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Lie triple ideals and Lie triple epimorphisms
on Jordan and Jordan–Banach algebras

by

M. Brešar (Maribor), M. Cabrera (Granada), M. Fošner (Ljubljana)
and A. R. Villena (Granada)

Abstract. A linear subspace M of a Jordan algebra J is said to be a Lie triple ideal
of J if [M,J, J ] ⊆ M , where [·, ·, ·] denotes the associator. We show that every Lie triple
ideal M of a nondegenerate Jordan algebra J is either contained in the center of J or con-
tains the nonzero Lie triple ideal [U, J, J ], where U is the ideal of J generated by [M,M,M ].

Let H be a Jordan algebra, let J be a prime nondegenerate Jordan algebra with
extended centroid C and unital central closure Ĵ , and let Φ : H → J be a Lie triple
epimorphism (i.e. a linear surjection preserving associators). Assume that deg(J) ≥ 12.
Then we show that there exist a homomorphism Ψ : H → Ĵ and a linear map τ : H → C
satisfying τ([H,H,H]) = 0 such that either Φ = Ψ + τ or Φ = −Ψ + τ .

Using the preceding results we show that the separating space of a Lie triple epimor-
phism between Jordan–Banach algebras H and J lies in the center modulo the radical of J .

1. Introduction. An associative algebra A becomes a Lie algebra A−

under the commutator
[x, y] = xy − yx,

and a linear Jordan algebra A+ under the Jordan product

x ◦ y =
1
2

(xy + yx).

In the case A has a linear involution ∗, the set of skew elements

K(A, ∗) = {x ∈ A : x∗ = −x}
is a subalgebra of A−, and the set of symmetric elements

H(A, ∗) = {x ∈ A : x∗ = x}
is a subalgebra of A+. I. N. Herstein initiated the study of the ideals of A−,
A+, K(A, ∗), and H(A, ∗) in the context of simple algebras. His work has
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been generalized in various directions by Herstein himself and many other
authors (see [25, 26, 27]). For a complete account of Herstein’s Lie theory
in the prime context, especially from the point of view of the GPI theory,
we refer to [31]. Concerning Herstein’s Jordan theory the reader is referred
to [32] for Jordan algebras and to [1] for Jordan systems.

One of the basic results of Herstein’s Lie theory is the following well
known theorem (see [25, pp. 4–5]).

Herstein’s Theorem. Let A be a semiprime associative algebra, let L
be a Lie ideal of A, and let U be the ideal of A generated by [L,L]. Then
either L ⊆ Z(A), the center of A, or 0 6= [U,A] ⊆ L.

At his 1961 AMS Hour Talk [24], I. N. Herstein posed, as Problem 2, the
problem of determination of Lie isomorphisms of simple associative algebras.
This problem was studied mainly by W. S. Martindale and his students,
while the final breakthrough was made by M. Brešar [15] who obtained the
description of Lie isomorphisms of prime associative algebras not satisfying
the standard polynomial identity St4. This result was recently generalized
by K. I. Beidar and M. A. Chebotar in [9] as follows.

Beidar–Chebotar Theorem. Let A be an associative algebra, let B
be a prime associative algebra with extended centroid C and unital central
closure B̂, and let Φ : A → B be a Lie epimorphism. Suppose that B does
not satisfy St6. Then there exist linear maps Ψ : A → B̂ and τ : A → C
such that :

(a) τ([A,A]) = 0, and
(b) either Ψ is a homomorphism and Φ = Ψ + τ, or Ψ is an antihomo-

morphism and Φ = −Ψ + τ .

A particularly important notion in the automatic continuity theory is
that of the separating space S(Φ) of a linear map Φ from a Banach space X
into a Banach space Y , which is defined as follows:

S(Φ) = {y ∈ Y : there exists xn → 0 in X with Φ(xn)→ y}.
The separating space is a closed subspace of Y . It is an immediate re-
statement of the closed graph theorem that Φ is continuous if and only
if S(Φ) = {0}.

Using the above Herstein theorem and Brešar’s description of Lie iso-
morphisms, in [12] M. I. Berenguer and A. R. Villena obtained an auto-
matic continuity result for Lie isomorphisms between semisimple Banach
algebras. With different techniques, this result was extended by B. Aupetit
and M. Mathieu in [4] who obtained the following optimal result on the
continuity of Lie homomorphisms.
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Aupetit–Mathieu Theorem. Let A and B be Banach algebras and
let Φ : A → B be a Lie epimorphism. Then the separating space S(Φ) is
contained in Z(B), the center modulo the radical of B.

If J is a Jordan algebra with product denoted by ◦, then J gets the Lie
triple structure via the associator

[x, y, z] = (x ◦ y) ◦ z − x ◦ (y ◦ z).

A linear subspace M of J will be called a Lie triple ideal of J if

[M,J, J ] ⊆M.

Lie triple ideals are nothing other than the so-called associator ideals of
[29]. A linear map Φ from a Jordan algebra H onto J is called a Lie triple
homomorphism if

Φ([x, y, z]) = [Φ(x), Φ(y), Φ(z)] for all x, y, z ∈ H.

The concept of a Lie triple ideal of a Jordan algebra can be viewed as a gen-
eralization of the concept of a Lie ideal of an associative algebra. Namely, if
L is a Lie ideal of an associative algebra A, then L is a Lie triple ideal of the
special Jordan algebra A+. Analogously, the concept of a Lie triple homo-
morphism between Jordan algebras generalizes the concept of a Lie homo-
morphism between associative algebras. We refer the reader to [29, Chapter
VIII] for an introduction to the Lie triple structure in Jordan algebras.

The original motivation for this paper was the question of automatic
continuity of Lie triple epimorphisms in Jordan–Banach algebras. In order
to solve this question we obtained a description of Lie triple epimorphisms
onto prime nondegenerate Jordan algebras whose degree is large enough; in
this context we mention the related recent paper [18] describing Lie triple
isomorphisms between centrally closed prime nondegenerate Jordan alge-
bras. On the other hand, in order to deal with algebras of small degrees, we
have needed an appropriate version of Herstein’s theorem. The goal of this
paper is to prove the following three results which are the Jordan algebra
analogues of the aforementioned theorems by Herstein, Beidar–Chebotar,
and Aupetit–Mathieu.

Theorem 1.1. Let M be a Lie triple ideal of a nondegenerate Jordan
algebra J and let U be the ideal of J generated by [M,M,M ]. Then either
M ⊆ Z(J), the center of J , or 0 6= [U, J, J ] ⊆M .

Theorem 1.2. Let H be a Jordan algebra, let J be a prime nondegen-
erate Jordan algebra with extended centroid C and unital central closure Ĵ ,
and let Φ : H → J be a Lie triple epimorphism. Assume that deg(J) ≥ 12.
Then there exist a homomorphism Ψ : H → Ĵ and a linear map τ : H → C
satisfying τ([H,H,H]) = 0 such that either Φ = Ψ + τ or Φ = −Ψ + τ .



