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Long time existence of regular solutions to
Navier—Stokes equations in cylindrical domains under
boundary slip conditions

by

W. M. ZAJACZKOWSKI (Warszawa,)

Abstract. Long time existence of solutions to the Navier—Stokes equations in cylin-
drical domains under boundary slip conditions is proved. Moreover, the existence of solu-
tions with no restrictions on the magnitude of the initial velocity and the external force
is shown. However, we have to assume that the quantity

2
1= (1105, 0(0) 1y () + 1055 Fll o (2x 0.1)))
i=1
is sufficiently small, where x3 is the coordinate along the axis parallel to the cylinder.
The time of existence is inversely proportional to I. Existence of solutions is proved by
the Leray—Schauder fixed point theorem applied to problems for R = 8};;311, q(i) = 833 P,
1 = 1,2, which follow from the Navier-Stokes equations and corresponding boundary
conditions. Existence is proved in Sobolev—Slobodetskii spaces: R W52+5’1+5/2(.Q X
(0,T)), where i = 1,2, 8 € (0,1),5 € (1,2),5/6 <3+ 3,3/ <2+ .

1. Introduction. We consider the following initial-boundary value
problem (see [18, 16]):

vi+v-Vo—divT(v,p) = f in 27 =02 x(0,T),

dive =0 in 7,

(1.1) voI=0 on 57,
n-T(w,p) - Ta=0 a=1,2 onST=8x(0,T),
v|t=o = v(0) in £2,

where 2 C R?, S = 002, v = v(x,t) = (vi(x,t),va(x,t),v3(z, 1)) € R? is the
velocity of the fluid motion, p = p(z,t) € R! the pressure, f = f(x,t) =
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(fi(z, 1), fa(z,t), f3(x,t)) € R? the external force field, 7 the unit outward
vector normal to the boundary S, and 7, a = 1, 2, are tangent vectors to S.
Moreover, the dot denotes the scalar product in R3. By T(v,p) we denote
the stress tensor

(1.2) T(v,p) = vD(v) —pl,

where v is the constant viscosity coefficient, I the unit matrix and D(v) the
dilatation tensor of the form

(1.3) ]D)(U) = {'Ui,mj + iji}i’jzlyg’?,.

Here 2 C R? is a cylindrical type domain parallel to the z3 axis with
arbitrary cross-section. We assume that S is the part of the boundary which
is parallel to the x3 axis and S5 is perpendicular to x3. Hence

Sy ={r e R®: p(x1,29) = co, —a < x3 < a},
and
Sy ={z € R®: p(x1,2) < ¢y, x3 is equal to either — a or a},
where ¢(x1,22) = ¢o describes a sufficiently smooth closed curve in the
plane x3 = const and ¢y is a positive constant.
The aim of this paper is to prove existence of global regular solutions to

problem (1.1) without restrictions on the magnitude of f and v(0).

For this purpose we need the existence of weak solutions.

DEFINITION 1.1. By a weak solution to problem (1.1) we mean v €
V2 (02T (see Section 2) such that dive = 0, v -7n|g = 0, satisfying the
integral identity
(1.4) S (—v-p i+ vDw)-D(p)+v-Vu-)dedt

nr
Q Q QT

for any ¢ € W,"' (£27) such that divp = 0 and ¢ - 71|g = 0.
To prove the existence of weak solutions we need the Korn inequality.
LEMMA 1.2 (see also [16, 20]). Assume that

(1.5) Eq(v) = |D(v)\§,9 <oo, wv-mlg=0, dive=0.
If £2 is not axially symmetric, then there exists a constant ¢ such that
(1.6) [v]1% .o < cEq(v).

If 2 is axially symmetric, n = (—x2,21,0), o = SQ vy dx, and v, = v -7,
then there exists a constant ¢ such that

(17) I < e(Batw) +[fvpaa] ).

where the notation is described in Section 2.
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Proof. First, consider nonaxially symmetric domains. We have

(1L8)  Eo@) = [, +v0)? do = 2(§ 02, do+ § v, vy, ),
2 (9} 2

where the summation convention over repeated indices is assumed. After
integrating by parts and applying (1.1)2 3, the second integral on the r.h.s.
of (1.8) equals — {4 n; ., v;v; dS. Using this in (1.8) yields

