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Maps on idempotents

by

Peter Šemrl (Ljubljana)

Abstract. Let X be an infinite-dimensional real or complex Banach space, B(X)
the algebra of all bounded linear operators on X, and P (X) ⊂ B(X) the subset of all
idempotents. We characterize bijective maps on P (X) preserving commutativity in both
directions. This unifies and extends the characterizations of two types of automorphisms
of P (X), with respect to the orthogonality relation and with respect to the usual partial
order; the latter have been previously characterized by Ovchinnikov. We also describe
bijective orthogonality preserving maps on the set of idempotents of a fixed finite rank.
As an application we present a nonlinear extension of the structural result for bijective
linear biseparating maps on B(X).

1. Introduction and statement of main results. Let X be a real
or complex Banach space and B(X) the algebra of all bounded linear op-
erators on X. Denote by X∗ the dual of X and by P (X) ⊂ B(X) the
subset of all idempotents. Recall that P (X) is a poset with the partial or-
der defined by P ≤ Q ⇔ PQ = QP = P , P,Q ∈ P (X). Orthogonality is
another important relation on P (X). Two idempotents P,Q ∈ P (X) are
said to be orthogonal if PQ = QP = 0. In this case we write P ⊥ Q.
Motivated by some problems in quantum mechanics (see the review MR
95a:46093) Ovchinnikov [16] characterized automorphisms of the poset P (X)
in the case that X is a Hilbert space of dimension at least 3. Recall that an
automorphism φ of the poset P (X) is a bijective map preserving order in
both directions, that is, P ≤ Q if and only if φ(P ) ≤ φ(Q), P,Q ∈ P (X).

As far as we know, the automorphisms of P (X) with respect to the
orthogonality relation have not been treated in the literature. In fact, the
structural result for bijective maps on P (X) preserving orthogonality in both
directions follows almost directly from the result of Ovchinnikov. Namely,
for a subset S ⊂ P (X) denote by S⊥ the set of all idempotents from P (X)
that are orthogonal to every member of S. In the case S = {P} we simply
write P⊥ = {P}⊥. Then, as we shall see, it is easy to verify that for an
arbitrary pair of idempotents P,Q ∈ P (X) we have P ≤ Q if and only if
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Q⊥ ⊂ P⊥. It follows that every bijective map φ : P (X) → P (X) satisfying
P ⊥ Q ⇔ φ(P ) ⊥ φ(Q), P,Q ∈ P (X), preserves order in both directions.
So, every automorphism of P (X) with respect to ⊥ is an automorphism
with respect to the partial order ≤. We will show that also the converse
holds true.

Proposition 1.1. Let X be a Banach space and φ : P (X) → P (X)
a bijective map. Then φ is a poset automorphism if and only if φ pre-
serves orthogonality in both directions, that is, P ⊥ Q ⇔ φ(P ) ⊥ φ(Q),
P,Q ∈ P (X).

Hence, the problem of characterizing poset automorphisms of P (X) is
equivalent to the problem of characterizing orthogonality automorphisms
of P (X). So, we can apply the result of Ovchinnikov to get also the charac-
terization of orthogonality automorphisms, or we can solve first the problem
of the characterization of orthogonality automorphisms and in this way ob-
tain a new proof of Ovchinnikov’s result. We will here solve an even more
general problem and then using Proposition 1.1 we will get both results as
simple consequences.

A bijective map φ : P (X)→ P (X) preserves commutativity in both direc-
tions if PQ = QP ⇔ φ(P )φ(Q) = φ(Q)φ(P ), P,Q ∈ P (X). Let T ∈ B(X)
be an invertible operator. Then, clearly, P 7→ TPT−1 is a bijective map on
P (X) preserving commutativity in both directions. In the complex case the
same is true if T : X → X is a bounded invertible conjugate-linear operator.
Similarly, if T : X∗ → X is a bounded invertible linear or conjugate-linear
operator, then P 7→ TP ∗T−1 is a bijective map on P (X) preserving com-
mutativity in both directions. Here, P ∗ denotes the adjoint of P (it should
be mentioned that the other standard symbol P ′ will be used in this paper
to denote the commutant of P ).

Let τ : P (X) → {0, 1} be a map with the property that τ(P ) = 1
⇔ τ(I − P ) = 1, P ∈ P (X). Define ξ : P (X) → P (X) by ξ(P ) =
τ(P )P + (1 − τ(P ))(I − P ), P ∈ P (X). We will call every such map an
ortho-permutation on P (X). For every P ∈ P (X) it maps either both P
and I − P to themselves, or to each other. Clearly, it is a bijective map
preserving commutativity in both directions. Our main result states that
every bijective map on P (X) preserving commutativity in both directions
is a composition of the above-described maps.

Theorem 1.2. Let X be an infinite-dimensional real Banach space and
φ : P (X) → P (X) a bijective map preserving commutativity in both direc-
tions. Then there exist an ortho-permutation ξ : P (X) → P (X) and either
an invertible T ∈ B(X) such that

φ(P ) = Tξ(P )T−1, P ∈ P (X),
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or a bounded invertible linear operator T : X∗ → X such that

φ(P ) = Tξ(P )∗T−1, P ∈ P (X).

In the second case X must be reflexive.

Theorem 1.3. Let X be an infinite-dimensional complex Banach space
and φ : P (X) → P (X) a bijective map preserving commutativity in both
directions. Then there exist an ortho-permutation ξ : P (X) → P (X) and
either a bounded invertible linear or conjugate-linear operator T : X → X
such that

φ(P ) = Tξ(P )T−1, P ∈ P (X),

or a bounded invertible linear or conjugate-linear operator T : X∗ → X such
that

φ(P ) = Tξ(P )∗T−1, P ∈ P (X).

In the second case X must be reflexive.

As we shall see later it is not difficult to prove that every bijective map on
P (X) preserving orthogonality in both directions preserves commutativity
in both directions. So, we will easily obtain the following corollaries from
our main result and Proposition 1.1.

Corollary 1.4. Let X be an infinite-dimensional real Banach space
and φ : P (X) → P (X) a bijective map preserving orthogonality in both
directions. Then either there exists an invertible T ∈ B(X) such that

φ(P ) = TPT−1, P ∈ P (X),

or there exists a bounded invertible linear operator T : X∗ → X such that

φ(P ) = TP ∗T−1, P ∈ P (X).

In the second case X must be reflexive.

Corollary 1.5. Let X be an infinite-dimensional complex Banach
space and φ : P (X) → P (X) a bijective map preserving orthogonality
in both directions. Then either there exists a bounded invertible linear or
conjugate-linear operator T : X → X such that

φ(P ) = TPT−1, P ∈ P (X),

or there exists a bounded invertible linear or conjugate-linear operator T :
X∗ → X such that

φ(P ) = TP ∗T−1, P ∈ P (X).

In the second case X must be reflexive.

Corollary 1.6. Let X be an infinite-dimensional real Banach space
and φ a poset automorphism of P (X). Then either there exists an invertible
T ∈ B(X) such that

φ(P ) = TPT−1, P ∈ P (X),
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or there exists a bounded invertible linear operator T : X∗ → X such that

φ(P ) = TP ∗T−1, P ∈ P (X).

In the second case X must be reflexive.

Corollary 1.7. Let X be an infinite-dimensional complex Banach
space and φ a poset automorphism of P (X). Then either there exists a
bounded invertible linear or conjugate-linear operator T : X → X such that

φ(P ) = TPT−1, P ∈ P (X),

or there exists a bounded invertible linear or conjugate-linear operator T :
X∗ → X such that

φ(P ) = TP ∗T−1, P ∈ P (X).

In the second case X must be reflexive.

In this paper we will be mainly interested in infinite-dimensional Banach
spaces. Let us just mention that in the finite-dimensional complex case the
results are slightly more complicated as the map T need not be linear or
conjugate-linear, but merely semilinear (see [16]). On the other hand, in the
finite-dimensional case the last two corollaries can be proved under weaker
assumptions (see [21, 22]).

A lot of attention has been paid to the study of linear maps preserv-
ing commutativity on full matrix or operator algebras. Let us mention here
just two recent papers covering most of the known results [4, 15]. The main
motivation to study such maps comes from the simple observation that the
assumption of preserving commutativity can be considered as the assump-
tion of preserving zero Lie products. The study of nonlinear maps preserving
commutativity on full matrix and operator algebras has been initiated re-
cently. In [23] bijective nonlinear maps on full matrix algebras preserving
commutativity in both directions were characterized, while in [14] such maps
were treated on the Jordan algebra of all self-adjoint operators acting on a
Hilbert space. Of course, we will use some of the ideas developed in these two
papers. But many of the ideas are essentially different since our situation
differs a lot from both the finite-dimensional case and the self-adjoint case.

