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Uniqueness of minimal projections onto
two-dimensional subspaces

by

Boris Shekhtman and Lesław Skrzypek (Tampa, FL)

Abstract. We prove that minimal projections from Lp (1 < p < ∞) onto any two-
dimensional subspace are unique. This result complements the theorems of W. Odyniec
([OL, Theorem I.1.3], [O3]). We also investigate the minimal number of norming points
for such projections.

0. Introduction. W. Odyniec ([OL, Theorem I.1.3], [O3]) proved that
minimal projections of norm greater than one from a three-dimensional Ba-
nach space onto any of its two-dimensional subspace are unique. This result
can be generalized neither to the subspaces of codimension one nor to the
subspaces of dimension two, unless additional assumptions on the space are
considered.

However, as proved by Odyniec ([OL, Theorem I.2.22], [O1, O2]) every
subspace of codimension one in Lp (1 < p < ∞) has a unique minimal
projection.

In this paper we complete the picture by showing that every two-dimen-
sional subspace of Lp (1 < p <∞) has a unique minimal projection. Specif-
ically we prove the following theorem:

Theorem 0.1. Let V be a two-dimensional subspace of an Lp(µ) (1 <
p <∞). Then there is a unique minimal projection from X onto V .

We prove this theorem in Section 1. The proof depends on the number
of norming points (and functionals) for minimal projections. In Section 2
we investigate one particular minimal projection and its norming pairs.

The rest of this section is devoted to general remarks and necessary
definitions.

It is well known (see [IS] and [CMO]) that for every finite-dimensional
subspace V of a Banach space X there exists a minimal projection.
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The problem of finding a minimal projection and related problems re-
ceived the attention of many mathematicians (see [BP, CF, CL, CM1, CM2,
CHM, CMO, CP, F, KTJ, R]) and it turned out to be easier in L1 spaces
than in Lp spaces (mostly due to Theorem 1 in [CM2] which can be effec-
tively applied in L1).

The problem of uniqueness of minimal projection, however, is not well
understood yet. It is clear that subspaces of L1 usually lack uniqueness (see
[CM1]) though the classical Fourier projection onto trigonometric polynomi-
als is unique in L1 as well as in the space of continuous functions (compare
[CHM, FMW]). For necessary and sufficient conditions for the uniqueness
of minimal projections onto two-dimensional subspaces of `n∞ see [L3].

As far as we know, for 1 < p <∞ there is no example of subspaces of Lp
(finite-dimensional or finite-codimensional) for which a minimal projection is
not unique. Even the uniqueness of minimal projections onto trigonometric
polynomials is not known.

To the best of our knowledge the only results in this direction are the
previously mentioned theorem of Odyniec and the theorem of H. B. Cohen
and F. E. Sullivan which states that if a minimal projection in Lp (1 <
p < ∞) has norm one then it is unique (see [CS]). In particular all one-
dimensional subspaces of Lp (1 < p < ∞) have unique minimal projection.
We hope that Theorem 0.1 is a modest contribution to this list.

It is worth mentioning that the result of W. Odyniec has been improved
by G. Lewicki ([L3, Theorem 2.6.11]) by showing that a minimal projection
of norm greater than one from a three-dimensional real Banach space onto
any two-dimensional subspace is in fact strongly unique.

Let us introduce some basic notions, definitions and facts used in this
paper. Let S(X) and B(X) denote the unit sphere and unit ball of a Banach
space X.

A projection P from X onto a subspace V is called minimal if it has the
smallest possible norm, i.e.,

(0.1) ‖P‖ = λ(V,X) = inf{‖Q‖ : Q is a projection from X onto V }.
The constant λ(V,X) is called the relative projection constant.

Definition 0.2. A functional f ∈ S(X∗) is a norming functional for a
projection P : X → V iff ‖f ◦ P‖ = ‖P‖.

It is well known that if V is finite-dimensional then P has norming
functionals (see [OL, Lemma III.2.1]).

Definition 0.3. A point x ∈ S(X) is a norming point for a projection
P : X → V iff ‖P (x)‖ = ‖P‖.

If X is a reflexive space and V is finite-dimensional then P has a norming
functional f and since the functional f ◦P attains its norm, P has a norming
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point (this is not so in general Banach spaces: the Fourier projection does
not have a norming point in the space of continuous functions, see [OL,
Lemma I.2.7]).

Definition 0.4. A pair (f, x) is called a norming pair for a projection
P iff f(Px) = ‖P‖. A set of all norming pairs for a projection P is denoted
by E(P ).