(1.9) Vol3 o < c(Ba(v) +[v]3s).
By the trace theorem we have
(1.10) Vol < e(Ba(v) +v]3,0)-

Making use of the fact that Ep(u) = 0, u-7|g = 0 implies u = 0 and
repeating the proof of Lemma 3.2 from [20], we obtain

(1.11) [v]3,0 < 8|Vvl3 o + MEgq(v),

where § can be chosen as small as we need and M = M (¢) is some constant.
In view of (1.10) and (1.11) inequality (1.6) follows.
Assume now that (2 is axially symmetric. Then we decompose v as

(6%
1.12 =
(1.12) v=0v"+ [ n2dz 7,

where {,v" - ndz = 0. Then, instead of (1.11), we have
(1.13) W50 < 8VV|3 0+ MEg(V).
Using the fact that F(v) = Eo(v') and

V' |20 < c|Vula o+ CH Uy dm‘
Q2

we obtain from (1.13) the inequality

(1.14) w2 < 5\Vv]§79+MEQ(v)+cH vy d
2

Employing (1.14) in (1.10) yields (1.7), which ends the proof.

‘ 2

Now we obtain energy type estimates for solutions of (1.1).

LEMMA 1.3. Assume f € Loo(0,00; Lg/5(£2)), § 0 frdadt’ € Log(0,00)
and v(0) € La(£2). Let T > 0 be given. Assume that there exist constants
a1, as such that

< 00.

(1.15) a; = sgp lf(D)6/5,0 <00, az= sgp‘ S [ dxdt/
nt
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Then there exist constants

di = — a1 +]v(0 )|gQa
V1

&= (min(l,u2>>1e”1T<i )
131

(1.16) c
dg = ” (al + a2 + ‘ dﬂj‘ ) + |U(O)|§7Q,

& = (min(1, )" ”1T[V1 (a1+a2+‘ Uy Oda:‘ >+d2}

which do not depend on kg = kT, k € N, and v/c = vi + va, where c is
the constant either from (1.6) or from (1.7), such that in the nonaxially
symmetric case we have

[u(t)]2,0 < di for any t >0,

(1.17
S olvenry Sda for t € (KT, (k+ 1)), k€N,

and in the axially symmetric case
[u(t)]2,0 < ds for any t >0,

(1.18)
HUHVZO(.QXUS)T,t)) < dy fO?" te (k}T, (k‘ + I)T), k € N.

Proof. First we consider the nonaxially symmetric case. Multiplying
(1.1); by v and integrating over {2 we obtain
1d

1.19
( ) 2 dt

|v[29 +vEqg(v) = Sf~vdx.
(%

Applying (1.6) yields

1d v
(1.20) 5 loBo+ ol o < |7 vds.
Q
Hence we have
d 9 v 2 2
(1.21) E’vb,(l + EHUHIQ < C|f|6/5,9-

Let v/c = v1 4+ v5. Then (1.21) takes the form
d
(1.22) E‘U’%,Q + Vl\”’%,n + VZHWH%,Q < C\f\g/arz-
This implies
d 1% v v
(1.23) T (5.0e”") + vaf[0]lT ge”" < elf[55,0¢""

Integrating (1.23) with respect to time yields
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t
(1.24)  o(t)[3.0 +vee™ " [0} pe" dt’
0

t
ce (1 1) 5. 0e"" dt + e u(0) 3.0
0

Considering (1.24) for any t > 0 we omit the second term on the Lh.s.
because it is bounded from below by e~"1! Sg [v(t")]13 ¢ dt’, which does not

imply any estimate for Sg [o(t)||3,; dt’ for any ¢t € R. Then by the assump-
tions of the lemma we have

(1.25) ()30 < — ” a3+ e u(0)B o < &,

which implies (1.17);.
Having estimate (1.25) for any ¢ > 0 we can consider (1.24) in the interval
(kT,(k+1)T), k € N. Hence for ¢t € (kT, (k+ 1)T) we have
¢
(126)  [o(t)3g+vaet | [fo(t") 2 et dt
kT
t