210 M. Brešar et al.

Theorem 1.3. Let H and J be Jordan–Banach algebras and let Φ : H →
J be a Lie triple epimorphism. Then S(Φ) ⊆ Z(J), the center modulo the
radical of J .

Our proofs strongly rely on Zelmanov’s structure theory for Jordan al-
gebras, and on the recently developed theory of functional identities. In
Section 2 we shall recall several definitions and briefly survey all tools of the
general theory of Jordan algebras that we need. Section 3 is devoted to Lie
triple ideals and its goal is to establish Theorem 1.1, which is obtained via
Zelmanov’s structure theory and some results on commuting maps [14, 30].
In Section 4 we outline the theory of K. I. Beidar and M. A. Chebotar on
d-free sets [7, 8, 9] and prove Theorem 1.2. Finally, Section 5 is devoted to
the study of the separating space of Lie triple epimorphisms and its goal is
to establish Theorem 1.3. The proof depends upon Theorems 1.1 and 1.2,
as well as upon the result by B. Aupetit [3] on the automatic continuity of
epimorphisms in Jordan–Banach algebras.

2. Preliminaries. Throughout the paper we assume that all algebras
considered (associative or nonassociative) are over a field F of characteristic
not 2. In the analytic setting, i.e. when treating algebras that are also Banach
spaces, we shall assume that F = C. These conventions will be used without
further mention.

Let A be an arbitrary (not necessarily associative or unital) algebra. Re-
call that the center Z of A consists of elements c ∈ A such that [c,A] =
[c,A,A] = [A, c,A] = [A,A, c] = 0 (note that in the case when A is com-
mutative it suffices to verify that at least one of the identities [c,A,A] = 0,
[A, c,A] = 0, and [A,A, c] = 0 is satisfied). If A has a unity 1, then A is
called central over F if Z = F1. The algebra A is said to be prime if the
product of any two of its nonzero ideals is nonzero. Recall that if A is a prime
algebra with a nonzero center Z, then A has no zero divisors in Z, and as
a consequence one can consider the central localization (Z \ {0})−1A, which
is a central prime algebra over (Z \ {0})−1Z (the field of fractions of Z) [41,
p. 185]. In the case that (Z \ {0})−1A is simple, (Z \ {0})−1A is the central
closure of A and (Z \{0})−1Z is the extended centroid of A [17, Lemma 3.2].
The reader is referred to [22] (resp. [6]) for a more detailed account of these
concepts in the prime (resp. semiprime) context. We recall that, for A prime,
the extended centroid C = C(A) of A can be seen as a field extension of
the base field F. The algebra A is said to be centrally closed (over F) if
the canonical embedding of F into C is surjective. The central closure of
A is a centrally closed prime algebra over C which can be regarded as an
extension algebra of A and it is generated by A as an algebra over C. The
unital central closure Â of A is defined as the unital envelope of the central
closure of A. We remark that the extended centroid C is the center of Â.
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In the associative context, the extended centroid and the central closure
can be viewed inside the symmetric Martindale algebra of quotients. Recall
that the symmetric Martindale algebra of quotients of a prime associative al-
gebra A, denoted here by Q(A), can be introduced as the associative algebra
which is the maximal extension Q of A satisfying the following conditions:

(i) for each q in Q there exists a nonzero ideal U of A such that

qU + Uq ⊆ A;

(ii) if q in Q satisfies qU = 0 for some nonzero ideal U of A, then q = 0.

It is well known that the extended centroid C(A) is the center of Q(A) and
the unital central closure Â is the unital C(A)-subalgebra of Q(A) generated
by A (see [10]).

A Jordan algebra is a nonassociative algebra J whose product ◦ satisfies
x◦y = y ◦x and (x2 ◦y)◦x = x2 ◦ (y ◦x) for all x, y ∈ J . In other words, J is
commutative and [x2, y, x] = 0 for all x, y ∈ J . For every a ∈ J we define an
operator Ua : J → J by

Ua(x) = 2a ◦ (a ◦ x)− a2 ◦ x.
We say that J is a nondegenerate Jordan algebra if Ua = 0 with a ∈ J
implies a = 0.

A Jordan algebra J is said to be special if it can be embedded into A+

for some associative algebra A. Besides A+ itself and H(A, ∗) in the case
when A is endowed with a linear involution ∗, another standard example of a
special Jordan algebra is the Jordan algebra J(X, f) of a symmetric bilinear
form f on a linear space X over F: J(X, f) = F⊕X with the product given
by (α+ x) ◦ (β + y) = αβ + f(x, y) + βx+ αy for all α, β ∈ F and x, y ∈ X.
The algebra J(X, f) is quadratic and in fact every quadratic Jordan algebra
is of this form. Moreover, if dimX ≥ 2, then J(X, f) is a central simple
Jordan algebra if and only if f is nondegenerate.

A Jordan algebra that is not special is called exceptional. Examples of
exceptional Jordan algebras come from Albert algebras H3(D,Γ ): the set of
all 3 × 3-matrices with entries in the Cayley–Dickson algebra D which are
hermitian under the involution X 7→ X∗ = Γ−1X

t
Γ (where Γ stands for

the diagonal matrix diag{γ1, γ2, γ3} with γ1, γ2, γ3 nonzero elements in F and
X
t

is given by transposing the matrix X and taking the Cayley involution
on each entry) endowed with the symmetrized product of the usual matrix
product is a central simple 27-dimensional Jordan algebra. In the case when
the base field F is algebraically closed there is a unique Cayley–Dickson
algebra O (the so-called octonions over F) and the only finite-dimensional
exceptional simple Jordan algebra is H3(O) (= H3(O, Γ ), where Γ is equal
to the identity matrix).
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In his celebrated work [39] Zelmanov proved the following classification
theorem.

Zelmanov’s Prime Theorem. A Jordan algebra J is prime nonde-
generate if and only if one of the following possibilities holds:

(1) J is a central order in an Albert algebra over a field extension of F;
(2) J is a central order in the Jordan algebra J(X, f) of a nondegenerate

symmetric bilinear form over a field extension of F;
(3) there exists a prime associative algebra A over F such that J can be

embedded as a Jordan subalgebra into Q(A) and A is an ideal of J ;
(4) there exists a prime associative algebra A over F with involution ∗

such that J can be embedded into H(Q(A), ∗) and H(A, ∗) is an ideal
of J .

Let A be a prime power associative algebra with extended centroid C.
An element x ∈ A is said to be algebraic over C of degree ≤ n if there exist
c0, c1, . . . , cn ∈ C (some of them different from zero) such that

∑n
i=0 cix

i = 0.
An element x ∈ A is said to be algebraic over C of degree n if it is algebraic
over C of degree ≤ n and is not algebraic over C of degree ≤ n − 1. By
degA(x) we shall mean the degree of x (if x is algebraic over C) or ∞ (if x
is not algebraic over C). Given a nonempty subset R ⊆ A, we set

degA(R) = sup{degA(x) : x ∈ R}.
We write deg(A) instead of degA(A). If A is a prime associative algebra with
deg(A) = n < ∞, then it follows from the PI-theory that A is isomorphic
to a subalgebra B of Mn(C) (C is the algebraic closure of C) such that
CB = Mn(C).

