),

t1/p
m∏

j=1

`
γj
j (t) in case (iii).

Then the assertions of parts (i) and (iii) follow from Theorem 3.4.
The result of part (ii) is a consequence of that given in part (i). Indeed,

since EXPm L−1/α(Ω) = L∞,∞;`αm(Ω) (cf. [OP; Lemma 8.1]), it is sufficient
to show that, for any q ∈ [1,∞],

(3.15) L∞,q;γ1,...,γm(Ω) ↪→ L∞,∞;`αm(Ω),

where γ1 = · · · = γm−1 = −1/q and γm = α − 1/q. As f∗ ∈ M+(0,∞; ↓)
and

`αm(t) ≈
∥∥∥τ−1/q

m∏

j=1

`
γj
j (τ)

∥∥∥
q;(0,t)

for all t ∈ (0, |Ω|n),
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we obtain

‖f‖∞,∞;`αm;Ω = ess sup
0<t<|Ω|n

`αm(t)f∗(t)

. ess sup
0<t<|Ω|n

∥∥∥τ−1/q
( m∏

j=1

`
γj
j (τ)

)
f∗(τ)

∥∥∥
q;(0,t)

= ‖f‖∞,q;γ1,...,γm;Ω,

which yields (3.15).

Remarks 3.6. Let 0 < σ < n, q ∈ [1,∞], m ∈ N, αm < 1/q′ and, if
m > 1, let α1 = · · · = αm−1 = 1/q′. Let Ω be a bounded domain in Rn.

(i) Since the embedding

(3.16) HσLn/σ,q;α1,...,αm(Rn) ↪→ EXPm L−1/(αm−1/q′)(Ω)

fails to be compact (cf. [EGO3]), we cannot replace α in (3.14) with its
limiting value αm − 1/q′.

(ii) The same method as that used to derive (3.8) yields the embedding

(3.17) HσLn/σ,q;α1,...,αm(Rn) ↪→ L∞,q;β1,...,βm(Ω)

with β1, . . . , βm from Theorem 3.4. One can again see that (3.17) is not
compact. (Indeed, assuming compactness of (3.17) and combining this em-
bedding with the continuous embedding (cf. (3.15))

L∞,q;β1,...,βm(Ω) ↪→ L∞,∞;`αm−1/q′
m

(Ω) = EXPm L−1/(αm−1/q′)(Ω),

we obtain compactness of (3.16), which is a contradiction.)

4. Embeddings into λ(·)-Hölder continuous functions. The fol-
lowing assertion is an extension of [EGO4; Thm. 4.9], where the case 1 ≤
σ < n+ 1 was treated by a quite different method.

Theorem 4.1. Let 0 < σ < n, n/σ < p < ∞, and p < n/(σ − 1) if
σ > 1. Assume that 1 < q <∞, m ∈ N, α1, . . . , αm ∈ R and put

λ(t) = tσ−n/p
m∏

j=1

`
−αj
j (t), t > 0.

Then
HσLp,q;α1,...,αm(Rn) ↪→ C0,λ(·)(Rn).

Proof. Let p, q, α1, . . . , αm satisfy the assumptions of Theorem 4.1. If
X = Lp,q;α1,...,αm(Rn), then its associate space X ′ is given by X ′ =
Lp′,q′;−α1,...,−αm(Rn) (cf. [EGO4; Lemma 3.4]).
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Let u ∈ HσX with ‖u‖HσX ≤ 1. Then there is a function f ∈ X such
that u = gσ ∗ f and ‖f‖X = ‖u‖HσX ≤ 1. Therefore

|u(x+ h)− u(x)| =
∣∣∣

�

Rn
f(y)[gσ(x+ h− y)− gσ(x− y)] dy

∣∣∣

≤ ‖f‖X‖∆hgσ‖X′ . ‖∆hgσ‖X′ .
Together with Lemma 2.5, this yields

|u(x+ h)− u(x)| . λ(|h|) for all x ∈ Rn and h ∈ Rn with |h| > 0.

Since also HσX ↪→ CB(Rn) by [EGO4; Cor. 4.6], the result follows.

Combining Theorem 4.1 with [EGO4; Thm. 4.9], we arrive at the follow-
ing result.

