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Kaczmarz algorithm in Hilbert space

by

Rainis Haller (Tartu) and Ryszard Szwarc (Wrocław)

Abstract. The aim of the Kaczmarz algorithm is to reconstruct an element in a
Hilbert space from data given by inner products of this element with a given sequence of
vectors. The main result characterizes sequences of vectors leading to reconstruction of
any element in the space. This generalizes some results of Kwapień and Mycielski.

1. Introduction. Let {en}∞n=0 be a sequence of unit vectors in a Hilbert
space H. For a given x ∈ H we have the numbers {〈x, en〉}∞n=0. We want to
reconstruct x from these numbers. The sequence {en}∞n=0 should be linearly
dense. Define

x0 = 〈x, e0〉e0,

xn = xn−1 + 〈x− xn−1, en〉en.
We are interested in when xn → x for any x ∈ H. The sequences {en}∞n=0
for which this holds will be called effective.

The formula is called the Kaczmarz algorithm. In 1937 Kaczmarz (see
[1]) considered this problem in the finite-dimensional case. He proved that
if dimH <∞ and the sequence {en}∞n=0 is linearly dense and periodic then
it is effective.

Let Pn be the orthogonal projection onto e⊥n . Then we have

xn = xn−1 + (I − Pn)(x− xn−1),

x− xn = Pn(x− xn−1),(1)

x− xn = PnPn−1 · · ·P1P0x.

Therefore the sequence {en}∞n=0 is effective if and only if the operators
PnPn−1 · · ·P1P0 tend to zero strongly. Since the norms of these operators are
bounded it suffices to get pointwise convergence on a linearly dense subset
of vectors, e.g. on members of the sequence {en}∞n=0.
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The Kaczmarz theorem can now be proved as follows. Let dimH < ∞
and {en}∞n=0 be N -periodic. For A = PN−1 · · ·P1P0 it suffices to show that
An tends to zero. We claim that ‖A‖ < 1. If not, there is a vector x such
that ‖Ax‖ = ‖x‖ = 1. Then ‖P0x‖ ≥ ‖Ax‖ = ‖x‖, hence P0x = x. Similarly
P1x = x, . . . , PN−1x = x, which implies that x ⊥ e0, e1, . . . , eN−1. Since the
vectors {en}N−1

n=0 are linearly dense we get x = 0.
We now turn to the infinite-dimensional case. We recall some basic prop-

erties of the algorithm which can be found in [2]. By construction the vector
xn is a linear combination of e0, e1, . . . , en. It can be shown that

xn =
n∑

i=0

〈x, gi〉ei,(2)

where the vectors gn are given by the recurrence relation

g0 = e0, gn = en −
n−1∑

i=0

〈en, ei〉gi(3)

or
n∑

i=0

mnigi = en, mni = 〈en, ei〉.(4)

By (2) we have

x− xn−1 = x− xn + 〈x, gn〉en.

Since by (1) the vectors x− xn and en are orthogonal we get

‖x‖2 = ‖x− x0‖2 + |〈x, g0〉|2,
‖x− xn−1‖2 = ‖x− xn‖2 + |〈x, gn〉|2, n ≥ 1.

Summing up these equalities gives

‖x‖2 − lim
n→∞

‖x− xn‖2 =
∞∑

n=0

|〈x, gn〉|2.

Therefore the sequence {en}∞n=0 is effective if and only if

‖x‖2 =
∞∑

n=0

|〈x, gn〉|2 for any x ∈ H.(5)

This equation means that {gn}∞n=0 is a tight frame with constant 1 as was
already mentioned in [2]. We have noticed before that it suffices to check
formula (5) on vectors {en}∞n=0, provided they form a linearly dense subset
in H.
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2. Characterization of effective sequences. The formula (3) implies
that gn is a linear combination of the vectors e0, e1, . . . , en, i.e.

n−1∑

i=0

cniei + en = gn(6)

for some coefficients cnj. By (4) these coefficients can be obtained by taking
the algebraic inverse matrix to the lower triangular matrix I +M where

M =




0 0 0 0 0 . . .
m10 0 0 0 0 . . .
m20 m21 0 0 0 . . .
m30 m31 m32 0 0 . . .

...
...

...
...

. . . . . .



, mij = 〈ei, ej〉.

Namely (I +M)−1 = I + U, where

U =




0 0 0 0 0 . . .
c10 0 0 0 0 . . .
c20 c21 0 0 0 . . .
c30 c31 c32 0 0 . . .
...

...
...

...
. . . . . .



.