As usual, for g ∈ X∗ and y ∈ X, the symbol g ⊗ y denotes the one-
dimensional operator from X to X given by g ⊗ y(x) = g(x)y.

For the sake of completeness we state the Rudin Theorem which will be
used for proving minimality of a projection given in Section 2.

Definition 0.5. Suppose that a Banach space X and a topological
group G are related in the following manner: to every s ∈ G corresponds a
continuous linear operator Ts : X → X such that

Te = I, Tst = TsTt (s ∈ G, t ∈ G).

Under these conditions, G is said to act as a group of linear operators on X.

Definition 0.6. A map L : X → X commutes with G if TgLT−1
g = L

for every g ∈ G.
Theorem 0.7 (Rudin, [W, III.B.13]). Let X be a Banach space and V a

complemented subspace, i.e., P(X,V ) 6= ∅. Let G be a compact group which
acts as a group of linear operators on X such that

(1) Tg(x) is a continuous function of g for every x ∈ X,
(2) Tg(V ) ⊂ V for all g ∈ G.
(3) Tg is an isometry for all g ∈ G.

Furthermore, assume that there exists only one projection P : X → V which
commutes with G. Then this projection is minimal.

Once we know that there is only one projection P commuting with G it
can be easily found : fix any projection Q from X onto V ; then

P (x) =
�

G

TgQTg−1(x) dg for x ∈ X.

This theorem, however, does not imply that this projection is the unique
minimal projection as there could be projections which do not commute
with G but still have a minimal norm (see [S], [L1]).

1. Proof of Theorem 0.1

Lemma 1.1. Let V be a two-dimensional subspace of a Banach space X.
Let x ∈ S(X) \ V. Then for any α > 0 there exists a projection Q from X
onto V such that ‖Q(x)‖ = α.
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Proof. Let v1, v2 ∈ S(V ) be a basis for V. Since x, v1, v2 are linearly
independent, using the Hahn–Banach theorem we can choose

f1 ∈ X∗ such that f1(v1) = 1 and f1|span{x,v2} = 0

and
f2 ∈ X∗ such that f2(v2) = 1 and f2|span{ 1

α
x−v2,v1} = 0.

We have chosen f1 and f2 such that

(1.1)
f1(x) = 0, f1(v1) = 1, f1(v2) = 0,

f2(x) = α, f2(v1) = 0, f2(v2) = 1.

Now take
Q = f1 ⊗ v1 + f2 ⊗ v2 : X → V.

From (1.1), Q(v1) = v1 and Q(v2) = v2 so Q is a projection, and from (1.1),

Q(x) = f1(x)v1 + f2(x)v2 = αv2,

hence ‖Q(x)‖ = α.

Theorem 1.2. Let V be a two-dimensional subspace of a uniformly con-
vex Banach space X. Let P be a minimal projection from X onto V. Then
there exist at least two linearly independent norming points for P.

Proof. Since uniformly convex spaces are reflexive and P is a compact
operator and every compact operator attains its norm in a reflexive Banach
space, P has at least one norming point. If ‖P‖ = 1 then the statement is
obvious. Now, suppose that ±x0 ∈ S(X) are the only norming points for P.
From Lemma 1.1 there is a projection Q from X onto V such that

‖Q(±x0)‖ ≤ 1/2

and by continuity we can find ε > 0 such that

(1.3) ‖Q(x)‖ < 1 for any x ∈ B(x0, ε) ∪B(−x0, ε).

We now claim that there exists η > 0 such that

(1.4) ‖P (x)‖<‖P‖−η for any x 6∈ B(x0, ε)∪B(−x0, ε) and x∈S(X).

Indeed, otherwise for any 1/n we can find xn ∈ S(X) such that xn 6∈
B(x0, ε) ∪ B(−x0, ε) and ‖P (xn)‖ → ‖P‖. The sequence {P (xn)} is con-
tained in the two-dimensional space V , so choosing a subsequence if nec-
essary, we can assume that P (xn) → y0; since ‖P (xn)‖ → ‖P‖, we have
‖y0‖ = ‖P‖. Since uniformly convex spaces have the Banach–Saks property
(see [D, Theorem III.7.1]) and the sequence {xn} is bounded in norm, we
can choose a subsequence {xnk} whose arithmetic means converge in norm,
i.e.,

yk :=
xn1 + · · ·+ xnk

k
→ y.
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We will show that y is a norming point for P (of course y 6= x0 and y 6= −x0,
hence a contradiction). First observe that since ‖xn‖ = 1, we have ‖yk‖ ≤ 1,
which implies ‖y‖ ≤ 1. Now

P (yk) =
P (xn1) + · · ·+ P (xnk)

k
→ P (y);

but P (xnk) → y0, hence also P (yk) → y0. Therefore ‖y0‖ = ‖P‖ implies
‖P (y)‖ = ‖P‖, so y is a norming point for P different from ±x0, contrary
to the assumption that ±x0 are the only norming points for P.