The standard concept of invertibility in associative algebras was ex-
tended to the context of Jordan algebras by N. Jacobson. We say that an
element x in a unital Jordan algebra J is invertible if there exists y ∈ J such
that x ◦ y = 1 and x2 ◦ y = x. Further, an element x in a possibly nonunital
Jordan algebra J is quasi-invertible if 1 − x is invertible in its unital enve-
lope J1. K. McCrimmon [33] proved that in each Jordan algebra J there
exists the largest ideal consisting of quasi-invertible elements. This ideal is
called the Jacobson–McCrimmon radical of J and denoted by Rad(J). We
say that J is semisimple if Rad(J) = 0. If A is an associative algebra, then
Rad(A+) coincides with the classical Jacobson radical of A (see [33]). We
define the center modulo the radical of the Jordan algebra J by

Z(J) = {z ∈ J : [z, J, J ] ⊆ Rad(J)}.
E. I. Zelmanov [38] introduced the notion of primitiveness for unital Jordan
algebras to derive his classification of prime nondegenerate Jordan algebras.
This concept was extended to nonunital Jordan algebras by L. Hogben and
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K. McCrimmon [28]. A linear subspace I of J is said to be an inner ideal of J
if UI(J1) ⊆ I. We call an ideal P of J primitive if it is the largest ideal of J
contained in a maximal-modular inner ideal of J (see [28] for the definition
of modularity). It turns out that Rad(J) is the intersection of all primitive
ideals of J and that the classical primitive ideals of an associative algebra A
are primitive ideals of the Jordan algebra A+ (see [28]). A Jordan algebra
J is said to be primitive if 0 is a primitive ideal of J . Primitive Jordan
algebras are prime nondegenerate. A zelmanovian description of primitive
Jordan algebras was obtained independently by J. A. Anquela, F. Montaner,
and T. Cortés [2], and by V. G. Skosyrskĭı [36]. A structure theorem for
primitive Jordan–Banach algebras was obtained by M. Cabrera, A. Moreno,
and A. Rodŕıguez in [20] (see also [19]).

By a Jordan–Banach algebra we mean a complex Jordan algebra J whose
underlying vector space is a Banach space with respect to the norm ‖ · ‖
satisfying ‖x ◦ y‖ ≤ ‖x‖‖y‖ for all x, y ∈ J . For example, if A is an (asso-
ciative) Banach algebra, then A+ is a Jordan–Banach algebra.

3. Herstein’s theorem for Lie triple ideals. We begin with some
general comments on Lie triple ideals. Let J be a Jordan algebra. Every Lie
triple ideal M of J automatically satisfies [J, J,M ] ⊆M and [J,M, J ] ⊆M .
Ideals of J are of course also Lie triple ideals of J . There are other examples:
the center Z(J) of J is a Lie triple ideal of J , and so is any subspace of Z(J).
If M is a Lie triple ideal of J then [M,J, J ] is a Lie triple ideal of J .

Lemma 3.1. Let J be a Jordan algebra. If M is a Lie triple ideal of J
and U is the ideal of J generated by [M,M,M ], then [U, J, J ] ⊆M .

Proof. First note that [M,M,M ] is a subspace of J which is invariant
under the inner derivations of J and is contained in M . Therefore, by [39,
identity (3), p. 73] (or [34, (12.11)]), we have

U = [M,M,M ] + J ◦ [M,M,M ] + J ◦ (J ◦ [M,M,M ]).

Since, for a, x, y, z ∈ J ,

a ◦ [x, y, z] + [a, x, y] ◦ z = [a ◦ x, y, z]− [a, x ◦ y, z] + [a, x, y ◦ z]

(see [29, identity (30), p. 18]), it follows that J ◦ [M,M,M ] ⊆M +M ◦M .
From this and the obvious equality

a ◦ (b ◦ [x, y, z]) = (a ◦ b) ◦ [x, y, z]− [a, b, [x, y, z]]

we deduce that J ◦(J ◦[M,M,M ]) ⊆M+M ◦M . Therefore U ⊆M+M ◦M .
Finally, using the linearization of the Jordan identity

[x ◦ y, a, b] + [b ◦ y, a, x] + [b ◦ x, a, y] = 0,

it follows that [M ◦M,J, J ] ⊆M . Thus, we see that [U, J, J ] ⊆M .
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We shall examine Lie triple ideals of basic examples of Jordan algebras
J which appear in the classification theorem. Our purpose is to prove case
by case that for a Lie triple ideal M of J the property [M,M,M ] = 0 entails
M ⊆ Z(J).

3.1. Case (1). Let H3(O) be the unique Albert algebra over a given
algebraically closed field. In order to avoid the matrix notation, we set

λE11 =



λ 0 0
0 0 0
0 0 0


 , xE12 =




0 x 0
x 0 0
0 0 0


 , etc.

Therefore, every element in J can be written as

A = λE11 + µE22 + νE33 + xE12 + yE13 + zE23.

Note that

4[A, E11, E22] = xE12, 4[A, E11, E33] = yE13, 4[A, E22, E33] = zE23.(1)

Let J ′ stand for the set of all elements in H3(O) with trace zero. We now
claim that J ′ = [J, J, J ]. Indeed, from (1) we see that every matrix in J with
zero diagonal lies in [J, J, J ], and so it follows from

Eii − Ejj = −2[Eii, Eij , Eij ] (1 ≤ i < j ≤ 3)

that every matrix with trace zero lies in [J, J, J ]. The converse is a direct
consequence of the fact that the trace of an Albert algebra is associative [29,
Corollary 4, p. 227].

Finally it should be noted that J ′ = [J ′, J ′, J ′]. This is a consequence of
the identities

[Eii − Ejj, Eii − Ejj , xEij] = xEij (1 ≤ i < j ≤ 3)

and
[Eij , Eij , Eii − Ejj ] = Eii − Ejj (1 ≤ i < j ≤ 3).

Proposition 3.2. Let J be a prime nondegenerate exceptional Jordan
algebra. If M is a Lie triple ideal of J such that [M,M,M ] = 0, then
M ⊆ Z(J).

Proof. Let Ĵ denote the central localization of J and let K be the alge-
braic closure of the field of fractions of Z(J). Consider the scalar extension
J̃ of Ĵ over K. If M is a Lie triple ideal of J such that [M,M,M ] = 0, then
M̃ := KM is clearly a Lie triple ideal of J̃ such that [M̃, M̃ , M̃ ] = 0. By [29,
Theorem 17, p. 408], the Lie triple ideals of J̃ are: 0, K1, J̃ ′, and J̃ . Since
[J̃ , J̃ , J̃ ] = [J̃ ′, J̃ ′, J̃ ′] = J̃ ′, it follows that M̃ = 0 or M̃ = K1. Therefore,
M̃ ⊆ Z(J̃), and so M ⊆ Z(J).
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3.2. Case (2). We continue by treating Jordan algebras which are central
orders in the Jordan algebra J(X, f) of a nondegenerate symmetric bilinear
form over a field extension of F.