One of the main motivations for this study was to give a new insight into
the beautiful result of Ovchinnikov. His motivation to study automorphisms
of the poset of idempotents came from quantum mechanics. Recently, his re-
sult was used by Molnár [13] to study another problem in quantum mechan-
ics. Let us briefly describe the background. Wigner’s unitary-antiunitary
theorem plays a fundamental role in quantum mechanics. It states that ev-
ery quantum-mechanical invariance transformation can be represented by a
unitary or an antiunitary operator on a complex Hilbert space. The refor-
mulation in the mathematical language states that every bijective transfor-
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mation φ on the set of all one-dimensional linear subspaces of a complex
Hilbert space H preserving the angle between every pair of such subspaces
(transition probability in the language of quantum mechanics) is induced by
a unitary or an antiunitary operator. Uhlhorn [24] improved this result by re-
quiring only that φ preserves the orthogonality between the one-dimensional
subspaces of H. This is a significant generalization since Uhlhorn’s trans-
formation preserves only the logical structure of the quantum-mechanical
system in question while Wigner’s transformation preserves its complete
probabilistic structure. For some recent results in this direction we refer to
[10, 11, 13, 18] where further references can be found.

Recently, Molnár [12] has improved Wigner’s theorem in a different way.
He characterized bijective transformations on the set of all n-dimensional
subspaces of a Hilbert space preserving principal angles between such sub-
spaces. In [20] the extension of this result in the spirit of Uhlhorn was proved.
We will conclude our discussion on maps on idempotents by treating a non-
self-adjoint version of this result. We believe that this kind of result is in-
teresting in itself but some ideas presented in [13] and [19] suggest that it
might also be useful when studying the result of Molnár in a more general
setting of indefinite inner product spaces.

For a Banach space X and a positive integer n we denote by Pn(X) and
P≤n(X) the subset of P (X) consisting of all idempotents of rank n and the
subset of P (X) consisting of all idempotents of rank at most n, respectively.

Theorem 1.8. Let n be a positive integer , X an infinite-dimensional
real Banach space, and φ : Pn(X) → Pn(X) a bijective map preserv-
ing orthogonality in both directions. Then either there exists an invertible
T ∈ B(X) such that

φ(P ) = TPT−1, P ∈ Pn(X),

or there exists a bounded invertible linear operator T : X∗ → X such that

φ(P ) = TP ∗T−1, P ∈ Pn(X).

In the second case X must be reflexive.

Theorem 1.9. Let n be a positive integer , X an infinite-dimensional
complex Banach space, and φ : Pn(X)→ Pn(X) a bijective map preserving
orthogonality in both directions. Then either there exists a bounded invertible
linear or conjugate-linear operator T : X → X such that

φ(P ) = TPT−1, P ∈ Pn(X),

or there exists a bounded invertible linear or conjugate-linear operator T :
X∗ → X such that

φ(P ) = TP ∗T−1, P ∈ Pn(X).

In the second case X must be reflexive.
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The special case when n = 1 and the underlying field is the field of
complex numbers has already been proved in [23]. It was used there to
obtain a nonlinear extension of the structural result for Lie automorphisms
of the Lie algebra B(X) equipped with the Lie product [·, ·] defined by
[A,B] = AB −BA.

So far we have disscussed mostly the physical motivation for the study
of this kind of problems. In the previous paragraph we mentioned an ap-
plication in the study of Lie automorphisms. But the results of this type
are important also in operator theory, for example, when studying the au-
tomorphisms of operator semigroups (see [19]). Recently, a lot of work has
been done on linear preservers, that is, on linear maps that preserve cer-
tain sets or properties. Many problems concerning linear preservers can be
reduced to the problem of characterizing linear maps preserving idempo-
tents [8]. In particular, the famous Kaplansky problem on invertibility pre-
serving maps is of this kind [3, 5]. The restriction of a linear idempotent
preserving map φ on an operator algebra to the poset of all idempotents
preserves partial order and orthogonality. Indeed, if P ≤ Q, then Q − P
is an idempotent, and therefore, φ(Q)− φ(P ) is idempotent, which further
implies that φ(P ) ≤ φ(Q). To see that φ preserves orthogonality one has to
observe that the sum of two idempotent operators P + Q is idempotent if
and only if P ⊥ Q. So, the structural results obtained in this paper might
be helpful when studying linear preservers. Moreover, when reducing a cer-
tain linear preserver problem first to the problem of characterizing linear
maps preserving idempotents, and then to the problem of characterizing or-
der preserving or orthogonality preserving maps, we ultimately arrive at a
nonlinear problem. This may result in a stronger conclusion than we expect
at the beginning. We will ilustrate this by considering the problem of char-
acterizing biseparating maps between operator algebras recently studied by
Araujo and Jarosz [2].

2. Preliminary results. Let X be a Banach space. For every nonzero
x ∈ X and nonzero f ∈ X∗ we denote by x⊗f ∈ B(X) the rank one operator
defined by (x ⊗ f)z = f(z)x, z ∈ X. Note that every rank one operator is
of this form. Such an operator is an idempotent if and only if f(x) = 1. For
two rank one idempotents x ⊗ f, y ⊗ g ∈ P (X) we write x ⊗ f ∼ y ⊗ g if
x and y are linearly dependent or f and g are linearly dependent. In other
words, for P,Q ∈ P1(X) we have P ∼ Q if P and Q have the same range
space or the same null space.

Lemma 2.1. Let X be a Banach space with dimX ≥ 3 and let P,Q ∈
P1(X). Then P ∼ Q if and only if there exist R,S ∈ P2(X) such that
R 6= S, P ≤ R, P ≤ S, Q ≤ R, and Q ≤ S.
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This statement has been known before [16]. As the proof is rather short
we give it here for the sake of completeness.

Proof. Assume first that P ∼ Q. Then P and Q have the same range
space or the same null space. We will consider only the first possibility since
the proof in the other case is almost the same. So, we have P = x⊗ f and
Q = x ⊗ g for some x ∈ X and f, g ∈ X∗ with f(x) = g(x) = 1. There is
nothing to prove if f = g. So, we may assume that f 6= g. Then f and g are
linearly independent, and consequently, we can find nonzero y, z ∈ X such
that f(y) = f(z) = g(z) = 0 and g(y) = 1. It is now easy to verify that
R = x⊗ f + y⊗ (g− f) and S = x⊗ f + (y+ z)⊗ (g− f) are distinct rank
two idempotents satisfying P ≤ R, P ≤ S, Q ≤ R, and Q ≤ S.

Assume now that P and Q have neither the same range space nor the
same null space, and let R be any rank two idempotent with P,Q ≤ R.
Then the range space of R contains both the range spaces of P and Q.
Thus, the two-dimensional range space of R has to be the direct sum of
the range spaces of P and Q. Similarly, the null space of R, which is of
codimension two, must be the intersection of the null spaces of P and Q.
Every idempotent is completely determined by its range space and its null
space. Thus, there exists at most one idempotent R of rank two such that
P,Q ≤ R.

Lemma 2.2. Let X be a Banach space with dimX ≥ 2 and let
P,Q ∈ P1(X). Then P 6⊥ Q if and only if there exists R ∈ P1(X) such
that P ∼ R and Q ∼ R.

Proof. Let P = x ⊗ f and Q = y ⊗ g. If P 6⊥ Q, then f(y) 6= 0 or
g(x) 6= 0. In the first case the rank one idempotent R = 1

f(y)(y⊗ f) satisfies
both conditions P ∼ R and Q ∼ R, while in the second case the choice
R = 1

g(x)(x⊗ g) gives the idempotent R with the desired properties.
Assume now that P ⊥ Q, that is, f(y) = g(x) = 0. Suppose also that

R is a rank one idempotent satisfying R ∼ P . Then R = x ⊗ k for some
k ∈ X∗ with k(x) = 1 or R = z ⊗ f for some z ∈ X with f(z) = 1. We
will treat only the first possibility since the proof in the second case goes
through in an almost the same way. Because P ⊥ Q, the vectors x and y are
linearly independent, and thus, Q and R have different range spaces. From
k(x) = 1 and g(x) = 0 we conclude that k and g are linearly independent.
Hence, Q and R have different null spaces as well. It follows that Q 6∼ R, as
desired.