Now for every t ∈ (0, 1) consider the projection

Rt = tQ+ (1− t)P : X → V.

If x ∈ B(x0, ε) ∪B(−x0, ε) and x ∈ S(X) then by (1.3),

‖Rt(x)‖ = ‖tQ(x) + (1− t)P (x)‖(1.5)

≤ t‖Q(x)‖+ (1− t)‖P (x)‖
< t‖P‖+ (1− t)‖P‖ = ‖P‖.

If x 6∈ B(x0, ε) ∪B(−x0, ε) and x ∈ S(X) then by (1.4),

‖Rt(x)‖ = ‖tQ(x) + (1− t)P (x)‖ ≤ t‖Q(x)‖+ (1− t)‖P (x)‖(1.6)

< t‖Q‖+ (1− t)(‖P‖ − η)

= t(‖Q‖ − ‖P‖+ η) + (‖P‖ − η),

and the right hand side tends to ‖P‖ − η as t tends to zero. Therefore for
t0 sufficiently small, by (1.5) and (1.6),

‖Rt0‖ < ‖P‖,
which contradicts minimality of P.

Theorem 1.3. Let V be a two-dimensional subspace of a smooth and
uniformly convex space X. Then there is a unique minimal projection from
X onto V .

Proof. Assume that there are two different minimal projections, say P1
and P2. Then Q = (P1 + P2)/2 is also a minimal projection (since ‖Q‖ ≤
‖(P1 + P2)/2‖ ≤ (‖P1‖ + ‖P2‖)/2 ≤ λ(V,X)). Now take any (f, x) ∈ E(Q)
(see Definition 0.4) and compute

λ(V,X) = f(Qx) = 1
2f(P1x) + 1

2f(P2x) ≤ 1
2λ(V,X) + 1

2λ(V,X) = λ(V,X);

therefore, since f(Pix) ≤ ‖Pi‖ = λ(V,X),

f(P1x) = λ(V,X) = ‖P1‖ and f(P2x) = λ(V,X) = ‖P2‖.
As a consequence we have

(1.7) E(Q) ⊂ E(P1), E(Q) ⊂ E(P2),

i.e., any norming pair for Q is also a norming pair for P1 and P2.
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Since Q is a minimal projection, by Theorem 1.2, there are two linearly
independent norming points x1 and x2 for Q. Let (f1, x1) and (f2, x2) be
corresponding norming pairs for Q. Observe that

(1.8) f1|V ∗ , f2|V ∗ are linearly independent.

Indeed, if not then f1 = ±f2 and f1(Qx1) = f1(Q(±x2)) = ‖Q‖. Hence

f1

(
Q

(
x1 + (±x2)

2

))
= ‖Q‖,

so ‖(x1 + (±x2))/2‖ = 1, which is not possible if X is strictly convex.
From (1.7),

fi(P1xi) = ‖P1‖, fi(P2xi) = ‖P2‖.
Therefore

(P ∗1 fi)(xi) = ‖P1‖ = λ(V,X), (P ∗2 fi)(xi) = ‖P2‖ = λ(V,X).

It now follows that (P ∗1 fi)/‖P1‖ and (P ∗2 fi)/‖P2‖ are two norming function-
als for xi. Since X is smooth they have to be equal. Hence

P ∗1 fi = P ∗2 fi,

and since the fi|V ∗ span V ∗ ((1.8)) we have P ∗1 = P ∗2 . Hence P1 = P2.

Corollary 1.4. Let V be a two-dimensional subspace of Lp(µ) with
1 < p < ∞. Then there is a unique minimal projection from Lp(µ) onto V
(this covers both classical cases Lp[0, 1] and `p).

2. Norming pairs. It was seen in the previous section that there are at
least two linearly independent norming points for a minimal projection onto
a two-dimensional subspace. In this section we show that there are at least
six norming points, altogether, for such a projection. We show, by means of
an example, that the number six cannot be increased.

Theorem 2.1. A minimal projection from Lp(µ) (with 1 < p <∞) onto
a two-dimensional subspace has at least six different norming functionals
±f1,±f2,±f3. Moreover the set of restrictions to V ∗ of these functionals,
±f1 |V ∗ ,±f2|V ∗ ,±f3 |V ∗ , contains six different elements.