Lemma 3.3. Let X be a vector space over F with dimX ≥ 2, let f be a
nondegenerate symmetric bilinear form on X, and let J = J(X, f). Then,
for every pair of linearly independent elements x, z in X, there exists y ∈ X
such that [x, y, z] = z. As a consequence, [J, J, J ] = [X,X,X] = X, and the
Lie triple ideals of J are: 0, F1, X, and J .

Proof. Since x and z are linearly independent, there is y ∈ X such that
f(z, y) = 0 and f(x, y) = 1; accordingly, [x, y, z] = z. Using this, one easily
infers that [J, J, J ] = [X,X,X] = X. Now let M be a Lie triple ideal of J
different from 0 and F1 (= Z(J)). Pick λ+x ∈M such that x 6= 0. If z ∈ X
is such that x and z are linearly independent, then, as noted above, there is
y ∈ X such that [λ+x, y, z] = z. Thus M contains all vectors in X that are
linearly independent of x. However, since x = z + (x− z), M contains x as
well. Therefore [J, J, J ] = X ⊆M and so either M = [J, J, J ] or M = J .

Proposition 3.4. Let J be a Jordan algebra which is a central order in
a central simple quadratic Jordan algebra. If M is a Lie triple ideal of J
such that [M,M,M ] = 0, then M ⊆ Z(J).

Proof. If J is associative, then the statement is clear. Assume that J
is not associative, and denote by K the field of fractions of Z(J) and by Ĵ

the central localization of J . Then Ĵ = J(X, f) for a suitable vector space
X over K with dimX ≥ 2 and a nondegenerate symmetric bilinear form f
on X. If M is a Lie triple ideal of J such that [M,M,M ] = 0, then M̂ := KM
is a Lie triple ideal of Ĵ such that [M̂, M̂ , M̂ ] = 0. By the above lemma, we
have M̂ ⊆ Z(Ĵ), and so M ⊆ Z(J).

3.3. Case (3). Now we assume that J is as in (3) of Zelmanov’s theorem,
i.e. there is a prime associative algebra A such that J is a Jordan subalgebra
of Q(A) containing A as an ideal. Note that in Q(A) we have

4[x, y, z] = [y, [x, z]](2)

for all x, y, z in J , where [·, ·, ·] stands for the associator on J and [·, ·] stands
for the commutator on Q(A). We now record a straightforward generaliza-
tion of [25, Sublemma, p. 5].

Lemma 3.5. Let A be a semiprime associative algebra. If q ∈ Q(A) is
such that [q, [q,A]] = 0, then q ∈ C(A).

Proposition 3.6. Let A be a prime associative algebra, and let J be a
Jordan subalgebra of Q(A) containing A as an ideal. If M is a Lie triple
ideal of J such that [M,M,M ] = 0, then M ⊆ Z(J).
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Proof. Let M be a Lie triple ideal of J such that [M,M,M ] = 0. We
begin by noting that for each x, y ∈ M and a ∈ A we see that [[x, y], a]
belongs to M , so [[x, y], [[x, y], a]] = 0, and so, by Lemma 3.5, [x, y] ∈ C(A).
Thus [M,M ] ⊆ C(A). We claim that in fact [M,M ] = 0. Indeed, for x, y
∈M , both yxy = Uy(x) and yx2y = Uy(x2) belong to J , so [x, [x, yxy]] and
[y, [y, yx2y]] belong to M , and so

[x, [x, [x, yxy]], [y, [y, yx2y]]] = 0.

Since [x, [x, yxy]] = 2[x, y]2x and [y, [y, yx2y]] = 2[x, y]2y2, it follows that

0 = [x, [x, y]2x, [x, y]2y2] = 1
2 [x, y]6,

and consequently [x, y] = 0 because [x, y] ∈ C(A) and C(A) is a field, which
proves the claim.

For x ∈M and a ∈ A we have

[[x, [x, a]], a] = [[x, a], [x, a]] + [x, [[x, a], a]] = 0.

Since [x, [x, a]] = 4[x, x, a] ∈ A, we can apply [14, Theorem A], giving the
existence of λx ∈ C(A) and a linear mapping ζx : A → C(A) such that
[x, [x, a]] = λxa + ζx(a). Since [M,M ] = 0 we have [x, [x, [x, a]]] = 0, which
yields λx[x, a] = 0. Thus either λx = 0 or [x, a] = 0. In any case, [x, [x, a]] ∈
C(A) for all x ∈ M and a ∈ A. In particular, we have [x, [x, a ◦ x]] ∈ C(A)
because a ◦ x ∈ A. Hence we deduce that

[x, [x, a]]2 = [[x, [x, a]]x, [x, a]] = [[x, [x, a]] ◦ x, [x, a]]

= [[x, [x, a] ◦ x], [x, a]] = [[x, [x, a ◦ x]], [x, a]] = 0,

and hence [x, [x, a]] = 0. Therefore, applying Lemma 3.5 again, we obtain
x ∈ C(A). Thus M ⊆ C(A). Finally, from the obvious fact that C(A)∩ J ⊆
Z(J), we conclude that M ⊆ Z(J).

3.4. Case (4). Now we assume that A is a prime associative algebra
with involution ∗ and J is a subalgebra of H(Q(A), ∗) containing H(A, ∗) as
an ideal. We continue by considering associators in J as the corresponding
double commutators on Q(A).

Lemma 3.7. Let A be a semiprime associative algebra with involution ∗.
If q ∈ H(Q(A), ∗) is such that [q, [q,H(A, ∗)]] = 0, then q ∈ C(A).

Proof. Using [10, Theorem 6.4.7] we see that [q, [q,H(A, ∗)]] = 0 implies
[q, [q,H(Q(A), ∗)]] = 0. Applying [30, Theorem 2], we deduce [q, [q,Q(A)]]
= 0. Finally, the conclusion q ∈ C(A) follows from Lemma 3.5.

Proposition 3.8. Let A be a prime associative algebra with involution
∗ and let J be a Jordan subalgebra of H(Q(A), ∗) containing H(A, ∗) as
an ideal. If M is a Lie triple ideal of J such that [M,M,M ] = 0, then
M ⊆ Z(J).
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Proof. Assume first that [H(A, ∗),H(A, ∗)] = 0. By Lemma 3.7, H(A, ∗)
⊆ C(A). A second application of Lemma 3.7 yields H(Q(A), ∗) ⊆ C(A) and
so J ⊆ C(A). Now M ⊆ Z(J) trivially follows.