For any subset S ⊂ P (X) we denote by S ′ the commutant of S in
P (X), that is, S ′ = {Q ∈ P (X) : QP = PQ for every P ∈ S}. In
the case S = {P} we simply write P ′ = {P}′. We further denote by
E(X) ⊂ P (X) the subset of all idempotents of rank one or corank one:



28 P. Šemrl

E(X) = P1(X) ∪ {I − P : P ∈ P1(X)}. The members of E(X) can be
characterized using the commutativity relation in the following way.

Lemma 2.3. Let X be a Banach space with dimX ≥ 4 and let P ∈
P (X) \ {0, I}. Then the following conditions are equivalent :

• P ∈ E(X),
• for any Q,P1, Q1 ∈ P (X) \ {0, I} satisfying PQ = QP , P ′ 6= Q′,
P1Q1 = Q1P1, P ′1 6= Q′1, and {P,Q}′ ⊂ {P1, Q1}′ we have {P,Q}′ =
{P1, Q1}′.

In the case when dimX ∈ {2, 3} every nontrivial idempotent automat-
ically belongs to E(X). The above statement has been inspired by some
ideas from [17].

Proof. Assume first that P ∈ E(X). We have P ′ = (I −P )′. So, there is
no loss of generality in assuming that P is of rank one. Thus, with respect
to the direct sum decomposition X = ImP ⊕KerP the operator P has the
following matrix representation:

P =
[

1 0
0 0

]
.

Assume that Q,P1, Q1 ∈ P (X) \ {0, I} satisfy PQ = QP , P ′ 6= Q′,
P1Q1 = Q1P1, P ′1 6= Q′1, and {P,Q}′ ⊂ {P1, Q1}′. From PQ = QP we con-
clude that

Q =
[
λ 0
0 R

]
,

where λ ∈ {0, 1} and R ∈ P (KerP ). The idempotent R is neither zero nor
the identity, since in the first case our assumption Q 6= 0 would yield λ = 1,
which would further imply that P ′ = Q′, a contradiction, and the second
case is not possible for the same reason. Thus, with respect to the direct
sum decomposition X = ImP ⊕ ImR ⊕ KerR the idempotents P and Q
have the following matrix representations:

P =




1 0 0
0 0 0
0 0 0


 , Q =



λ 0 0
0 I 0
0 0 0


 .

It follows that {P,Q}′ consists of all idempotents having the matrix
representation of the form



µ 0 0
0 S 0
0 0 T


 ,

where µ∈{0, 1} and S and T are any idempotents. From {P,Q}′⊂{P1, Q1}′
we conclude that
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P1 =



τ1 0 0
0 τ2I 0
0 0 τ3I


 , Q1 =



τ4 0 0
0 τ5I 0
0 0 τ6I




with τj ∈ {0, 1}, j = 1, . . . , 6. Replacing P1 by I − P1, if necessary, we may
assume that τ1 = 0. Similarly, we may and do assume that τ4 = 0. Now,
since P1 is a nontrivial idempotent, at least one of τ2 and τ3 is nonzero, and
the same holds true for τ5 and τ6. Moreover, we have τ2 6= τ5 or τ3 6= τ6,
since otherwise we would have P1 = Q1, a contradiction. We will consider
only the case that τ2 6= τ5 and we will assume with no loss of generality
that τ2 = 1 and τ5 = 0. It follows that τ6 = 1. It is now straightforward to
conclude that {P,Q}′ = {P1, Q1}′, as desired.

To prove the other direction assume that P 6∈ E(X). Then we can
find a direct sum decomposition of X into four nontrivial closed subspaces
X = X1 ⊕X2 ⊕X3 ⊕X4 with ImP = X1⊕X2 and KerP = X3⊕X4. The
matrix representation of P with respect to this direct sum decomposition is

P =



I 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0


 .

Define Q,P1, Q1 ∈ P (X) by

Q =



I 0 0 0
0 0 0 0
0 0 I 0
0 0 0 0


 , P1 =



I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 ,

and Q1 = P . Then, clearly, PQ = QP , P ′ 6= Q′, P1Q1 = Q1P1, P ′1 6= Q′1,
and {P,Q}′ ⊂ {P1, Q1}′ but {P,Q}′ 6= {P1, Q1}′.

Proposition 2.4. Let X be an infinite-dimensional Banach space and
φ : P1(X)→ P1(X) a bijective map preserving commutativity in both direc-
tions. Then either there exists a bounded invertible linear or (in the complex
case) conjugate-linear operator T : X → X such that

φ(P ) = TPT−1, P ∈ P1(X),

or there exists a bounded invertible linear or (in the complex case) conjugate-
linear operator T : X∗ → X such that

φ(P ) = TP ∗T−1, P ∈ P1(X).

In the second case X must be reflexive.

Proof. All we have to do is to show that φ preserves orthogonality in
both directions and then the result in the complex case follows directly
from [23, Theorem 2.4]. The real case can be proved in the same way (see a
remark following Theorem 2.4 in [23]).
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As φ and φ−1 satisfy the same assumptions it is enough to show that
φ preserves orthogonality in one direction only. Let P,Q ∈ P1(X) with
PQ = QP = 0. In particular, P and Q commute, and therefore, φ(P ) and
φ(Q) is a commuting pair of rank one idempotents. Moreover, by bijectivity
we have φ(P ) 6= φ(Q). It follows that φ(P ) ⊥ φ(Q), as desired.

Let n be a positive integer. For P,Q ∈ Pn(X) we write P ∼ Q if
rank(P −Q) ≤ 1. Note that in the case n = 1 this definition of ∼ coincides
with the one given at the beginning of this section. We will characterize pairs
of idempotents P,Q ∈ Pn(X) satisfying P ∼ Q. Let S ⊂ Pn(X). In the rest
of this section we will use the symbol S⊥ to denote the orthogonal comple-
ment of S in Pn(X), that is, S⊥ = {R ∈ Pn(X) : RS = SR = 0 for every
S ∈ S}.

Lemma 2.5. Let n be a positive integer and X an infinite-dimensional
Banach space. Assume that P,Q ∈ Pn(X) with P 6= Q. Then the following
statements are equivalent :

• P ∼ Q,
• rank(P −Q) = 1 and either ImP = ImQ or KerP = KerQ,
• either there exist a nonzero x ∈ ImP and a nonzero f ∈ X∗ such that
f(ImP ) = {0} and Q = P +x⊗f , or there exist a nonzero x ∈ KerP
and a nonzero f ∈ X∗ such that f(KerP ) = {0} and Q = P + x⊗ f ,
• for every pair R,S ∈ Pn(X) satisfying R 6= S and {P,Q}⊥ ⊂ {R,S}⊥

we have {P,Q}⊥ = {R,S}⊥.

Proof. Assume first that P ∼ Q. As P 6= Q we have rank(P − Q) = 1.
Let P =

∑n
k=1 zk ⊗ gk, where z1, . . . , zn ∈ X are linearly independent and

g1, . . . , gn ∈ X∗ are linearly independent. Then Q =
∑n

k=1 zk ⊗ gk + w ⊗ h
for some nonzero w ∈ X and some nonzero h ∈ X∗. If both sets of vectors
{w, z1, . . . , zn} and {h, g1, . . . , gn} were linearly independent then Q would
be of rank n+ 1, a contradiction. Thus, either w belongs to the linear span
of z1, . . . , zn, which yields ImQ ⊂ ImP , and because they are of the same
rank, we have ImQ = ImP , or h belongs to the linear span of g1, . . . , gn,
which yields KerQ = KerP .