The matrix U and the coefficients cni will play a crucial role in all what
follows. Since the matrices I+M and I+U are inverse to each other we get

UM = MU = −M − U,(7)

U∗M∗ = M∗U∗ = −M∗ − U∗.(8)

Our first simple result shows that the matrix U is a contraction in the Hilbert
space `2(N0).

Proposition 1. Let U and M be strictly lower triangular matrices such
that MU = UM = −U−M. Then U is a contraction if and only if the matrix
M +M∗ + I is positive definite. In that case there is a Hilbert space H and
vectors {en}∞n=0 in H such that M + M∗ + I is the Gram matrix of these
vectors.

Proof. Let Mn and Un denote the truncated matrices given by

Mn =




0
m10 0

...
. . . 0

mn0 · · · mn,n−1 0

0 · · · 0
. . .

...
...

...
...



, Un =




0
c10 0
...

. . . 0
cn0 · · · cn,n−1 0

0 · · · 0
. . .

...
...

...
...



.
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Then Mn and Un are bounded on `2(N0) and by assumption MnUn =
UnMn = −Un −Mn. Assume the matrix M + M∗ + I is positive definite.
Then the matrix Mn +M∗n + I corresponds to a positive bounded operator
on `2(N0). Thus

0 ≤ (U∗n + I)(Mn +M∗n + I)(Un + I) = I − U∗nUn.
Hence ‖Un‖ ≤ 1, where ‖ · ‖ denotes the operator norm. Consequently, we
obtain ‖U‖ ≤ 1. The converse implication follows from

(M∗n + I)(I − U∗nUn)(Mn + I) = Mn +M∗n + I.

Indeed, if ‖U‖ ≤ 1 then ‖Un‖ ≤ 1. Therefore the matrix Mn + M∗n + I is
positive definite, which implies that so also is M + M ∗ + I. It is then well
known that there exist a Hilbert space H and vectors {en}∞n=0 such that

mij = 〈ei, ej〉, i > j.

Now we can state the main result of our paper.

Theorem 1. The sequence {en}∞n=0 is effective if and only if it is linearly
dense and U is a partial isometry , i.e. U∗U is an orthogonal projection.

Proof. Assume {en}∞n=0 is effective. By (5) and by the polar identity we
get

〈x, y〉 =
∞∑

n=0

〈x, gn〉〈gn, y〉(9)

for any x, y ∈ H. In particular

mij = 〈ei, ej〉 =
∞∑

n=0

〈ei, gn〉〈gn, ej〉.(10)

We want to state the formula (10) in terms of matrices on `2(N0). Let δi
denote the sequence in `2(N0) whose ith entry is 1 and all other entries are 0.
We have the following.

Lemma 1.

〈gn, ej〉 = 〈(UM∗ +M∗ + I)δj , δn〉`2(N0)

Proof of Lemma 1. Set cnn = 1. Then by (6) we have

〈gn, ej〉 =





n∑

i=0

cnimij for j > n,

j−1∑

i=0

cnimij +
n∑

i=j

cnimij for j ≤ n.
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Since (I + U)(I +M) = I we get
n∑

i=j

cnimij = δjn, for j ≤ n.

Therefore

〈gn, ej〉 =
〈 j−1∑

i=0

mjiδi,

n∑

i=0

cniδi

〉
`2

+ 〈δj, δn〉`2

= 〈M∗δj , (U∗ + I)δn〉`2 + 〈δj , δn〉`2 = 〈(UM∗ +M∗ + I)δj , δn〉`2 .
Let A = UM∗ + M∗ + I. Applying Lemma 1 to (10) and using the

Parseval identity gives

mij =
∞∑

n=0

〈Aδj , δn〉〈δn, Aδi〉`2 = 〈Aδj , Aδi〉`2.(11)

Let An = UnM
∗
n+M∗n+I. Unlike A, the matrices An correspond to bounded

operators on `2(N0). Since M∗nδk = M∗δk for n ≥ k and Un
n→ U strongly

we have

lim
n→∞

〈A∗nAnδj , δi〉`2 = lim
n→∞

〈Anδj , Anδi〉`2 = 〈Aδj, Aδi〉`2 .(12)

On the other hand, the relation MnUn = −Un −Mn implies

A∗nAn = MnU
∗
nUnM

∗
n −Mn(U∗n +M∗n) +MnU

∗
n

− (Un +Mn)M∗n +MnM
∗
n +Mn + UnM

∗
n +M∗n + I

= Mn +M∗n + I +MnU
∗
nUnM

∗
n −MnM

∗
n.