Theorem 4.2. Let 0 < σ < n + 1, max{1, n/σ} < p < ∞, and p <
n/(σ−1) if σ>1. Assume that 1<q<∞, m∈N, α1, . . . , αm ∈ R and put

λ(t) = tσ−n/p
m∏

j=1

`
−αj
j (t), t > 0.

Then
HσLp,q;α1,...,αm(Rn) ↪→ C0,λ(·)(Rn).

The next assertion is a complement of [EGO4; Cor. 4.6] and gives the
embedding mentioned in the Introduction (cf. (1.2)).

Theorem 4.3. Let 0 < σ < n, p = n/σ, 1 < q <∞, m ∈ N, αm > 1/q′

and , if m > 1, let αj = 1/q′ for j = 1, . . . ,m− 1. Put

λ(t) = `1/q
′−αm

m (t), t > 0.

Then

(4.1) HσLp,q;α1,...,αm(Rn) ↪→ C0,λ(·)(Rn).

The proof is analogous to that of Theorem 4.1 (instead of Lemma 2.5
one makes use of Lemma 2.6).

Corollary 4.4. Let the assumptions of Theorem 4.2 or Theorem 4.3,
respectively , be satisfied. Assume that Ω ⊂ Rn is a bounded domain and that
λ1 ∈ L is such that λ/λ1 ∈ L. Then

HσLp,q;α1,...,αm(Rn) ↪→↪→ C0,λ1(·)(Rn).

Proof. Corollary 4.4 is a consequence of Theorem 4.2 or Theorem 4.3,
respectively, and [EGO4; Lemma 4.15(iv)].

Remark 4.5. Note that if the condition αm > 1/q′ in Theorem 4.3 is
replaced by αm < 1/q′, then (instead of (4.1))

HσLp,q;α1,...,αm(Rn) ↪→ EXPm L−1/(αm−1/q′)(Ω)

for any bounded domain Ω in Rn (cf. Remarks 3.6).
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5. Appendix

Proof of Lemma 2.4. Put X = X(Rn) = Lp,q;b(Rn), where b(t) =∏m
j=1 `

αj
j (t), t > 0. Let B be an open ball in Rn containing Ω. Take

δ ∈ (0,min{σ, n/p}) and p ∈ (p, pδ), where 1/pδ = 1/p − δ/n. Then the
desired embedding is a consequence of the following chain of embeddings:

(5.1) HσX(Rn) ↪→ Hσ−δLp(Rn) ↪→↪→ Lp(B) ↪→ L1(Ω).

The last embedding in (5.1) is obvious. For the second one observe
that if σ − δ = k ∈ N, then the fact that (see [S; Thm. 3 of Chapt. V])
HkLp(Rn) = W k,p(Rn), whereW k,p(Rn) is a Sobolev space, the obvious em-
bedding W k,p(Rn) ↪→W k,p(B) and the compact embedding W k,p(B) ↪→↪→
Lp(B) (see [EE; Thm. V.4.17]) imply that

(5.2) HkLp(Rn) ↪→↪→ Lp(B),

which is the second embedding in (5.1). If σ − δ /∈ N take k ∈ N such that
k > σ − δ. Then (5.2) holds. Moreover,

(5.3) Lp(Rn) ↪→ Lp(B).

The space Hσ−δLp(Rn) can be obtained by complex interpolation from
HkLp(Rn) and Lp(Rn) (see [T; (11) of Sect. 2.4.2]). Thus, the second em-
bedding in (5.1) is now a consequence of (5.2), (5.3) and the preservation of
compactness under complex interpolation ([T; Thm. 1 of Sect. 1.16.4]). The
first embedding in (5.1) follows from the fact that gσ = gσ−δ ∗ gδ (cf., e.g.,
[Z; p. 65]) and

(5.4) HδX(Rn) ↪→ Lp(Rn).

We prove (5.4), which is equivalent to the validity of the inequality

(5.5) ‖u∗‖p;(0,∞) . ‖f‖X for all f ∈ X, where u = gδ ∗ f.
We can easily see that

‖u∗‖p;(0,1) ≤ ‖t1/pδb(t)u∗(t)‖∞;(0,1)‖t−1/pδ [b(t)]−1‖p;(0,1)(5.6)

≈ ‖t1/pδb(t)u∗(t)‖∞;(0,1) for all u ∈M(Rn).