Proof. By [OL, Theorem III.2.8 and Remark III.2.9], every set C such
that

C ∪ −C = {the set of norming functionals of P restricted to V ∗}
and

C ∩ −C = ∅
is linearly dependent over V ∗. But by Theorem 1.2 and reasoning as in the
proof of Theorem 1.3 (see (1.8)) we have at least two norming functionals



Uniqueness of minimal projections 279

for P which are linearly independent over V ∗. Hence C has to contain at
least three elements.

Theorem 2.2. A minimal projection from Lp(µ) (with 1 < p < ∞)
onto a two-dimensional subspace has at least six different norming points
±x1,±x2,±x3.

Proof. By the previous theorem there are three norming functionals for
P such that

(2.1) f1 |V ∗ , f2|V ∗ , f3 |V ∗ are three different functionals.

To these functionals correspond three norming points x1, x2, x3. Let

gi =
fi ◦ P
‖P‖ .

By (2.1), g1, g2, g3 are three different functionals on X∗ of norm one. Also

gi(xi) = 1.

Now if xi = xj (for some i 6= j ∈ {1, 2, 3}) then gi and gj are norming
functionals for the same point x = xi = xj . Since the Lp(µ) is smooth, that
would imply gi = gj , a contradiction. Hence x1, x2, x3 are all diferent.

Theorem 2.3. Let P be a minimal projection from `3p onto a two-di-
mensional subspace V . Let W = {x ∈ `np : (x1, x2, x3) ∈ V and x4 = · · · =
xn = 0}. Take a projection Q from `np onto W defined by

Q(x1, x2, x3, x4, . . . , xn) = (P (x1, x2, x3), 0, . . . , 0).

Then Q is also a minimal projection having the same number of norming
points and norming functionals as P.

Proof. By the very construction of Q, if x = (x1, . . . , xn) is a norming
point for Q then x4 = · · · = xn = 0. If f = (f1, . . . , fn) is a norming
functional for Q then by the form of norming functionals (i.e., fi = sgn(ai) ·
|ai|p/q) and the form of Q we get f4 = · · · = fn = 0. Hence ‖Q‖ = ‖P‖, and
moreover

x = (x1, . . . , xn) is a norming point for Q

m
x = (x1, x2, x3) is a norming point for P

and
f = (f1, . . . , fn) is a norming functional for Q

m
f = (f1, f2, f3) is a norming functional for P.

Since L : `np → `3p given by L(x1, . . . , xn) = (x1, x2, x3, 0, . . . , 0) is a norm
one projection, by [OL, Proposition I.3.1] the projection Q is also minimal.
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Now we will compute the norm, all norming points and all norming
functionals for a particular minimal projection.

Theorem 2.4. Let f = (1, 1, 1) ∈ `3q be a representation of a functional.
Then P : `3p → ker f given by

(2.2) P = Id− 1
3(1, 1, 1)⊗ (1, 1, 1)

is a minimal projection for any 1 ≤ p ≤ ∞.
Proof. First we will prove that P given by (2.2) is indeed a minimal

projection. We will use the Rudin Theorem. Observe that the operators

(2.3) Lσ(x1, x2, x3) := (xσ(1), xσ(2), xσ(3))

(where σ is any permutation of {1, 2, 3}) are isometries in `3
p. Furthermore

(2.4) Lσ(ker(1, 1, 1)) ⊂ ker(1, 1, 1).

Now according to Theorem 0.7 it is enough to prove that P is the only
projection which commutes with Lσ.

Any projection Q : `3p → ker(1, 1, 1) is given by

(2.5) Qx = x− (1, 1, 1)⊗ (v1, v2, v3), where v1 + v2 + v3 = 1.

If Q commutes with Lσ, then

((1, 1, 1)⊗ (v1, v2, v3)) ◦ Lσ = Lσ((1, 1, 1)⊗ (v1, v2, v3)).

Taking the value at x = (x1, x2, x3) on both sides of the above equality
results in
( 3∑

i=1

xi,

3∑

i=1

xi,

3∑

i=1

xi

)
· (v1, v2, v3)

=
( 3∑

i=1

xi,

3∑

i=1

xi,

3∑

i=1

xi

)
· (vσ(1), vσ(2), vσ(3)),

for any σ ∈ S3 and any x = (x1, x2, x3). Therefore v1 = v2 = v3 and since
v1 + v2 + v3 = 1 we have

v1 = v2 = v3 = 1/3.