So we may assume that [H(A, ∗),H(A, ∗)] 6= 0. We note that, for x, y ∈
M and h ∈ H(A, ∗), we have [[x, y], [[x, y], h]] = 0 because [[x, y], h] belongs
to M . Hence [[x, y]2, [[x, y]2, h]] = 0, and therefore, by Lemma 3.7, [x, y]2 ∈
C(A). Now, note that both yxy = Uy(x) and yx2y = Uy(x2) belong to J , so
[x, [x, yxy]] and [y, [y, yx2y]] belong to M , and so

[x, [x, [x, yxy]], [y, [y, yx2y]]] = 0.

Since [x, [x, yxy]] = 2[x, y]x[x, y] and [y, [y, yx2y]] = 2[x, y]2y2, it follows
that

0 = [x, [x, y]x[x, y], [x, y]2y2] = 1
2 [x, y]6,

and consequently [x, y]2 = 0 because [x, y]2 ∈ C(A) and C(A) is a field.
Therefore, for h ∈ H(A, ∗), we have

0 = [[x, y], [[x, y], h]] = −2[x, y]h[x, y].

Using the Jacobi identity we see that

[[M,M ], [H(A, ∗),H(A, ∗)]] ⊆ [[M, [H(A, ∗),H(A, ∗)]],M ] ⊆ [M,M ]

and

[[M,M ], [M,M ]] ⊆ [[[M,M ],M ],M ] = [[M,M,M ],M ] = 0,

which yields

[[M,M ], [[M,M ], [H(A, ∗),H(A, ∗)]]] ⊆ [[M,M ], [M,M ]] = 0.

Therefore

0 = [[x, y], [[x, y], [h1, h2]]] = −2[x, y][h1, h2][x, y]

for all h1, h2 ∈ H(A, ∗) and x, y ∈ M . Since [x, y]H(A, ∗)[x, y] = 0 as well,
we now have

[x, y](H(A, ∗) + [H(A, ∗),H(A, ∗)])[x, y] = 0

and so, making use of [10, Theorem 6.4.7], also

[x, y](H(Q(A), ∗) + [H(Q(A), ∗),H(Q(A), ∗)])[x, y] = 0

for all x, y ∈ M . Note that H(Q(A), ∗) + [H(Q(A), ∗),H(Q(A), ∗)] is a Lie
ideal of Q(A). Moreover, since [H(A, ∗),H(A, ∗)] 6= 0 by our assumption, it
is a noncommutative Lie ideal. Now [13, Lemma 4] implies that [x, y] = 0
for all x, y ∈M . Thus we have proved that [M,M ] = 0.

Now, for x ∈M and h ∈ H(A, ∗) we have

[[x, [x, h]], h] = [[x, h], [x, h]] + [x, [[x, h], h]] = 0.

Since [x, [x, h]] = 4[x, x, h] ∈ H(A, ∗), we can apply [30, Theorem 3] to obtain
the existence of λx ∈ C(A) and a linear mapping µx : H(A, ∗)→ C(A) such
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that [x, [x, h]] = λxh+µx(h) for all h ∈ H(A, ∗). Finally, we argue as in the
proof of Proposition 3.6 to conclude that M ⊆ Z(J).

3.5. The general case. Now we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. On account of Lemma 3.1, it is enough to show
that, if [U, J, J ] = 0 (equivalently, U ⊆ Z(J)), then M ⊆ Z(J). Assume
that U ⊆ Z(J). Then clearly [M,M,M ] and J ◦ [M,M,M ] are contained in
Z(J). Consequently, for x, y, z ∈M we have

U[x,y,z](a) = 2[x, y, z] ◦ ([x, y, z] ◦ a)− [x, y, z]2 ◦ a
= [x, y, z]2 ◦ a = [x ◦ [x, y, z], y, z] ◦ a = 0

for each a ∈ J and hence [x, y, z] = 0 because J is nondegenerate. Thus
[M,M,M ] = 0. By [40], J can be seen as a subdirect product of a family of
prime nondegenerate Jordan algebras {Jλ}λ∈Λ. If πλ denotes the canonical
homomorphism from J onto Jλ, it is clear that Mλ := πλ(M) is a Lie triple
ideal of Jλ such that [Mλ,Mλ,Mλ] = 0. From this and the obvious fact that
Z(J) =

⋂
λ∈Λ π

−1
λ (Z(Jλ)) it follows that there is no loss of generality in as-

suming that the nondegenerate Jordan algebra J is in addition prime. Then
the desired conclusion M ⊆ Z(J) follows from Zelmanov’s prime theorem
and Propositions 3.2, 3.4, 3.6, and 3.8.

4. Lie triple epimorphisms on prime nondegenerate Jordan al-
gebras of large degree. The main goal of this section is to prove Theo-
rem 1.2. For this we need some auxiliary results. Some of them are directly
taken from [7, 8], while the others are suitable Jordan versions of associative
results in [9]. First, however, we have to recall some basic concepts from the
theory of functional identities. For an introductory account of this theory
we refer the reader to [16].

We begin by defining a d-free subset of a unital associative algebra Q
(see [7]). Let X be a nonempty subset of Q. By Xn we denote the Cartesian
product X × · · · × X of n copies of X. Let m be a positive integer, and
let E : Xm−1 → Q, p : Xm−2 → Q be arbitrary maps. In the case when
m = 1 this should be understood as that E is an element in Q and p = 0.
Let 1 ≤ i < j ≤ m, and define Ei, pij , pji : Xm → Q by

Ei(xm) = E(x1, . . . , xi−1, xi+1, . . . , xm),

pij(xm) = pji(xm) = p(x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xm);

here, xm = (x1, . . . , xm) ∈ Xm.
Now let I, J ⊆ {1, . . . ,m}, and for each i ∈ I, j ∈ J , let Ei, Fj : Xm−1 →

Q be arbitrary maps. Consider the functional identities
∑

i∈I
Eii(xm)xi +

∑

j∈J
xjF

j
j (xm) = 0 for all xm ∈ Xm(3)
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and ∑

i∈I
Eii(xm)xi +

∑

j∈J
xjF

j
j (xm) ∈ C for all xm ∈ Xm,(4)

where C is the center of Q. A natural possibility when (3) (and hence
also (4)) holds is that there exist maps pij : Xm−2 → Q, i ∈ I, j ∈ J ,
i 6= j, λk : Xm−1 → C, k ∈ I ∪ J , such that

Eii(xm) =
∑

j∈J, j 6=i
xjp

ij
ij(xm) + λii(xm),

F jj (xm) = −
∑

i∈I, i6=j
pijij(xm)xi − λjj(xm),(5)

λk = 0 if k 6∈ I ∩ J,
for all xm ∈ Xm, i ∈ I, j ∈ J . Indeed, one can readily check that (5)
implies (3) (we remark that (5) is called a standard solution of (3) and (4)).
It should be pointed out that the case when one of the sets I or J is empty
is not excluded. The sum over the empty set of indices should be simply
read as zero. This means that, for example, the only standard solution of
the functional identity

∑
i∈I E

i
i(xm)xi = 0 is Ei = 0, i ∈ I.