Let P ∈ (0,∞) and Q ∈ (0,∞]. Then, for all u ∈M(Rn) and every t > 0,

t1/P b(t)u∗(t) ≈ ‖τ1/P−1/Qb(τ)‖Q;(0,t)u
∗(t) ≤ ‖τ1/P−1/Qb(τ)u∗(τ)‖Q;(0,t),

which implies that

(5.7) ‖τ 1/P b(τ)u∗(τ)‖∞;(0,1) . ‖τ1/P−1/Qb(τ)u∗(τ)‖Q;(0,1)

and

(5.8) u∗(t) . [t1/P b(t)]−1‖u‖P,Q;b;(0,∞).

Using (5.6) and (5.7) (with P = pδ and Q = q), we arrive at

(5.9) ‖u∗‖p;(0,1) . ‖u∗‖pδ,q;α1,...αm for all u ∈M(Rn).
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Since, by [EGO4; Thm. 4.8],

HδX(Rn) ↪→ Lpδ,q;α1,...,αm(Rn),

we deduce from (5.9) that

(5.10) ‖u∗‖p;(0,1) . ‖f‖X for all f ∈ X and u = gδ ∗ f.
Applying Corollary 2.3 and the triangle inequality, we deduce, for all f ∈ X
and u = gδ ∗ f , that

‖u∗‖p;(1,∞) . ‖f∗∗‖p;(1,∞) +
∥∥∥
∞�

t

f∗(τ)τ (δ−n)/ne−Cτ
1/n

dτ
∥∥∥
p;(1,∞)

(5.11)

=: N1 +N2.

By the definition of f∗∗ and by (5.8) (with P = p, Q = q, u = f and t = τ),

N1 .
∥∥∥t−1

t�

0

τ−1/p[b(τ)]−1 dτ
∥∥∥
p;(1,∞)

‖f‖X(5.12)

≈ ‖t−1/p[b(t)]−1‖p;(1,∞)‖f‖X
≈ ‖f‖X for all f ∈ X.

Finally, using (5.8) (again with P = p, Q = q, u = f and t = τ), we arrive
at
∞�

t

f∗(τ)τ (δ−n)/ne−Cτ
1/n

dτ . ‖f‖X
∞�

t

τ−1/p[b(τ)]−1τ (δ−n)/ne−Cτ
1/n
dτ

. ‖f‖Xe−(Ct1/n)/2,

which implies that

(5.13) N2 . ‖f‖X‖e−Ct
1/n/2‖p;(1,∞) ≈ ‖f‖X for all f ∈ X.

Combining estimates (5.11)–(5.13), we obtain

(5.14) ‖u∗‖p;(1,∞) . ‖f‖X for all f ∈ X.
Estimate (5.5) follows from (5.10) and (5.14).

Proof of Lemma 2.5. Put

B(r) = {x ∈ Rn; |x| < r}, Bc(r) = Rn \B(r) for r > 0.

Let h ∈ Rn with |h| > 0. Since

‖(∆hgσ)χB(2|h|)‖p′,q′;−α1,...,−αm . 2‖gσχB(3|h|)‖p′,q′;−α1,...,−αm ,

using (2.15) and the fact that σ/n− 1/p > 0, we obtain
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(5.15) ‖(∆hgσ)χB(2|h|)‖p′,q′;−α1,...,−αm

.
∥∥∥t1/p′−1/q′

( m∏

j=1

`
−αj
j (t)

)
tσ/n−1

∥∥∥
q′;(0,ωn(3|h|)n)

=
∥∥∥tσ/n−1/p−1/q′

m∏

j=1

`
−αj
j (t)

∥∥∥
q′;(0,ωn(3|h|)n)

≈ |h|σ−n/p
m∏

j=1

`
−αj
j (|h|).

Obviously

(5.16) |∆hgσ(x)| ≤ |h|
n∑

j=1

1�

0

∣∣∣∣
∂

∂xj
gσ(x+ τh)

∣∣∣∣ dτ for all x ∈ Rn.