< cate "t S et dt! 4 e (E—kT) ]v(kT)\%Q
kT
Continuing,
t
(1.27)  [o(8)]3,0 +vae UFD {07 o d
kT
< ia% + e 1 EFD) (kT2 .
141 ’
Finally, employing (1.25) in (1.27) yields

t
)3, +vae™ T | Jo(t)]IF o dt’ < —af +df,
kT
which implies
t
c
128)  OBe+u | g < (Lt v i),
kT !
where ¢t € (KT, (k+ 1)T), k € N. Hence (1.28) implies (1.17)s.
Now we consider the axially symmetric case. In view of (1.7) instead of
(1.22) we have

d 2
(120)  ZlBo+ulBe+vlolle < dfiEse+ | [ o do]
2
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To examine the last integral on the r.h.s., we multiply (1.1); by n and
integrate over £2¢. Using the fact that n-n|s =0, (1.1)3.4 and the fact that
Vn is an antisymmetric tensor we obtain

(1.30) S vy da = S [ dadt’ + S vy (0) da.
%) ot 2

Inserting (1.30) in (1.29) yields

d
(1.31) EW’%,Q +ulvf o + 2ol o

2 2
< c\flé/g,,g + c‘ S In d:cdt" + CH vy (0) dm‘
ot Q
Repeating the considerations leading to (1.24) we obtain
t
(1.32)  Jo(t)]3.0 +vee” " [Ilo() 1] ge" dt’
0
¢ / L 2 /
< ce*”lts \f(t')lg/&ge”lt dt’ + ce*”ltx ’ S fpdzdt”| e dt’
0 0 ot

t
2 ,
+ ce‘”tH { 0, (0) da:‘ et dt' + e " (0)]3 -
00
Applying (1.15) we have

t
(1.33)  [o(®)3.o +vae (o) e dt!

Hence

c 2 o
(130 o030 < (@ a3+ [§ e de| ) + e (O30 < .
(]

which implies (1.18);.
Having estimate (1.34) we can consider (1.33) in the interval (KT, (k41)T),
keN,
t
(135)  Jo(®)f0 +vae™" | o) e ¥
kT

2
< Z(at+ a3+ [[ vy (0)da| ) + e CEDRED)E
1
i0)
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where t € (kT, (k + 1)T'). In view of (1.34) we obtain from (1.35) the in-
equality

t
(136)  WOBg+ e § o) o d

kT

c
V1

2
< —(a%+a§+‘§vn(0)dx‘ )+d§,
9]

which implies (1.18)s. This ends the proof.

From Lemma 1.3 by an application of the Galerkin method and the
considerations from [9, Ch. 6] we have

LEMMA 1.4. Let the assumptions of Lemma 1.3 hold. Then there exists
a weak solution to problem (1.1) in any interval (ET,(k + 1)T), k € N,
satisfying

(1.37) vllveoxwr,i+1yr) < dis
where 1 = 2 for nonaxially symmetric domains and i = 4 for axially sym-
metric domains.

The aim of this paper is to prove global existence of regular solutions
to problem (1.1) by improving regularity of the weak solution. For this
purpose we follow the ideas from [18, 19, 20]. Since in this paper nonaxially
symmetric domains are considered, we do not use the cylindrical coordinates
7, , z. Compared to [18, 19] we replace the cylindrical coordinate ¢ by x3;
Uy by v3; h = Up o€ + Uy o€y + U, ,€. by hr) = Ugq; and x = (rotv),
by x = rotv - €3. Here €, = (cosy,sing,0), €, = (—sinp,cosp,0), e, =
(0,0,1) =€3, v, =V €, Vp =V €y, V; =V - €.

Hence we introduce the quantities
(138) h(l) =V z3, q(l) = D,z3> h(2) =V, z3zxs3 q(2) = D,z3x35

w = V3, X =022, — V1l a,-
Now we formulate the main results of this paper. First we introduce the
quantities

Gl(T) = HfHLoo(O:T;LG/s(Q)) + Hf||L27/16(~QT) + ||(I‘Ot f)3||L18/13(~QT)
+ [1(x0t £) |y csz) + s lLacory + 1 fasas Loy,
Go(0) = 100Vl 2y + N0E 0Ol + 10,5,

+ Hv,$313 (0) HLQ(Q)?
2

d(T) =Y (105, fll Loy + 105, 0(0) o)

=1
+ [[(rot £) [ 1y sy + | f3lLa(s7)s
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D(T) =) (105, fllys.0r2 gry + 102,00 |y 205215 )