Let d be a positive integer. We say that X is a d-free subset of Q if
for every positive integer m and all I, J ⊆ {1, . . . ,m} the following two
conditions are satisfied:

(a) If max{|I|, |J |} ≤ d, then (3) implies (5).
(b) If max{|I|, |J |} ≤ d− 1, then (4) implies (5).

So, roughly speaking, a subset is d-free if the functional identities (3)
and (4) have only standard solutions, provided that the number of variables
is sufficiently small (depending on d). It turns out that some important
subsets of prime rings A are, under some natural restrictions, d-free subsets
of Q(A) (see [7]). This justifies the introduction of the concept of a d-free
subset.

Next we recall, in a somewhat loose manner, the definition of a quasi-
polynomial (see [8] for details). Let S be a set and let α : S → Q be a map.
We say that q : S2 → Q is a multilinear quasi-polynomial (with respect to α)
of degree ≤ 2 if there exist λ1, λ2 ∈ C and maps µ1, µ2 : S → C, ν : S2 → C
such that

q(x, y) = λ1α(x)α(y) + λ2α(y)α(x) + µ1(x)α(y) + µ2(y)α(x) + ν(x, y)

for all x, y ∈ S. We call λ1, λ2, µ1, µ2, ν the coefficients of q. Further, if S
is a vector space, µ1, µ2 are linear maps and ν is a bilinear map, then we
say that q is a multilinear quasi-polynomial of degree ≤ 2 with multilinear
coefficients.
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A multilinear quasi-polynomial of degree m would, of course, involve
summands such as

λα(x1) · · ·α(xm), µ(x1)α(x2) · · ·α(xm), ν(x1, x2)α(x3) · · ·α(xm), etc.

The next theorem is a particular case of [8, Theorem 1.1] (see also [9,
Theorem 2.2]).

Theorem 4.1. Let Q be a unital associative algebra with center C, let
R be a subset of Q, let S be a set , let α : S → R be a surjective map, and
let q be a multilinear quasi-polynomial of degree ≤ m such that q(sm) = 0
for each sm ∈ Sm. If R is an (m+ 1)-free subset of Q, then all coefficients
of q are 0.

The following theorem is a particular case of [8, Theorem 1.2].

Theorem 4.2. Let Q be a unital associative algebra with center C, let
R be a subspace of Q, let S be a vector space, let α : S → R be a surjective
linear map, and let B : S2 → Q be a bilinear map such that

[B(s1, s2), α(s3), α(s4)] + [B(s4, s1), α(s3), α(s2)]

+ [B(s2, s4), α(s3), α(s1)] ∈ C
for each s4 ∈ S4. If R is a 5-free subset of Q, then B is a quasi-polynomial
of degree ≤ 2 with multilinear coefficients.

The following two facts will be applied throughout this section often
without notice. They follow easily from [5, Section 3] and [6, Section 3].

Theorem 4.3. Let A be a prime associative algebra and let J be a Jor-
dan subalgebra of Q(A) containing A as an ideal. Then there is an iso-
morphism from C(J) onto C(A) that extends to an isomorphism from the
unital central closure of J onto the unital Jordan C(A)-subalgebra of Q(A)
generated by J , which is the identity map when restricted to J .

Theorem 4.4. Let A be a prime associative algebra with involution ∗
and let J be a Jordan subalgebra of H(Q(A), ∗) containing H(A, ∗) as an
ideal. Then there is an isomorphism from C(J) onto H(C(A), ∗) that extends
to an isomorphism from the unital central closure of J onto the unital Jordan
H(C(A), ∗)-subalgebra of Q(A) generated by J , which is the identity map
when restricted to J .

Theorem 4.5. Let J be a prime nondegenerate Jordan algebra with
deg(J) ≥ 12. Then one of the following assertions holds:

(i) There exists a prime associative algebra A such that J is a 5-free
Jordan subalgebra of Q(A) and A is an ideal of J .

(ii) There exists a prime associative algebra A with involution ∗ such
that J is a Jordan subalgebra of H(Q(A), ∗) containing H(A, ∗) as
an ideal and J is a 5-free subset of Q(A).
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Proof. We first remark that J is as in cases (3) or (4) of Zelmanov’s
theorem. Namely, otherwise we would have deg(J) ≤ 3 (cf. [29, Examples D
and E, p. 232]).

Suppose that there exists a prime associative algebra A such that J is a
Jordan subalgebra of Q(A) containing A as an ideal. Our next objective is
to show that

deg(A) = deg(J).(6)

It should be pointed out that, on account of Theorem 4.3, we have

deg(A) = degQ(A)(A) ≤ degQ(A)(J) = deg(J) ≤ deg(Q(A)).(7)

In the case when deg(A) =∞, equality (6) obviously holds true. We proceed
to the case when deg(A) = n <∞. By [10, Corollary 2.3.8] we have

∑

σ∈Sn+1

(−1)σaσ(0)b1a
σ(1)b2 · · · bnaσ(n) = 0

for all a, b1, b2, . . . , bn ∈ A, where Sn+1 is the symmetric group of degree
n+ 1 and (−1)σ is the sign of the permutation σ. Consider

φ(x,y1,y2, . . . ,yn) =
∑

σ∈Sn+1

(−1)σxσ(0)y1xσ(1)y2 · · ·ynxσ(n)

∈ C(A)〈x,y1,y2, . . . ,yn〉.
Since φ is a GPI on A, [10, Theorem 6.4.4] shows that it is a GPI on Q(A).
Accordingly, by [10, Corollary 2.3.8], deg(Q(A)) ≤ n. Using (7) we now see
that (6) indeed holds true. From [7, Theorems 2.4 and 2.8] it follows that J
is a 5-free subset of Q(A).

We now turn to the case when there exists a prime associative alge-
bra A with involution ∗ such that J is a Jordan subalgebra of H(Q(A), ∗)
containing H(A, ∗) as an ideal. On account of Theorem 4.4, we have

deg(H(A, ∗)) = degH(Q(A),∗)(H(A, ∗))(8)

≤ degH(Q(A),∗)(J) = deg(J) ≤ deg(H(Q(A), ∗)).
We claim that degH(Q(A),∗)(h) ≤ degQ(A)(h) for each h ∈ H(Q(A), ∗). Let
h ∈ H(Q(A), ∗) with degQ(A)(h) = n <∞. There exist c0, c1, . . . , cn ∈ C(A)
with cn 6= 0 such that

∑n
i=0 cih

i = 0, and we can certainly assume that
cn = 1. Thus

∑n
i=0 c

∗
ih
i = 0 and therefore

∑n−1
i=0

1
2(ci + c∗i )h

i + hn = 0.
Since 1

2(ci + c∗i ) ∈ H(C(A), ∗) = C(H(A, ∗)), the latter equality shows that
degH(Q(A),∗)(h) ≤ n, as claimed. Therefore

degH(Q(A),∗)(H(Q(A), ∗)) ≤ degQ(A)(H(Q(A), ∗)) ≤ degQ(A)(Q(A)).