Assume next that rank(P −Q) = 1 and either ImP = ImQ or KerP =
KerQ. Let us consider only the first possibility as the proof in the second
case goes through in an almost the same way. So, we have Q = P + A for
some rank one operator A. From Pz + Az ∈ ImP , z ∈ X, we deduce that
the range space of A is a subspace of the range space of P . Thus, there exist
x ∈ ImP and f ∈ X∗ such that A = x⊗f . Since P +x⊗f is an idempotent
of rank n its trace is equal to n, and because the trace of P is also n, we
conclude that x⊗ f is a trace zero operator, and therefore, f(x) = 0. From
(P + x⊗ f)2 = P + x⊗ f we get directly f(ImP ) = {0}.
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To prove the next implication we assume that Q = P + x ⊗ f for some
nonzero x ∈ ImP and some nonzero f ∈ X∗ satisfying f(ImP ) = {0},
and that R,S ∈ Pn(X) satisfy R 6= S and {P,Q}⊥ ⊂ {R,S}⊥. Clearly,
{P,Q}⊥ = {T ∈ Pn(X) : ImP ⊂ KerT and ImT ⊂ KerP ∩Ker f}. Assume
that ImR 6⊂ ImP . Then we can find z ∈ ImR such that z 6∈ ImP . Thus,
z = z1 + z2 with z1 ∈ ImP , z2 ∈ KerP and z2 6= 0. Choose nonzero vectors
y1, . . . , yn ∈ KerP ∩Ker f such that the set {z2, y1, . . . , yn} is linearly inde-
pendent. We can find functionals f1, . . . , fn ∈ X∗ such that fk(ImP ) = {0},
k = 1, . . . , n, fi(yj) = δij , 1 ≤ i, j ≤ n, and f1(z2) = f1(z) 6= 0. Here,
δij denotes the Kronecker symbol. Then C =

∑n
k=1 yk ⊗ fk ∈ {P,Q}⊥

but CR 6= 0, a contradiction. It follows that ImR ⊂ ImP and as both
these idempotents are of rank n, we have ImR = ImP , and similarly,
ImS = ImP . Further, we can prove in the same way that KerP ∩ Ker f
⊂ KerR and KerP ∩ Ker f ⊂ KerS. Now, R 6= S and ImR = ImS, and
consequently, KerR 6= KerS. Thus, KerR ∩ KerS is of codimension at
least n + 1 and because KerP ∩ Ker f ⊂ KerR ∩ KerS we actually have
KerP∩Ker f = KerR∩KerS. It follows directly that {P,Q}⊥ = {R,S}⊥, as
desired. In a similar way we prove that the existence of a nonzero x ∈ KerP
and a nonzero f ∈ X∗ satisfying f(KerP ) = {0} and Q = P +x⊗ f implies
the last condition.

It remains to prove that the last assertion implies the first one. So, let
P and Q be a pair of different idempotents of rank n satisfying the last
condition. Since P 6= Q we have KerP 6= KerQ or ImP 6= ImQ. We will
consider only the case that KerP 6= KerQ since the proof in the other
case goes through in almost the same way. In this case the closed subspace
KerP ∩ KerQ is a proper subspace of KerP . Since Q is of finite rank the
codimension of KerP ∩KerQ in KerP is finite. It follows that there exists a
finite-dimensional subspace W ⊂ X such that KerP = (KerP ∩KerQ)⊕W ,
and consequently, X = ImP ⊕ (KerP ∩KerQ)⊕W . We choose a nonzero
f ∈ X∗ satisfying f(ImP ⊕(KerP ∩KerQ)) = {0} and a nonzero x ∈ ImP .
Set R = P and S = P +x⊗ f . Obviously, S is an idempotent of rank n. We
will prove that {P,Q}⊥ ⊂ {R,S}⊥. Indeed, for every T ∈ {P,Q}⊥ we have
ImP ⊂ KerT , which together with ImP = ImS yields TS = 0. On the
other hand, for every such T we have ImT ⊂ KerP ∩KerQ, which implies
that f(ImT ) = {0}, and consequently, ST = 0.

Thus, {P,Q}⊥ ⊂ {R,S}⊥. It follows from our assumption that {P,Q}⊥
= {R,S}⊥. Clearly, KerP ∩ Ker f is a closed subspace of KerP of codi-
mension one. Therefore, there exists a nonzero vector u ∈ X such that
X = ImP ⊕ (KerP ∩Ker f)⊕ span{u}. Obviously, {R,S}⊥ = {T ∈ Pn(X) :
T (ImP ) = {0} and ImT ⊂ KerP ∩Ker f}.

We will next prove that ImQ = ImP . It is enough to show that
ImQ ⊂ ImP . Assume on the contrary that there exists z ∈ ImQ such that
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z 6∈ ImP . Then z = z1 + z2 with z1 ∈ ImP , z2 ∈ (KerP ∩Ker f)⊕ span{u},
and z2 6= 0. The subspace KerP ∩ Ker f is infinite-dimensional, and there-
fore, we can find vectors w1, . . . , wn ∈ KerP ∩ Ker f such that the set of
vectors {w1, . . . , wn, z2} is linearly independent. Further, we can find func-
tionals g1, . . . , gn ∈ X∗ such that gj(ImP ) = {0}, j = 1, . . . , n, gi(wj) = δij ,
1 ≤ i, j ≤ n, g1(z2) = 1, and g2(z2) = · · · = gn(z2) = 0. Then, clearly,
T =

∑n
j=1wj ⊗ gj ∈ Pn(X). Moreover, T ∈ {R,S}⊥, but Tz = w1, and

consequently, TQ 6= 0, a contradiction. Hence, ImQ = ImP , as desired.
The restriction of Q to the subspace KerP ∩ Ker f is the zero operator

since otherwise it would be easy to find T ∈ {R,S}⊥ with QT 6= 0. So,
both P and Q act as the identity on ImP = ImQ and they are both zero
operators on KerP ∩Ker f . Thus, the space ImP ⊕ (KerP ∩Ker f), which
has codimension one in X, is a subspace of Ker(P − Q). As P 6= Q, we
necessarily have rank(P −Q) = 1, as desired.

Let P ∈ Pn(X). For every nonzero x ∈ ImP we define LP,x =
{P + x ⊗ h : h ∈ X∗ and h(ImP ) = {0}}. Clearly, LP,x is a subset of
Pn(X) and R ∼ S for every pair R,S ∈ LP,x. Similarly, for every nonzero
y ∈ KerP we set MP,y = {P + y⊗h : h ∈ X∗ and KerP ⊂ Kerh}. Further,
for nonzero f, g ∈ X∗ satisfying f(ImP ) = {0} and KerP ⊂ Ker g we write
RP,f = {P + u ⊗ f : u ∈ ImP} and NP,g = {P + u ⊗ g : u ∈ KerP}. Each
of these sets is contained in Pn(X) and if R,S ∈ Pn(X) both belong to one
of these subsets then R ∼ S. We will call these subets of Pn(X) basic sets
related to P . More precisely, for every nonzero x ∈ ImP the set LP,x will be
called a basic set of type I related to P , while for every nonzero y ∈ KerP
the set MP,y will be called a basic set of type II related to P . Similarly, for
nonzero f, g ∈ X∗ satisfying f(ImP ) = {0} and KerP ⊂ Ker g, the sets
RP,f and NP,g will be called basic sets of type III and IV , respectively.

Lemma 2.6. Let n be a positive integer and X an infinite-dimensional
Banach space. Assume that S ⊂ Pn(X) is a nonempty subset such that
Q ∼ R for every pair Q,R ∈ S. Let P ∈ S. Then S is a subset of some
basic set related to P .

Proof. Define T = S − P = {Q − P : Q ∈ S}. Then every member
of T is of rank at most one. Moreover, if A,B ∈ T , then rank(A− B) ≤ 1.
Note that the difference of two rank one operators x⊗ f − y ⊗ g is of rank
at most one if and only if x and y are linearly dependent or f and g are
linearly dependent. It follows easily that every subset C ⊂ B(X) consisting
of operators of rank at most one with the property that rank(A − B) ≤ 1,
A,B ∈ C, is contained in x ⊗ X∗ = {x ⊗ f : f ∈ X∗} for some nonzero
x ∈ X or in X ⊗ f = {x ⊗ f : x ∈ X} for some nonzero f ∈ X∗. In par-
ticular, this holds true for T , and consequently, we have two possibilities,
of which we will consider only the first one. So, we asssume from now on
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that there is a nonzero x ∈ X such that T ⊂ x ⊗X∗. If S = {P} there is
nothing to prove. So, we may assume that S contains at least two different
idempotents, or equivalently, there exists a nonzero operator in T . Then by
Lemma 2.5, either x ∈ ImP , or x ∈ KerP . Applying Lemma 2.5 once again
we easily conclude that in the first case S ⊂ LP,x, while in the second case
S ⊂MP,x.

Lemma 2.7. Let n be a positive integer , X an infinite-dimensional Ba-
nach space, and P ∈ Pn(X). Assume that B ⊂ Pn(X) is a basic set related
to P . Then B⊥ = ∅ if and only if B is of type I or IV.

Proof. A straightforward verification is omitted.