2

=1

+ ||(rot f),HW;+ﬁ—1/5,1/2+1/2,6‘—1/25(Sgﬂ)
(here (rot f)" = ((rot f)1, (rot f)2), where (rot f); is the ith Cartesian coor-
dinate of rot f), and

2

(T) = 300k onsearsiom) + IV0plyp s o)

Finally, for 5 > 0 and ¢ € [1, 00] we define

B/2 _
W@ = {u fulyporsgar, = lulan

T fl Bl 1 1/

| Dz u(x,t) — Dy u(a’,1)] ,

+ <§ i 2= oD da da' dt
02N

TT ) 5(5/2 18/2], (. £115 1/5
|8t U(IE,t) _81‘/ U($,t)| ,
" <§2§) 0 |t — /|1 +3(8/2-15/2)) dedtdi’] <oop.

[

where [(] is the integer part of .

THEOREM 1 (local existence). Assume that 2 is a cylindrical type do-
main with respect to the x3 axis and with an arbitrary cross-section. Its
boundary is composed of two parts: S1, parallel to xs, and Sa, perpendicular

to x3; S1 € C3. Assume v(0) € W2272//12g((2), (rot v(0))3 € La(82), v4,(0) €
WTOT0), vy (0) € WTP0(9Q), | € Lo oo (27) N Lrjio(€27),
(rot )3 € Luspa(@T), (vot f)]s, € Wy P70 @0 (ST py e
Lo(ST), faoss fases € WEP(07), 6 € (1,2), B € (0,1), 5/ < 3+ f,
3/0 < 2+ . Then for sufficiently small d(T) there exists a solution to
i 248,148/2 T\ 5i B:8/2( T

problem (1.1) such that 9}, v € Wy (£27), 9,,Vp € Wg'=(027),
i=1,2.

Moreover, there exist a function ¢ = p(y(T),G1(T),Go(0),T) and a

constant c¢; with the following properties (see Lemma 5.2). Assume that for
a given T there exists a constant A such that

and
(1.40) e D(T) < A.

Then the local solution is such that

(1.41) +(T) < A.
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Finally, (1.39) implies

(1.42) T< oad(D)

with limg_o p3(d) = 0.
Hence, we have existence for arbitrary 7" if d(T') is sufficiently small.

THEOREM 2 (uniqueness). Solutions to problem (1.1) such that v €
Lo(0,T; W4(£2)) are unique.

To prove Theorem 1 we use problems (3.1) and (3.12) for (h(®,¢®),
i = 1,2, respectively, in the form (5.1) and (5.2) which is appropriate for
applying the Leray—Schauder fixed point theorem. For this purpose we need
to estimate v in terms of A" and h(?). The relation between v and AV,
h() and the corresponding estimate (4.28) for v € W2277}16(QT) is described
in Lemma 4.4. To obtain (4.28) we use anisotropic energy type estimates
described by Lemma 2.1, which implies a high-regularity estimate for v with
different smoothness with respect to 2’ = (x1,z2) and x3 (see Lemma 4.3).

The fact that v € W227’}16(QT) is crucial because 27/16 > 5/3 and

v e W;;(QT) implies that v - Vv € L5/3(QT) so (1.1) does not increase
regularity. Moreover, for v € W21(27), r > 5/3, interpolation inequalities
from the proofs of Lemmas 4.6 and 4.7 are such that the mapping @ is
compact (see Lemma 5.1) and estimate (5.9) holds (see Lemma 5.2).

The result of Theorem 1 is a small step towards solving the regularity
problem for the Navier—Stokes equations, because existence of a regular solu-
tion with small variations in the direction of the axis of a cylindrical domain
is proved. It seems that the solution is close to two-dimensional (see [10]).
But in [10] the non-slip condition is imposed on the boundary. Hence the
solution in Theorem 1 would be close to a two-dimensional solution with slip
boundary condition. Now, we describe the differences between the latter so-
lution and the solution presented in the present paper. In the 2d-solution
the boundary conditions on S5 are satisfied automatically, while in this pa-
per they are not. Moreover, in the two cases we use different estimates and
different imbedding theorems. In the 3d-case the imbedding theorems and
interpolation inequalities applied are much weaker than in the 2d-case.

Moreover, in the 2d-case global estimate follows directly from imbedding
theorems (see [10]), whereas in the present paper, much work is necessary
to obtain an estimate guaranteeing global existence (see Lemma 5.2).