As in the proof of the previous case we have deg(Q(A)) = deg(A). This fact
together with (8) gives deg(A) ≥ 12. Now [7, Theorems 2.4 and 2.8] show
that J is a 5-free subset of Q(A).
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We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Let C be the extended centroid of J , let HC

and JC denote the respective scalar extensions of H and J over C, and
let ΦC : HC → JC be the Lie triple epimorphism induced by Φ. Keeping in
mind that the central closure Q0(J) of J is a quotient of JC , and considering
the quotient map % : JC → Q0(J), it follows that Φ0 := %ΦC is a Lie triple
epimorphism from HC onto Q0(J) which extends Φ. Consider the unital
central closure Ĵ of J , choose a C-subspace J0 of Q0(J) such that Ĵ = J0⊕C,
and denote by π0 the corresponding projection from Q0(J) onto J0. Note
that J0 = Q0(J) whenever Q0(J) lacks unity. In any case, it follows that
q − π0(q) ∈ C for each q ∈ Q0(J).

Let H̃ denote the Jordan algebra obtained as the direct product of HC

and C. Let us consider the map α : H̃ → Ĵ defined by α(a, c) = π0Φ0(a)+c.
It is clear that α is a surjective C-linear map. Moreover, it is easy to see
that [α(x), α(y), α(z)] ∈ Q0(J) and π0([α(x), α(y), α(z)]) = α([x, y, z]) for
all x, y, z ∈ H̃. Thus, we have

α([x, y, z])− [α(x), α(y), α(z)] ∈ C(9)

for all x, y, z ∈ H̃. We now define the map B : H̃ × H̃ → Ĵ by B(x, y) =
α(x ◦ y). By (9) and the linearization of the Jordan identity, we have

[B(x, y), α(z), α(t)] + [B(t, x), α(z), α(y)] + [B(y, t), α(z), α(x)] ∈ C
for all x, y, z, t ∈ H̃. We apply Theorem 4.5 and from now on we consider
the prime associative algebra A given by that result.

By Theorem 4.2, there exist λ1, λ2 ∈ C(A), linear maps µ1, µ2 : H̃ →
C(A), and a bilinear map ν : H̃ × H̃ → C(A) such that

B(x, y) = λ1α(x)α(y) + λ2α(y)α(x) + µ1(x)α(y) + µ2(y)α(x) + ν(x, y)

for all x, y ∈ H̃. Since B is symmetric, it follows that

(λ1 − λ2)α(x)α(y) + (λ2 − λ1)α(y)α(x) + (µ1(x)− µ2(x))α(y)

+ (µ2(y)− µ1(y))α(x) + ν(x, y)− ν(y, x) = 0

for all x, y ∈ H̃. Then, taking into account Theorem 4.1, we conclude that

λ1 = λ2, µ1 = µ2, ν(x, y) = ν(y, x)

for all x, y ∈ H̃. Moreover, in the case when A has an involution and J is
a Jordan subalgebra of H(Q(A), ∗) containing H(A, ∗) as an ideal, both B
and α are H(Q(A), ∗)-valued, and hence we have

(λ1 − λ∗1)α(x)α(y) + (λ1 − λ∗1)α(y)α(x) + (µ1(x)− µ1(x)∗)α(y)

+ (µ1(y)− µ1(y)∗)α(x) + ν(x, y)− ν(x, y)∗ = 0
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for all x, y ∈ H̃. Applying Theorem 4.1 again, we see that λ1 ∈ C, and that
the maps µ1 and ν are C-valued.

Summarizing, there exist λ = 2λ1 ∈ C, a linear map µ = µ1 : H̃ → C,
and a symmetric bilinear map ν : H̃ × H̃ → C such that

α(x ◦ y) = λα(x) ◦ α(y) + µ(x)α(y) + µ(y)α(x) + ν(x, y)(10)

for all x, y ∈ H̃. It follows that

α((x ◦ y) ◦ z) = λ2(α(x) ◦ α(y)) ◦ α(z) + λµ(y)α(x) ◦ α(z)

+λµ(x)α(y) ◦ α(z) + λµ(z)α(x) ◦ α(y) + µ(y)µ(z)α(x)

+µ(x)µ(z)α(y) + (λν(x, y) + µ(x ◦ y))α(z) + ν(x, y)µ(z)

+ ν(x ◦ y, z).

Analogously

α(x ◦ (y ◦ z)) = λ2α(x) ◦ (α(y) ◦ α(z)) + λµ(z)α(x) ◦ α(y)

+λµ(y)α(x) ◦ α(z) + λµ(x)α(y) ◦ α(z)

+ (λν(y, z) + µ(y ◦ z))α(x) + µ(x)µ(z)α(y)

+µ(x)µ(y)α(z) + µ(x)ν(y, z) + ν(x, y ◦ z).

As a consequence,

α([x, y, z]) = λ2[α(x), α(y), α(z)] + (µ(y)µ(z)− λν(y, z)− µ(y ◦ z))α(x)

+(λν(x, y) + µ(x ◦ y)− µ(x)µ(y))α(z) + ν(x, y)µ(z)

+ν(x ◦ y, z)− µ(x)ν(y, z)− ν(x, y ◦ z).

Comparing this expression with (9), and applying Theorem 4.1, we get

λ2 = 1, λν(x, y) + µ(x ◦ y)− µ(x)µ(y) = 0.(11)

Now, we consider the map β : H̃ → Ĵ defined by β(x) = λα(x)+µ(x) for
each x ∈ H̃. It follows easily from (10) and (11) that β is a homomorphism
as well. Therefore, the map Ψ : H → Ĵ defined by Ψ(a) = β(a, 0) for each
a ∈ H is a homomorphism as well. From the definitions of α, Ψ , and β it
follows that

π0Φ(a) = π0Φ0(a) = α(a, 0) = λ−1β(a, 0)− λ−1µ(a, 0)

= λ−1Ψ(a)− λ−1µ(a, 0)

for each a ∈ H. From this and the fact that λ = ±1 (by (11)), we deduce
that Φ(a) − λΨ(a) ∈ C. Finally, define τ : H → C by the equality Φ(a) =
λΨ(a) + τ(a) for each a ∈ H. It is clear that τ is a linear map, and it is easy
to check that τ([H,H,H]) = 0.

5. Continuity of Lie triple epimorphisms. Throughout this last
section we use two results coming from automatic continuity theory. The
first one is by B. Aupetit [3, Theorem 2].
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Theorem 5.1. Let H and J be Jordan–Banach algebras and let Φ be an
epimorphism from H onto J . If J is semisimple then Φ is continuous.

The second result is taken from [37, Lemma 3.5]. In order to state it we
need to introduce some terminology. By a nonassociative Banach algebra
we mean a nonassociative complex algebra B whose underlying space is a
Banach space with respect to a norm ‖ · ‖ satisfying ‖a · b‖ ≤ γ‖a‖ ‖b‖ for
all a, b ∈ B and some γ > 0.