Recall that a map E : U → V between two real or complex vector spaces
is semilinear if it is additive and if there exists an automorphism τ of the
underlying field such that E(λx) = τ(λ)Ex for every vector x ∈ U and every
scalar λ. It is well known that the only automorphism of the real field is the
identity. Therefore, every semilinear map between real spaces is automati-
cally linear. Examples of semilinear maps on complex vector spaces are linear
and conjugate-linear maps. However, there are many automorphisms of the
complex field different from the identity or the complex conjugation [9] and
therefore there exist semilinear maps on complex spaces which are neither
linear nor conjugate-linear.

Lemma 2.8. Let n be a positive integer , X and Y infinite-dimensional
complex Banach spaces, and E : X → Y a bijective semilinear map. If E
carries closed subspaces of codimension n to closed subspaces of codimen-
sion n, then E is a linear or conjugate-linear operator.

Proof. The proof of the special case when n = 1 can be found in
[7, Lemma 2]. So, all we have to do is to reduce the general case to this
special case, that is, we have to prove that E carries closed hyperplanes to
closed hyperplanes. So, let n > 1 and let W ⊂ X be a closed hyperplane.
Then W can be decomposed into a direct sum W = W1 ⊕W2 where W1 is
a closed subspace of X of codimension n and W2 is a subspace of dimension
n − 1. We must show that EW = EW1 ⊕ EW2 is a closed subspace. This
is true because EW1 is closed by our assumption and every direct sum of a
closed subspace and a finite-dimensional subspace is closed.

Lemma 2.9. Let n be a positive integer , X and Y infinite-dimensional
(both real or both complex ) Banach spaces, and φ : Pn(X) → Pn(Y ) a bi-
jective map preserving orthogonality in both directions. Assume further that
E : X∗ → Y is a bijective semilinear map such that for every Q ∈ Pn(X)
and every f ∈ X∗ we have Q∗f = 0 if and only if φ(Q)Ef = 0. Then E is
a bounded invertible linear or (in the complex case) conjugate-linear opera-
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tor and
φ(Q) = EQ∗E−1

for every Q ∈ Pn(X).

Proof. Since E is semilinear there exists an automorphism τ of the un-
derlying field such that E(λf) = τ(λ)Ef for every functional f ∈ X∗ and
every scalar λ. Then, clearly, E−1(λy) = τ−1(λ)E−1y for every vector y ∈ Y
and every scalar λ. It follows that for every Q ∈ Pn(X) the map EQ∗E−1 :
Y → Y is linear. Moreover, it is an idempotent of rank n. In the next step we
will prove that Kerφ(Q) = KerEQ∗E−1 and Imφ(Q) = ImEQ∗E−1. As-
sume for a moment that this has already been proved. Then, since both φ(Q)
and EQ∗E−1 are idempotents, they must be equal. In particular, EQ∗E−1

is bounded for every Q ∈ Pn(X).
By our assumptions, we have y ∈ Kerφ(Q) if and only if y = Ef for

some f ∈ KerQ∗, which is equivalent to y ∈ KerQ∗E−1 = KerEQ∗E−1.
Thus, Kerφ(Q) = KerEQ∗E−1 for every Q ∈ Pn(X).

Let W be any infinite-dimensional Banach space and T ∈ Pn(W ) any
idempotent of rank n. Then it is easy to verify that ImT =

⋂
R∈T⊥ KerR

and ImT ∗ =
⋂
R∈T⊥ KerR∗. Now, let Q be any member of Pn(X). Then

Imφ(Q) =
⋂

R∈φ(Q)⊥

KerR =
⋂

R∈Q⊥
Kerφ(R)

=
⋂

R∈Q⊥
KerER∗E−1 =

⋂

R∈Q⊥
KerR∗E−1 = E

( ⋂

R∈Q⊥
KerR∗

)
.

On the other hand,

ImEQ∗E−1 = E(ImQ∗) = E
( ⋂

R∈Q⊥
KerR∗

)
.

Thus, Imφ(Q) = ImEQ∗E−1 for every Q ∈ Pn(X).
Hence, φ(Q) = EQ∗E−1 for every Q ∈ Pn(X). It remains to prove

that E is linear or conjugate-linear and bounded. In the real case every
semilinear map is automatically linear. So, assume in this paragraph that
both X and Y are complex spaces. We will show that E−1 carries closed
subspaces of codimension n to closed subspaces of codimension n. Once we
prove this we can apply the previous lemma to conclude that E−1 is linear
or conjugate-linear, and then the same must be true for the mapping E.
Note that for every closed subspace U of Y of codimension n there exists
Q ∈ Pn(X) such that U = Kerφ(Q). Now, for every Q ∈ Pn(X) we have
Kerφ(Q) = KerEQ∗E−1 = E(KerQ∗). Thus, E−1(U) = E−1(Kerφ(Q)) =
KerQ∗ is closed.

So, both E and E−1 are either linear or conjugate-linear. We will prove
that the real linear map E−1 has closed graph, which will imply that E−1,
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and hence also E, is bounded. Assume on the contrary that there exists
a sequence (yp) ⊂ Y with yp → 0 and E−1yp → ϕ 6= 0 as p → ∞. Find
x1 ∈ X with ϕ(x1) 6= 0, x2, . . . , xn ∈ X such that x1, . . . , xn are linearly
independent, and f1, . . . , fn ∈ X∗ such that fi(xj) = δij , 1 ≤ i, j ≤ n. Then
f1, . . . , fn, and hence Ef1, . . . , Efn, are linearly independent, and therefore,
there existsm∈ Y ∗ such that m(Ef1) = 1 and m(Ef2) = · · · = m(Efn) = 0.
Set Q =

∑n
j=1 xj⊗fj . Then Q∗ =

∑n
j=1 fj⊗κxj , where κ : X → X∗∗ is the

canonical embedding. Define the map τ on the underlying field to be the
identity if E is linear, while in the case that X and Y are complex spaces
and E is semilinear define τ(λ) = λ, λ ∈ C. We have

0 = lim
p→∞

m(φ(Q)yp) = lim
p→∞

m(EQ∗E−1yp)

= lim
p→∞

m
(
E
( n∑

j=1

fj ⊗ κxj
)
E−1yp

)
= lim

p→∞
m
(
E
( n∑

j=1

(E−1yp)(xj)fj
))

= lim
p→∞

m
( n∑

j=1

τ((E−1yp)(xj))Efj
)

= τ( lim
p→∞

(E−1yp)(x1)) = τ(ϕ(x1)) 6= 0,

a contradiction. This completes the proof.

We will conclude this section by some simple observations concerning
bijective orthogonality preserving maps. Let n be a positive integer and X
and Y infinite-dimensional real or complex Banach spaces. If T : X → Y
and U : X∗ → Y are bounded invertible linear or (in the complex case)
conjugate-linear maps, then

P 7→ TPT−1 and P 7→ UP ∗U−1

are bijective orthogonality preserving maps from Pn(X) onto Pn(Y ). Let us
call them a standard map of type 1 induced by the linear (conjugate-linear)
map T and a standard map of type 2 induced by the linear (conjugate-linear)
map U , respectively.

Our first observation is that each standard map of type 1 differs from
every standard map of type 2. To verify this observe that there exist P,Q ∈
Pn(X) with PQ = 0 and QP 6= 0. It follows that for each standard map φ of
type 1 we have φ(P )φ(Q) = 0, while for each standard map ψ of type 2 we
have ψ(P )ψ(Q) 6= 0. Two standard maps of type 1 induced by T and S are
equal if and only if T = λS for some nonzero scalar λ. In this case, of course,
either both T and S are linear, or both are conjugate-linear. Indeed, assume
that TPT−1 = SPS−1 for every P ∈ Pn(X). It follows that TZ = SZ for
every subspace Z ⊂ X of dimension n. Applying the bijectivity of T and S
we see that for every nonzero x ∈ X we have T (span{x}) = S(span{x}), or
equivalently, Tx = λxSx for some scalar λx. From

λxSx+ λySy = Tx+ Ty = T (x+ y) = λx+yS(x+ y) = λx+ySx+ λx+ySy
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we see that λx = λy whenever x and y are linearly independent. If x and y
are linearly dependent then we can find z linearly independent of x and y.
It follows from the previous step that λx = λz and λy = λz. Thus, λ = λx is
independent of x and T = λS. In particular, if φ and ψ are standard maps of
type 1 and if φ is induced by a linear map and ψ is induced by a conjugate-
linear map, then φ 6= ψ. Similarly, two standard maps of type 2 induced by
U and V are equal if and only if U = λV for some nonzero scalar λ.