Hence

lim
n→∞

〈A∗nAnδj , δi〉`2 = mij + (UM∗δj , UM∗δi)`2 − (M∗δj ,M∗δi)`2 .(13)

Combining (11)–(13) yields

(UM∗δj , UM∗δi)`2 = (M∗δj,M∗δi)`2 .(14)

Let F(N0) = span {δ0, δ1, . . .}. Formula (14) states that the operator U is
isometric on

H0 = M∗(F(N0)).

It suffices to show that U vanishes onH⊥0 . To this end observe that the matri-
ces U∗ and M∗ leave the subspace F(N0) invariant. The formula M ∗(U∗+I)
= −U∗ implies that

U∗(F(N0)) ⊂ H0.

Taking orthogonal complements of both sides results in

H⊥0 ⊂ kerU,

which completes the proof that U is a partial isometry.
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Conversely, let U be a partial isometry. Hence U is isometric on H0 =
U∗(F(N0)). The formula U∗(M∗+ I) = −M∗ implies that U is isometric on
M∗(F(N0)), which is equivalent to (14). Now tracking backwards the proof
of the first part implies the formula (10). In particular for i = j we obtain

‖ei‖2 =
∞∑

n=0

|〈ei, gn〉|2

for any i ≥ 0. This implies effectivity (see comments at the end of the
Introduction).

Remark 1. Theorem 1 can be used to construct examples of effective
sequences of vectors. It suffices to come up with a strictly lower triangular
partial isometry U. Then one has to compute the algebraic inverse I +M of
I+U. As a result a positive definite matrix M +M ∗+ I is constructed. The
corresponding vectors form a sequence effective in the closed linear span of
these vectors.

Remark 2. Proposition 1 and Theorem 1 can be interpreted as follows.
There are as many effective sequences among sequences of unit vectors as
there are partial isometries among strictly lower triangular contractions on
`2(N0). This can be compared with a result of Kwapień and Mycielski who
showed that if we choose the sequence of unit vectors at random then almost
surely we end up with an effective sequence. More precisely, fix a probability
Borel measure µ on the unit sphere of H, such that the support of µ is
linearly dense. Then drawing consecutive vectors independently with respect
to that measure almost surely yields an effective sequence of vectors.

3. Strongly effective sequences. For a partial isometry U the carrier
space, i.e. ImU∗, may vary from the trivial space to the whole space H. For
instance when the system {en}∞n=0 is orthonormal we get M = U = 0. The
other extreme case is when ImU ∗ = H, which is equivalent to U ∗U = I.
While proving Theorem 1 we showed that for an effective sequence {en}∞n=0
the carrier space for U coincides with M ∗(F(N0)). Hence U∗U = I if and
only if M∗(F(N0)) = `2(N0). This occurs exactly when the rows of the
matrix M form a linearly dense subset of `2(N0). For example this is the
case when mn+1,n 6= 0 in the matrix




0
m10 0
∗ m21 0
∗ ∗ m32 0
...

...
. . . . . .



.
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It turns out that sequences {en}∞n=0 with U∗U = I have many interesting
properties. Let

vin =
n∑

j=i

cnjej , n > i.(15)

The next lemma is related to a formula obtained in the proof of Theorem 2
of [2].

Lemma 2. For 0 ≤ i, j < n the following equalities hold :

〈vin, vjn〉 = 〈(I − U∗nUn)δj, δi〉`2 .
Proof. Without loss of generality we may assume that j ≤ i. Then using

the fact that I +M and I + U are inverse to each other we get

〈vin, vjn〉 =
〈 n∑

k=i

ckiek,

n∑

l=j

cljel

〉
=

n∑

k=i

cki

n∑

l=j

mklclj =
n−1∑

k=i

cki

n∑

l=j

mklclj

=
n−1∑

k=i

cki

k∑

l=j

mklclj +
n−1∑

k=i

cki

n∑

l=k+1

mklclj

=
n−1∑

k=i

ckiδjk +
n∑

l=i+1

clj

l−1∑

k=i

mlk cki = δij −
n∑

l=i+1

cljcli

= 〈(I − U∗nUn)δj, δi〉`2 .
The next corollary should be compared with Remark 2 of [2].

Corollary 1. Assume U∗U = I. Then for any j ≥ 0,

ej = −
∞∑

i=j+1

cijei.(16)

Proof. By Lemma 2 we get vjn → 0 as n→∞. Hence
∞∑

i=j

cijei = 0.

Since cjj = 1 we get the conclusion.

Definition 1. The sequence {en}∞n=0 will be called strongly effective if
{en}∞n=k is effective for each k ≥ 0.

In particular dropping finitely many vectors from {en}∞n=0 does not spoil
linear density. Hence this is a highly nonorthogonal case.