Lemma 5.2. Let B and C be nonassociative Banach algebras and let Φ be
an epimorphism from B onto C. Then the multiplication operator x 7→ a · x
from C into itself is quasi-nilpotent for each a ∈ S(Φ).

Let J be a Jordan–Banach algebra. For all a, b ∈ J we define the contin-
uous linear operator L(a, b) : J → J by

L(a, b)(x) = [a, b, x]

for each x ∈ J .

Lemma 5.3. Let H and J be Jordan–Banach algebras and let Φ : H → J
be a Lie triple epimorphism. Then S(Φ) is a closed Lie triple ideal of J and
L(a, b) is a quasi-nilpotent operator on J for all a ∈ S(Φ) and b ∈ J .

Proof. We begin by proving that S(Φ) is a Lie triple ideal of J . Let a ∈
S(Φ) and b, c ∈ J . Then there exists a sequence (xn) in H with limxn = 0
and limΦ(xn) = a and there exist y, z ∈ H with Φ(y) = b and Φ(z) = c. We
have lim[xn, y, z] = 0 and

limΦ[xn, y, z] = lim[Φ(xn), b, c] = [a, b, c],

which shows that [a, b, c] ∈ S(Φ).
Fix b ∈ J and let v ∈ H be such that Φ(v) = b. We now turn both H

and J into nonassociative Banach algebras by defining x ·v y = [x, v, y] and
a·b c = [a, b, c] for all x, y ∈ H and a, c ∈ J . Of course, Φ(x·v y) = Φ(x)·bΦ(y)
and Lemma 5.2 now shows that the operator c 7→ a ·b c from J into itself is
quasi-nilpotent for each a ∈ S(Φ). Note that the latter operator is nothing
other than the operator L(a, b) on J .

Lemma 5.4. Let H and J be Jordan–Banach algebras and let Φ : H → J
be a Lie triple epimorphism. Assume that J is primitive and either finite-
dimensional or quadratic. Then S(Φ) ⊆ Z(J).

Proof. To obtain a contradiction, suppose that S(Φ) 6⊆ Z(J). Then J
is not associative, so that, by the structure theory [29, Chap. V], J is iso-
morphic to either H3(O), Mn(C)+ with n ≥ 2, H(Mn(C),t) with n ≥ 2
(where t stands for the transpose involution), H(M2n(C),s) with n ≥ 2
(where s stands for the symplectic involution), or J(X, f) with dimX ≥ 2.
Therefore, in every case, J contains a nondegenerate Jordan subalgebra
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which is quadratic and of dimension ≥ 3. Thus, by Lemma 3.3, there exist
a, b, c ∈ [J, J, J ] \ {0} such that L(a, b)(c) = c. Since J is simple, according
to Lemma 5.3 and Theorem 1.1, S(Φ) is a Lie triple ideal of J containing
[J, J, J ] and the operator L(a, b) on J is quasi-nilpotent, which contradicts
L(a, b)(c) = c.

Lemma 5.5. Let H be a Jordan–Banach algebra, let J be a primitive
Jordan–Banach algebra, and let Φ : H → J be a Lie triple epimorphism.
Suppose that deg(J) ≥ 12. Then S(Φ) ⊆ Z(J).

Proof. By [35, Theorem 12], J is centrally closed, and so the norm of J
extends in an obvious way to a complete algebra norm on Ĵ . On the other
hand, by Theorem 1.2, there exist a homomorphism Ψ : H → Ĵ and a linear
map τ : H → C satisfying τ([H,H,H]) = 0 such that Φ = ±Ψ + τ . Given
y ∈ Ĵ , we write y = b + z1 with b ∈ J and z ∈ C and we choose a ∈ H
such that Φ(a) = b. We see at once that y = ±Ψ(a) + τ(a)1 + z1 and hence
y ∈ Ψ(H) + C1. Therefore Ĵ = Ψ(H) + C1. It follows that Ψ(H) is an
ideal of Ĵ with codimension 0 or 1. Thus, either Ψ(H) = Ĵ or Ψ(H) is a
maximal ideal of Ĵ , and consequently closed. Therefore, in any case, Ψ(H)
is a Jordan–Banach algebra. Clearly J 6= C and hence Ψ(H) 6= 0.

Since Ĵ is primitive (see [28]) and Ψ(H) 6= 0, [2, Theorem 1.1] now shows
that Ψ(H) is a primitive Jordan–Banach algebra. Thus, Ψ is an epimorphism
from the Jordan–Banach algebra H onto the primitive Jordan–Banach al-
gebra Ψ(H), and consequently, by Theorem 5.1, Ψ is continuous. Finally,
given b ∈ S(Φ), we can choose a null sequence (an) in H such that (Φ(an))
converges to b, so that the equality Φ(an) = ±Ψ(an) + τ(an)1 for each n

implies that b ∈ C1. Since C1 is finite-dimensional, and so closed in Ĵ , we
conclude that b ∈ C1 ∩ J ⊆ Z(J).

Proof of Theorem 1.3. It suffices to prove that [S(Φ), J, J ] ⊆ P for each
primitive ideal P of J . Let P be a primitive ideal of J . It is known that
P is closed in J ([23, Lemma 6.5]). Let us consider the quotient map πP :
J → J/P . Then J/P is a primitive Jordan–Banach algebra and πPΦ is a Lie
triple epimorphism from H onto J/P . We claim that S(πPΦ) ⊆ Z(J/P ). On
account of Lemma 5.5, this is certainly true in the case when deg(J/P ) ≥ 12.
In the case deg(J/P ) < 12 the spectrum of every element in J/P is obviously
finite and from [11] it may be concluded that J/P is either finite-dimensional
or quadratic. Lemma 5.4 concludes the proof of the claim.

Since πP is continuous, it is a standard fact that

S(πPΦ) = πP (S(Φ)).

Thus we proved that πP (S(Φ)) ⊆ Z(J/P ), which entails that [S(Φ), J, J ]
⊆ P .
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Remark 5.6.

(1) Let A and B be Banach algebras and let Φ : A → B be a Lie epi-
morphism. Then the symmetrized algebras A+ and B+ are Jordan–
Banach algebras and Φ becomes a Lie triple epimorphism from A+

onto B+. According to Theorem 1.3, S(Φ) ⊆ Z(B+). Since

Rad(B+) = Rad(B)

(see [33]) and

Z(B+/Rad(B+)) = Z(B/Rad(B))

(see [21]), we have Z(B+) = Z(B), and so [4, Theorem] follows.
(2) By means of the standard procedure of complexification we can ar-

rive at the same conclusion of Theorem 1.3 without the requirement
of H and J being complex.
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Facultad de Ciencias

Universidad de Granada
18071 Granada, Spain

E-mail: cabrera@ugr.es
avillena@ugr.es

Received February 24, 2004 (5369)