Moreover, if τ ∈ [0, 1] and x ∈ Bc(2|h|), then
1
2 |x| ≤ |x+ τh| ≤ 3

2 |x|.
Consequently, (2.14) and (5.16) imply that

(5.17) |∆hgσ(x)χBc(2|h|)(x)| . |h| |x|σ−n−1χBc(|h|)(x) for all x ∈ Rn.
Putting F (x) = |x|σ−n−1χBc(|h|)(x), x ∈ Rn, and taking into account that
σ − n− 1 < 0, we can easily see that

(5.18) F ∗(t) = (|h|n + t/ωn)(σ−n−1)/n for all t > 0.

This and (5.17) yield

(5.19) ‖(∆hgσ)χBc(2|h|)‖p′,q′;−α1,...,−αm

. |h|
∥∥∥t1/p′−1/q′

( m∏

j=1

`
−αj
j (t)

)
F ∗(t)

∥∥∥
q′;(0,∞)

= |h|(N1 +N2),

where

N1 :=
∥∥∥t1/p′−1/q′

( m∏

j=1

`
−αj
j (t)

)
F ∗(t)

∥∥∥
q′;(0,ωn(2n−1)|h|n)

,

N2 :=
∥∥∥t1/p′−1/q′

( m∏

j=1

`
−αj
j (t)

)
F ∗(t)

∥∥∥
q′;(ωn(2n−1)|h|n,∞)

.

Since σ − n − 1 < 0, (5.18) shows that F ∗(t) ≤ |h|σ−n−1 for all t > 0.
Consequently,

N1 ≤ |h|σ−n−1
∥∥∥t1/p′−1/q′

m∏

j=1

`
−αj
j (t)

∥∥∥
q′;(0,ωn(2n−1)|h|n)

(5.20)

≈ |h|σ−n−1|h|n/p′
m∏

j=1

`
−αj
j (|h|) = |h|σ−1−n/p

m∏

j=1

`
−αj
j (|h|).
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Using (5.18) and the change of variables t = ωn(zn − |h|n), we obtain

N2 =
∥∥∥(ωn(zn − |h|n))1/p′−1/q′

×
( m∏

j=1

`
−αj
j (ωn(zn − |h|n))

)
zσ−n−1(nωnzn−1)1/q′

∥∥∥
q′;(2|h|,∞)

.

Since ωn(1−2−n)zn ≤ ωn(zn−|h|n) ≤ ωnzn if z > 2|h|, and σ−1−n/p < 0,
we arrive at

N2 ≈
∥∥∥zn(1/p′−1/q′)

( m∏

j=1

`
−αj
j (z)

)
zσ−n−1z(n−1)/q′

∥∥∥
q′;(2|h|,∞)

(5.21)

=
∥∥∥zσ−1−n/p−1/q′

m∏

j=1

`
−αj
j (z)

∥∥∥
q′;(2|h|,∞)

≈ |h|σ−1−n/p
m∏

j=1

`
−αj
j (|h|).

Estimates (5.19)–(5.21) imply that

(5.22) ‖(∆hgσ)χBc(2|h|)‖p′,q′;−α1,...,−αm . |h|σ−n/p
m∏

j=1

`
−αj
j (|h|).

Together with (5.15), this yields the result.

Proof of Lemma 2.6. We proceed as in the proof of Lemma 2.5. Thus,
using the identity σ/n− 1/p = 0 and assumption (2.19), we obtain, instead
of (5.15),

(5.23) ‖(∆hgσ)χB(2|h|)‖p′,q′;−α1,...,−αm

=
∥∥∥t−1/q′

m∏

j=1

`
−αj
j (t)

∥∥∥
q′;(0,ωn(3|h|)n)

≈ `1/q′−αmm (|h|).

Since the estimates of the quantities N1 and N2 remain true, we again have
(5.22), that is,

(5.24) ‖(∆hgσ)χBc(2|h|)‖p′,q′;−α1,...,−αm .
m∏

j=1

`
−αj
j (|h|).

Moreover, assumption (2.19) implies that
∏m
j=1 `

−αj
j (|h|) ≤ `

1/q′−αm
m (|h|).

Consequently, the assertion follows from (5.23) and (5.24).
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