Theorem 2. Assume the sequence {en}∞n=0 is linearly dense in a Hilbert
space H. Then {en}∞n=0 is strongly effective if and only if U∗U = I.
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Proof. By Corollary 1 for any k the sequence {en}∞n=k is linearly dense.
Let M (k) and U (k) denote truncated matrices obtained by removing the first
k rows and the first k columns from M and U, respectively. These matrices
correspond to the sequence {en}∞n=k. Also U∗U = I implies (U (k))∗U (k) = I

for any k. Hence U (k) is a partial isometry. Now we can use Theorem 1 to
get the conclusion.

Conversely, suppose that {en}∞n=0 is strongly effective. Let Qk denote
the orthogonal projection from `2(N) onto the orthogonal complement of
{δ0, δ1, . . . , δk−1}. Let U(k) = UQk. Then U(k) = 0k⊕U (k), where 0k denotes
the k×k zero matrix. Hence U(k) are partial isometries just as U is. But this is
possible only if U∗U and Qk commute. On the other hand, if U ∗U commutes
with Qk for any k then U∗U must be diagonal. Assume that U ∗U 6= I. Then
Uδj = 0 for some j. This implies that Mδj = 0 and consequently ej is
orthogonal to all the vectors ei, i > j. Hence {en}∞n=0 cannot be strongly
effective.

Lemma 3. Assume U∗U = I. Then

U∗M = −M − I,
U∗(M +M∗ + I) = −(M +M∗ + I).(17)

Proof. By taking the inner product with ek in (16) we obtain

mjk = −
∞∑

i=j+1

cijmik

for any k ≥ 0. Let k ≤ j. Then

mjk = −
∞∑

i=j+1

cijmik = (U∗M)jk.(18)

For k > j we get

0 =
∞∑

i=j

cijmik =
k∑

i=j

cijmki +
∞∑

i=k+1

cijmik(19)

= ((M + I)U)jk + (U∗M)jk = (U∗M)jk.

Combining (18) and (19) gives the first equality. The second equality now
follows by applying U∗M∗ = −U∗ −M∗.

Theorem 3. Assume the matrix U associated with the sequence {en}∞n=0
satisfies U∗U = I. Then

∞∑

i=0

|〈ei, ej〉|2 =∞
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for any j. In particular the conclusion holds if the sequence {en}∞n=0 is ef-
fective and the rows of M are linearly dense in `2(N0).

Proof. Let G = M +M∗ + I. Observe that G is nothing other than the
Gram matrix of the vectors {en}∞n=0. Assume that

∞∑

i=0

|〈ei, ej〉|2 <∞

for some j. Then v = Gδj ∈ `2(N0). By (17) we get U∗v = −v and

(U∗)nv = (−1)nv.

But ‖U∗‖ ≤ 1 and U∗ is strictly upper triangular. Hence (U ∗)n tends to zero
strongly, which implies v = 0. This gives a contradiction because v(j) = 1.

4. Stationary case. Assume

〈ei+1, ej+1〉 = 〈ei, ej〉.
Then the matrix M is constant on diagonals:

M =




0
a1 0
a2 a1 0
a3 a2 a1 0
...

...
...

...
. . .



.

By the Herglotz theorem there is a measure µ on the unit circle such that

〈ei+n, ei〉 = an =
�

T
zn dµ(z).

Kwapień and Mycielski showed that the sequence {en}∞n=0 is effective if and
only if either µ is the Lebesgue measure (orthogonal case) or it is singu-
lar with respect to the Lebesgue measure. We now reprove this result by
applying our Theorem 1.

Also U is constant on diagonals, i.e. it is a Toeplitz operator,

U =




0
u1 0
u2 u1 0
u3 u2 u1 0
...

...
...

...
. . .



.

It is then unitarily equivalent to the multiplication operator on H2(T) with
the function

u(z) =
∞∑

n=1

unz
n.
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Moreover
‖U‖ = ‖u(z)‖H∞(T) ≤ 1.

Now multiplication with u(z) is a partial isometry if and only if the boundary
values of |u(z)| are 0 or 1. By the F. Riesz and M. Riesz theorem, u(eiθ) ≡ 0
or |u(eiθ)| ≡ 1. The first case corresponds to the orthogonal case, because
M = 0. The second case is equivalent to the singularity of the spectral
measure µ. Indeed, for a(z) =

∑∞
n=1 anz

n we have (a(z) + 1)(u(z) + 1) = 1.
Therefore

1 + a(z) + a(z) =
1− |u(z)|2
|u(z) + 1|2 .

By the Fatou theorem

lim
r→1−

[1 + a(reiθ) + a(reiθ)] =
dµ

dθ
.

Therefore µ is singular if and only if |u(eiθ)| → 1 almost everywhere.
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