3. Proofs of main results

Proof of Proposition 1.1. Assume first that φ preserves orthogonality in
both directions. Then, as already explained in the introduction, all we have
to do is to prove that for an arbitrary pair of idempotents P,Q ∈ P (X)
we have P ≤ Q if and only if Q⊥ ⊂ P⊥. Assume first that P ≤ Q. If
RQ = QR = 0 for some R ∈ P (X), then RP = RQP = 0, and similarly,
PR = 0. Thus, Q⊥ ⊂ P⊥.

Suppose now that Q⊥ ⊂ P⊥. We have to show that P ≤ Q, or equiv-
alently, ImP ⊂ ImQ and KerQ ⊂ KerP . Assume that one of these two
conditions, say the first one, is not satisfied. Then we can find a functional
f ∈ X∗ such that f(ImQ) = {0}, but the restriction of f to ImP is nonzero.
Since f is nonzero and X = ImQ ⊕ KerQ, we can find x ∈ KerQ with
f(x) = 1. It is now easy to verify that x ⊗ f ∈ Q⊥, but x ⊗ f 6∈ P⊥, a
contradiction.

To prove the converse, we assume that φ is a poset automorphism. First
note that for every positive integer k, φ maps Pk(X) onto itself. Indeed, if P
is of rank k, then we can find a string of idempotents 0 = P0 ≤ P1 ≤ · · · ≤
Pk = P with Pj 6= Pj+1, j = 0, . . . , k − 1. Thus, φ(P ) > φ(Pk−1) > · · · > 0
is of rank at least k. Applying the same argument to the inverse of φ we see
that φ preserves finite ranks in both directions.

Next observe that two nonzero idempotents P,Q ∈ P (X) are orthogonal
if and only if R ⊥ S for any rank one idempotents R,S ∈ P1(X) satisfying
R ≤ P and S ≤ Q. The set of all rank one idempotents that are below P
is mapped onto the set of all rank one idempotents that are below φ(P ).
So, it is enough to show that φ and φ−1 map every pair of orthogonal
rank one idempotents to a pair of the same kind. This follows directly from
Lemmas 2.1 and 2.2.

We will prove the real and the complex case of our main result simulta-
neously.

Proof of Theorems 1.2 and 1.3. Let φ : P (X)→ P (X) be a bijective map
preserving commutativity in both directions. Then, clearly, φ(S ′) = φ(S)′ for
every subset S ⊂ P (X). We have 0′ = P (X) and I ′ = P (X), and for every
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nontrivial idempotent P we have P ′ 6= P (X). Thus, either φ(0) = 0 and
φ(I) = I, or φ(0) = I and φ(I) = 0. Now, by Lemma 2.3, we have φ(E(X))
= E(X). If P ∈ P (X) is any idempotent, then there is a unique idempo-
tent Q 6= P satisfying P ′ = Q′, namely, Q = I − P . Therefore, for every
P ∈ P1(X) the pair {P, I −P} is mapped to the pair {φ(P ), I − φ(P )}. So,
after composing φ with an appropriate ortho-permutation of P (X) which
acts as the identity outside E(X) ∪ {0, I}, we may and do assume that
φ(P1(X)) = P1(X), φ(0) = 0, and φ(I) = I. By Proposition 2.4, either
there exists a bounded invertible linear or (in the complex case) conjugate-
linear operator T : X → X such that φ(P ) = TPT−1, P ∈ P1(X), or there
exists a bounded invertible linear or (in the complex case) conjugate-linear
operator T : X∗ → X such that φ(P ) = TP ∗T−1, P ∈ P1(X). In the second
case X is reflexive. Once again we will consider just one of the four cases.

Let us choose the case when X is a complex space and φ(P ) = TP ∗T−1,
P ∈ P1(X), with T : X∗ → X being a conjugate-linear bounded bijec-
tive operator. We have to show that for every P ∈ P (X) we have either
φ(P ) = TP ∗T−1 or φ(P ) = T (I − P )∗T−1. This follows almost directly
from the obvious fact that if P and Q are two idempotents such that
{R ∈ P1(X) : RP = PR} = {R ∈ P1(X) : RQ = QR}, then either
P =Q or P = I−Q. Indeed, let P ∈P (X) and S = {R∈P1(X) : RP =PR}.
Then {R ∈ P1(X) : Rφ(P ) = φ(P )R} = φ(S) = {TR∗T−1 : R ∈ P1(X)
and RP = PR} = {R ∈ P1(X) : RTP ∗T−1 = TP ∗T−1R}. Hence, either
φ(P ) = TP ∗T−1 or φ(P ) = T (I − P )∗T−1.

Proof of Corollaries 1.4 and 1.5. Let φ : P (X) → P (X) be a bijective
map preserving orthogonality in both directions. We will show that it pre-
serves commutativity in both directions. Clearly, it is enough to see that it
preserves commutativity in one direction only, since the inverse of φ satisfies
the same assumptions as φ.

Since 0 is the only idempotent orthogonal to every member of P (X)
we have φ(0) = 0. Observe first that for every set of pairwise orthog-
onal idempotents Q1, . . . , Qk satisfying Q1 + · · · + Qk = I, the idempo-
tents φ(Q1), . . . , φ(Qk) are also pairwise orthogonal and φ(Q1)+ · · ·+φ(Qk)
= I. Indeed, if φ(Q1) + . . . + φ(Qk) 6= I, then there is a nonzero idem-
potent R that is orthogonal to the idempotent φ(Q1) + · · · + φ(Qk), and
since φ(Q1), . . . , φ(Qk) are pairwise orthogonal we have R ⊥ φ(Q1), . . . ,
R ⊥ φ(Qk). If R = φ(S), then S ⊥ Q1, . . . , S ⊥ Qk, and consequently,
0 6= S ⊥ I, a contradiction.

Now, let P1, P2 ∈P (X) commute. DefineQ1 =P1(I−P2),Q2 =P2(I−P1),
Q3 = P1P2, and Q4 = I − P1 − P2 + P1P2. By the previous paragraph,
φ(Q1)+φ(Q2)+φ(Q3)+φ(Q4) = I. Obviously, P1, Q2, and Q4 are pairwise
orthogonal idempotents whose sum is the identity, and therefore, φ(P1) +
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φ(Q2) + φ(Q4) = I, which further yields φ(P1) = φ(Q1) + φ(Q3), and simi-
larly, φ(P2) = φ(Q2) + φ(Q3). Thus, φ(P1) and φ(P2) commute, as desired.

We can now apply Theorem 1.2 in the real case and Theorem 1.3 in
the complex case. In particular, every idempotent of rank one is mapped
into E(X). If P ∈ P1(X), then φ(P ) cannot be of corank one since otherwise
P⊥ would be an infinite set while φ(P )⊥ = {0, I − φ(P )}, a contradiction.
Thus, φ(P1(X)) = P1(X). So, either there is an invertible bounded linear
or (in the complex case) conjugate-linear operator T : X → X such that
φ(P ) = TPT−1, P ∈ P1(X), or there exists an invertible bounded linear
or (in the complex case) conjugate-linear operator T : X∗ → X such that
φ(P ) = TP ∗T−1, P ∈ P1(X). In the first case we know that every Q ∈ P (X)
is mapped either to TQT−1 or to T (I − Q)T−1. Applying the fact that
φ(P ) = TPT−1, P ∈ P1(X), we easily conclude that the second possibility
cannot occur. Similarly, in the second case we get φ(Q) = TQ∗T−1 for every
Q ∈ P (X).

Clearly, Corollaries 1.6 and 1.7 follow directly from Proposition 1.1 and
Corollaries 1.4 and 1.5.

Proof of Theorems 1.8 and 1.9. Once again we will treat the real and
the complex case simultaneously. So, let X be an infinite-dimensional real
or complex Banach space, n a positive integer, and φ a bijective map on
Pn(X) preserving orthogonality in both directions. Then φ(S⊥) = (φ(S))⊥

for every S ⊂ Pn(X). Thus, by Lemma 2.5 we have P ∼ Q if and only if
φ(P ) ∼ φ(Q), P,Q ∈ Pn(X). Further, let P ∈ Pn(X) be any idempotent
of rank n. Then, by Lemma 2.6, every basic set related to P is mapped
into some basic set related to φ(P ). The inverse of φ has the same property,
and therefore, every basic set related to P is mapped bijectively onto some
basic set related to φ(P ). Applying Lemma 2.7 we see that every basic set
of type I or IV is mapped bijectively onto some basic set of type I or IV.