Hence Q = P. On the other hand, it is easy to see that P indeed commutes
with Lσ. Therefore P is minimal.

Now we will restrict ourselves to p = 4.

Theorem 2.5. Let p = 4. Then the minimal projection from Theorem
2.4 (see (2.2)) has exactly six norming points
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(2.6)

x0 =
1

(2 + 24/3)1/4
(21/3,−1,−1), x3 = −x0,

x1 =
1

(2 + 24/3)1/4
(−1, 21/3,−1), x4 = −x1,

x2 =
1

(2 + 24/3)1/4
(−1,−1, 21/3), x5 = −x2,

and exactly six norming functionals

(2.7)

f0 =
1

(2 + 24)3/4
(23,−1,−1), f3 = −f0,

f1 =
1

(2 + 24)3/4
(−1, 23,−1), f4 = −f1,

f2 =
1

(2 + 24)3/4
(−1,−1, 23), f5 = −f3.

Moreover ,

(2.8) ‖P‖ = λ(ker(1, 1, 1), `3p) = 1
3(1 + 23)1/4(1 + 21/3)3/4.

Proof. The projection P from (2.2) is given by

P (x1, x2, x3) = 1
3(2x1 − x2 − x3,−x1 + 2x2 − x3,−x1 − x2 + 2x3),

therefore the problem of finding its norm and all norming points is equivalent
to finding the maximum of the function

(2.9) h(x1, x2, x3)

=
(

2x1 − x2 − x3

3

)4

+
(−x1 + 2x2 − x3

3

)4

+
(−x1 − x2 + 2x3

3

)4

in the set x4
1 + x4

2 + x4
3 = 1, and finding all points at which this maximum

is attained.
Let

(2.10)
z1 =

2x1 − x2 − x3

3
, z2 =

−x1 + 2x2 − x3

3
,

z3 =
−x1 − x2 + 2x3

3
, d =

x1 + x2 + x3

3
.

Then the above problem is equivalent to finding the maximum and all points
at which this maximum is attained for the following function:

(2.11) f(z1, z2, z3, d) = z4
1 + z4

2 + z4
3

in the set

(z1 + d)4 + (z2 + d)4 + (z3 + d)4 = 1 and z1 + z2 + z3 = 0.
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Using the standard Lagrange multiplier method we construct the function

ϕ(z1, z2, z3, d) = z4
1 + z4

2 + z4
3

− λ1((z1 + d)4 + (z2 + d)4 + (z3 + d)4)

− λ2(z1 + z2 + z3)

and in particular we find that z1, z2, z3 have to satisfy the equations

(2.12) g(z1) = g(z2) = g(z3) = 0, where g(x) = 4x3−4λ1(x+d)3−λ2.

Now assume that z1, z2, z3 are distinct. Then by (2.12), z1, z2, z3 will be
three distinct zeros of g. That implies λ1 6= 0 (in that case g has only one
zero), λ1 6= 1 (in that case g is a polynomial of degree 2, hence has at most
two zeros) and

(2.13) g(x) = (4− 4λ1)(x− z1)(x− z2)(x− z3).

Now comparing the coefficients of g in (2.12) and (2.13) gives

z1 + z2 + z3 =
3λ1d

1− λ1
.

On the other hand, z1 + z2 + z3 = 0, hence d = 0. But clearly a four-
tuple (z1, z2, z3, 0) is not a maximum point of the function (2.11) since
f(z1, z2, z3, 0) = 1. Thus we proved that

z1 = z2 or z2 = z3 or z3 = z1,

which is equivalent to

(2.14) x1 = x2 or x2 = x3 or x3 = x1.

By symmetry it is enough to let x2 = x3. Letting x2 = x3 in (2.9) we have
to find the maximum (and all points at which this maximum is attained) of
the function

h(x1, x2) =
2 + 24

34 (x1 − x2)4 in the set x4
1 + 2x4

2 = 1.

This can be easily solved by using Lagrange multipliers and together with
(2.14) it leads to (2.6). Note that (2.7) follows immediately from (2.6).

Using Theorems 2.3 and 2.5 we obtain

Corollary 2.6. For any `n4 we can construct a two-dimensional sub-
space V of `n4 such that the minimal projection P from `n4 onto V has only
six norming functionals and six norming points.

Remark 2.7. Theorem 2.2 is not true if the word “minimal” is dropped:
we can easily find a projection (not minimal of course) which has only two
different norming points. For instance,

Q = Id− (1, 1, 1)⊗ (0, 0, 1)

has only two norming points ±(1/21/p, 1/21/p, 0).
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