Now we are ready for the main step of the proof. We will show that
for every P ∈ Pn(X), either there exists a bounded invertible linear or
(in the complex case) conjugate-linear operator TP : X → X such that
TP (KerP ) = Kerφ(P ), TP (ImP ) = Imφ(P ), and

φ(Q) = TPQT
−1
P , Q ∈ P⊥,

or there exists a bounded invertible linear or (in the complex case) conjugate-
linear operator TP : X∗ → X such that TP (KerP ∗) = Kerφ(P ), TP (ImP ∗)
= Imφ(P ), and

φ(Q) = TPQ
∗T−1

P , Q ∈ P⊥.
So, let us fix P ∈ Pn(X). Take a nonzero x ∈ ImP and consider LP,x, a
basic set of type I. We already know that it is mapped onto some basic set
of type I or IV. We will consider only the second case because the proof in



Maps on idempotents 39

the first case goes through in almost the same way. In fact, the first case is
even slightly simpler.

Thus, assume that there is a nonzero g ∈ (Imφ(P ))∗ such that φ(LP,x) =
Nφ(P ),g. Hence, for every h ∈ X∗ satisfying h(ImP ) = {0}, that is, for every
h ∈ Ker P ∗, there exists u ∈ Kerφ(P ) such that

φ(P + x⊗ h) = φ(P ) + u⊗ g.
The map h 7→ u maps every one-dimensional subspace of KerP ∗ into some
one-dimensional subspace of Kerφ(P ). Indeed, let [h] be the one-dimensional
subspace of KerP ∗ spanned by a nonzero functional h. If 0 6= k ∈ KerP ∗

and h are linearly dependent and φ(P+x⊗h) = φ(P )+u⊗g and φ(P+x⊗k)
= φ(P ) + v ⊗ g, then obviously {P,P + x ⊗ h}⊥ = {P,P + x ⊗ k}⊥, and
consequently, {φ(P ), φ(P )+u⊗g}⊥ = {φ(P ), φ(P )+v⊗g}⊥, which further
implies that u and v are linearly dependent. Thus, the map h 7→ u induces
a map ϕ from the projective space P(KerP ∗) = {[h] : h ∈ KerP ∗ \{0}} into
P(Kerφ(P )). Clearly, ϕ is bijective.

Next we will prove that for every nonzero f, k, h ∈ KerP ∗ we have
[f ] ⊂ [k] + [h] if and only if ϕ([f ]) ⊂ ϕ([k]) + ϕ([h]). There is nothing to
prove if k and h are linearly dependent. So, assume they are linearly inde-
pendent. Let φ(P +x⊗f) = φ(P )+w⊗g, φ(P +x⊗k) = φ(P )+z⊗g, and
φ(P+x⊗h) = φ(P )+y⊗g. Thus, ϕ([f ]) = [w], ϕ([k]) = [z], and ϕ([h]) = [y].
From {Q ∈ Pn(X) : Q(ImP ) = {0} and ImQ ⊂ KerP ∩ Ker k ∩ Kerh}
= {P,P + x ⊗ k, P + x ⊗ h}⊥ ⊂ {P,P + x ⊗ f}⊥ we get {φ(P ),
φ(P ) + z ⊗ g, φ(P ) + y ⊗ g}⊥ ⊂ {φ(P ), φ(P ) + w ⊗ g}⊥, which yields the
desired inclusion [w] ⊂ [z] + [y]. In the same way we prove that ϕ([f ]) ⊂
ϕ([k])+ϕ([h]) implies [f ] ⊂ [k]+[h]. By the fundamental theorem of projec-
tive geometry there exists a bijective semilinear map E : KerP ∗ → Kerφ(P )
such that ϕ([f ]) = [Ef ], f ∈ KerP ∗ \ {0}. In other words, for every
f ∈ KerP ∗ \ {0} there exists a nonzero scalar µ such that φ(P + x ⊗ f) =
φ(P ) + µEf ⊗ g.

Now, P⊥ can be identified with Pn(KerP ) because every Q ∈ Pn(KerP )
can be extended to Q : X → X = KerP ⊕ ImP with the extension acting
as the zero operator on ImP . Clearly, such an extension belongs to P⊥.
Similarly, φ(P )⊥ can be identified with Pn(Kerφ(P )). We consider the re-
striction of φ to P⊥ as a bijective orthogonality preserving map from P⊥

onto φ(P )⊥. Also, KerP ∗ ⊂ X∗ can be identified in the natural way with
(KerP )∗. So, in order to see that we can apply Lemma 2.9 to the restriction
φ : P⊥ → φ(P )⊥ we have to show that the map E defined in the previous
paragraph satisfies the assumption of that lemma. To see this assume that
Q ∈ P⊥ and f ∈ KerP ∗. Then Q∗f = 0 if and only if Q ⊥ P +x⊗ f , which
is equivalent to φ(Q) ⊥ φ(P ) + µEf ⊗ g, which holds true if and only if
φ(Q)Ef = 0.
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By Lemma 2.9, the map E : KerP ∗ → Kerφ(P ) is a bounded invertible
linear or conjugate-linear map. We can extend E to a bijective bounded
linear or conjugate-linear map from X∗ onto X, such that this extension
maps ImP ∗ bijectively onto Imφ(P ). Denoting this extension by TP we
complete the main step of the proof.

Hence, now we know that for every P ∈ Pn(X), either there exists a
bounded invertible linear or (in the complex case) conjugate-linear operator
TP : X → X such that TP (KerP ) = Kerφ(P ), TP (ImP ) = Imφ(P ), and

φ(Q) = TPQT
−1
P , Q ∈ P⊥,

or there exists a bounded invertible linear or (in the complex case) conjugate-
linear operator TP : X∗ → X such that TP (KerP ∗) = Kerφ(P ), TP (ImP ∗)
= Imφ(P ), and

φ(Q) = TPQ
∗T−1

P , Q ∈ P⊥.
Using the terminology from the end of the previous section we can reformu-
late the above statement by saying that for every P ∈ Pn(X) the restriction
φ|P⊥ : P⊥ → φ(P )⊥ is a standard map of type 1 or 2 induced by a linear
or a conjugate-linear map. So, for each P we have two possibilities in the
real case and four possibilities in the complex case. Let P and Q be any two
members of Pn(X) with P ⊥ Q. Considering the restriction of φ to {P,Q}⊥
and applying the remarks from the end of the previous section we conclude
that the restrictions of φ to P⊥ and Q⊥ must be of the same type.

Once again we have several cases to treat and as they are similar we will
consider only one of them. So, assume that X is a complex space and that for
every P ∈ Pn(X) there exists a bounded invertible conjugate-linear opera-
tor TP : X∗ → X such that TP (KerP ∗) = Kerφ(P ), TP (ImP ∗) = Imφ(P ),
and

φ(Q) = TPQ
∗T−1

P , Q ∈ P⊥.
As at the end of the previous section, we conclude that the restriction of TP
to the subspace KerP ∗ ∩KerQ∗ is a scalar multiple of the restriction of TQ
to this subspace whenever P ⊥ Q, P,Q ∈ Pn(X). Now, let P,Q ∈ Pn(X)
be arbitrary idempotents of rank n. By the previous step we know that for
every R ∈ Pn(X) with P ⊥ R and Q ⊥ R the restrictions of TP and TQ
to KerP ∗ ∩ KerQ∗ ∩ KerR∗ are the same up to a multiplicative constant.
Here, R was any idempotent orthogonal to both P and Q. It follows that
the restriction of TP to the subspace KerP ∗ ∩ KerQ∗ is a scalar multiple
of the restriction of TQ to this subspace in this general case as well. By
absorbing a constant we may assume that for every pair P,Q ∈ Pn(X) we
have

TP f = TQf

for every f ∈ KerP ∗∩KerQ∗. So, the map T : X∗ → X given by Tf = TP f ,
f ∈ KerP ∗ is well defined. Clearly, this is a bounded invertible conjugate-
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linear map. It is now easy to verify that φ(Q) = TQ∗T−1 for every Q ∈
Pn(X).

4. An application. Let X be an infinite-dimensional Banach space.
A bijective map φ : B(X) → B(X) is called biseparating if AB = 0 ⇔
φ(A)φ(B) = 0, A,B ∈ B(X). Recently, Araujo and Jarosz [2] proved that
every linear bijective biseparating map on B(X) is a scalar multiple of an in-
ner automorphism of B(X). An interested reader can find more information
on separating and biseparating linear maps in [1] and [6].

Applying our results we can study the more general problem of char-
acterizing nonlinear biseparating maps on B(X). Clearly, every bijective
map η : B(X) → B(X) with the property that Im η(A) = ImA and
Ker η(A) = KerA, A ∈ B(X), is biseparating. Every such map will be called
a bijective kernel-image preserving map. We will prove that every bijective
biseparating map on B(X) is a composition of such a map and an inner lin-
ear or (in the complex case) conjugate-linear automorphism of B(X). The
result of Araujo and Jarosz is a rather easy consequence.

Theorem 4.1. Let X be an infinite-dimensional Banach space and φ :
B(X) → B(X) a bijective biseparating map. Then there exist a bijective
kernel-image preseving map η : B(X) → B(X) and a bounded bijective
linear or (in the complex case) conjugate-linear map T : X → X such that
φ(A) = Tη(A)T−1, A ∈ B(X).

Proof. Clearly, φ(0) = 0. Denote byB1(X) ⊂ B(X) the subset of all rank
one operators. For A ∈ B(X) we define A⊥ = {B ∈ B(X) : BA = AB = 0}
and A⊥⊥ = {B ∈ B(X) : BC = CB = 0 for every C ∈ A⊥}. We have
φ(A⊥) = φ(A)⊥ and φ(A⊥⊥) = φ(A)⊥⊥ for every A ∈ B(X).

Let us prove that for a nonzero A ∈ B(X) the following statements are
equivalent:

• A ∈ B1(X),
• for every nonzero B ∈ A⊥⊥ we have B⊥ = A⊥.

Assume for a moment that this equivalence has already been proved. Then,
clearly, φ(B1(X)) = B1(X).

In order to prove the above equivalence we first assume that A = x⊗f is
a rank one operator and B ∈ B(X) is a nonzero operator belonging to A⊥⊥.
Then A⊥ = {C ∈ B(X) : Cx = 0 and ImC ⊂ Ker f}. We will prove
that ImB ⊂ span{x} and Ker f ⊂ KerB. Let us prove just one of these
two inclusions, say, the second one. Assume on the contrary that there is
a nonzero z ∈ X such that z ∈ Ker f but z 6∈ KerB. Take any nonzero
g ∈ X∗ satisfying g(x) = 0. Then, obviously, z ⊗ g ∈ A⊥, which yields
B · z ⊗ g = (Bz)⊗ g = 0, a contradiction.
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Now, since B is nonzero we have ImB = span{x} and Ker f = KerB. It
follows that B = λA for some nonzero scalar λ, and consequently, B⊥ = A⊥,
as desired.

To prove the converse suppose that A ∈ B(X) is an operator whose
range space is at least two-dimensional. Take any nonzero w ∈ ImA and
any nonzero k ∈ X∗ satisfying k(KerA) = {0}. If AC = CA = 0, then
C(ImA) = {0} and ImC ⊂KerA, which further implies that CB =BC = 0,
where B = w ⊗ k. Thus, B ∈ A⊥⊥. Since ImA is at least two-dimensional
we can find g ∈ X∗ with g(w) = 0 and g(ImA) 6= {0}. Choose a nonzero
u ∈ Ker k. Then u ⊗ g ∈ B⊥ but u ⊗ g 6∈ A⊥. This completes the proof of
the above equivalence.

In the next step we will prove that for every P ∈ P1(X) there exist a
nonzero scalar λP and Q ∈ P1(X) such that φ(P ) = λPQ. Every rank one
operator is either a scalar multiple of a rank one idempotent, or a square-zero
operator. So, all we have to do is to show that for every P ∈ P1(X) the rank
one operator φ(P ) is not square-zero. If φ(P )2 = 0, then we would have
P 2 = 0, a contradiction.

Hence, for every P ∈ P1(X) there exist a nonzero scalar λP and
Q ∈ P1(X) such that φ(P ) = λPQ. The scalar λP and the rank one idem-
potent Q are uniquely determined. Define a map ϕ : P1(X) → P1(X) by
ϕ(P ) = Q. Obviously, this is a bijective map preserving orthogonality in
both directions. By Theorems 1.8 and 1.9 with n = 1, either there exists
a bounded invertible linear or (in the complex case) conjugate-linear oper-
ator T : X → X such that ϕ(P ) = TPT−1, P ∈ P1(X), or there exists a
bounded invertible linear or (in the complex case) conjugate-linear operator
T : X∗ → X such that ϕ(P ) = TP ∗T−1, P ∈ P1(X). It is easy to find rank
one idempotents P and Q such that PQ = 0 but QP 6= 0, and consequently,
P ∗Q∗ 6= 0. Thus, the second possibility cannot occur. After composing φ
with the similarity transformation A 7→ T−1AT we may assume with no
loss of generality that for every P ∈ P1(X) there exists a nonzero scalar λP
such that φ(P ) = λPP .

Let A ∈ B(X) be any operator. If KerA 6⊂ Kerφ(A), then we
can easily find P ∈ P1(X) such that AP = 0 but φ(A)P 6= 0. It
follows that φ(A)φ(P ) = λPφ(A)P = 0, a contradiction. So, KerA ⊂
Kerφ(A) and we prove similarly that Kerφ(A) ⊂ KerA and ImA =
Imφ(A).

Corollary 4.2. Let X be an infinite-dimensional Banach space and
φ : B(X) → B(X) a bijective additive biseparating map. Then there ex-
ist a nonzero scalar λ and a bounded bijective linear or (in the complex
case) conjugate-linear map T : X → X such that φ(A) = λTAT−1,
A ∈ B(X).
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Proof. All we have to do is to prove that every additive kernel-image
preserving map η : B(X)→ B(X) is of the form η(A) = λA, A ∈ B(X), for
some nonzero scalar λ. Clearly, for every R ∈ B1(X) there exists a nonzero
scalar λR such that η(R) = λRR.

We will first prove that λR = λ is independent of the choice of
R ∈ B1(X). Let x, y ∈ X be any linearly independent vectors and f, g ∈ X∗
any linearly independent linear functionals. From the fact that the null space
of φ(x⊗ (f + g)) = φ(x ⊗ f) + φ(x⊗ g) = x⊗ (λx⊗ff + λx⊗gg) is the null
space of the functional f + g we conclude that λx⊗f = λx⊗g, and similarly,
λx⊗g = λy⊗g. It follows that λx⊗f = λy⊗g.

If x and y are linearly dependent or f and g are linearly dependent, then
we can find z ∈ X and k ∈ X∗ such that all pairs x, z, and y, z, and f, k,
and g, k are linearly independent and then by the previous step we have
λx⊗f = λz⊗k = λy⊗g. Thus, λR is independent of R ∈ B1(X).

Let A ∈ B(X) be any operator. We have to prove that η(A) = λA.
Choose any x ∈ X and define Ax = y. Find a functional k ∈ X∗ satisfying
k(x) = 1. Then x ∈ Ker(A−y⊗k), and consequently, x ∈ Kerφ(A−y⊗k) =
Ker(φ(A)− λy ⊗ k), which yields φ(A)x = λy, as desired.

It should be mentioned that the result of Araujo and Jarosz covers also
the finite-dimensional case as well as some other operator algebras. On the
other hand, they have considered linear maps, while we have here a weaker
assumption of additivity. Slightly modifying our methods we can extend this
additive version to more general standard unital operator algebras. Our main
motivation to include this result was to indicate how our main results can
be applied to obtain nonlinear extensions of some linear preserver results,
and it is easier to present this idea if one does not need to take care of
technicalities necessary for more general results that can be obtained using
essentially the same approach.

Acknowledgements. I would like to thank N.-C. Wong for a fruitful
discussion on separating and biseparating maps.

References

[1] Y. A. Abramovich and A. K. Kitover, Inverses of disjointness preserving operators,
Mem. Amer. Math. Soc. 143 (2000), no. 679.

[2] J. Araujo and K. Jarosz, Biseparating maps between operator algebras, J. Math.
Anal. Appl. 282 (2003), 48–55.

[3] B. Aupetit, Spectrum-preserving linear mappings between Banach algebras or
Jordan–Banach algebras, J. London Math. Soc. (2) 62 (2000), 917–924.
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