In the last decade a lot of papers concerning global regular special 3d-
solutions to Navier—Stokes equations have appeared (see [2, 3, 7, 10, 13,
14, 15, 18-20]). They base on lower-dimensional global regular solutions to
Navier—Stokes equations:
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1. two-dimensional [10];
(1.43) 2. axially-symmetric [11, 17];
3. helically symmetric [12].

Global regular solutions close to (1.43); are shown in this paper and also
for thin domains in [2, 3, 7, 13-15].

In [13-15] Raugel and Sell proved existence of global regular solutions
to the Navier—Stokes equations in a thin domain 2. = 2’ x (0,¢), £’ C R?,
¢ small, with periodic boundary conditions by using the semigroup tech-
nique. The result was generalized by Avrin [2, 3], who also proved existence
of global regular solutions in the thin domain 2. but with Dirichlet bound-
ary conditions on 9f2" and periodic conditions in the third direction. In
his considerations the smallness of € was replaced by large first eigenvalue
of —PA, where P is the projection operator on the divergence free vector
fields. To prove this he used a fixed point argument. The above results were
generalized by Iftimie and Raugel in [7] who relaxed the conditions on the
magnitude and regularity of v(0) and f.

Global regular solutions close to (1.43)2 have been found by the author
in [18-21].

Finally, in [4, 5] there are some generalizations of solutions from (1.43)s.

2. Notation and auxiliary results. To simplify the writing we intro-
duce the following notation:

lulp,@ = llullz, @) Qe {07, 8",02,5}, pel,o],
Hu’S,Q: HUHHS(Q% Qe {st}a 3€R+U{0}7
||UHS,QT = ||uHW2573/2(QT)a Q € {'Qa S}a ERS R+ U {0}7

lul, g.qr = llulr,01iz,@): @€ {2.8}, p.gel, o0,
HUHS,(],QT = HUHWK;vS/Q(QT)v Q S {Qv S}u ERS R"r U {0}7 q S [1700]

s.0.Q = llullws (@) Qe {2,858}, seRLU{0}, ge[l,00].

|

By ¢ we denote a generic constant which may change its value from formula
to formula. By c(0), ckx(0), k € N, ¢(0) we understand generic functions
which are always positive and increasing. We do not distinguish the scalar
and vector-valued functions.

Moreover, we use the abbreviation r.h.s. (L.h.s) for right-hand side (left-
hand side).
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We introduce the space

VEQT) = {u: ullypar) = esssup ull e (o)
te(0,T)

)

+ (:§\|vu||m(m dt)l/Q < oo}, ke N.
0

Now we recall an imbedding for anisotropic Sobolev spaces. Let 2 C R3.
Then we define

1/2
lullar oy = [§(ul? + [97u + | VEu?) ], ke,
P
where V' = (0z,, 0z,)-

LEMMA 2.1. Assume that u € Loo(0,T; Lo (£2)) N Lo (0, T; Wy *(£2)), 1 <
k € N. Then v € L.(0,T;Ly(£2)) for any r,q > 1 satisfying

2 2%+1 2k+1

2.1 —

(21) . qk 2k

and

(2.2) lul g, or < clesssupfulz.o + [lull, o 7wk ())-

)

In the case r = q we have

2(4k + 1)
2. _ 2@+l
(23) o= 200D _ g,
so that q(1) = %,q@) = %,q(i%) =2 .., and limy_ o q(k) = 4.

Proof. From [6, Ch. 3, Sect. 10] for u € ng’k(Q), g>1landanye >0
we have the inequality

(2.4) |u|q,9 < ElizHuHW;!k(Q) + 057%|“’2,Q’
provided

2 1 1\1
(25) ” gt (2 Q> koo
which holds if
(2.6) q < 4k + 2.

Inserting in (2.4) ¢ = €T yields
(27) g < 7 Jullya gy + el 0
Equalizing the terms on the r.h.s. of (2.7) gives

6Uﬂ”“”pvg’k(g) = 6_1/(1_%)|U|2,(27
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which implies

se(1—32)
ulp,e
(2.8) €= (7 .
|

[ullwz x (o)
Inserting (2.8) in (2.7) yields

(2'9) ‘u’qw(l < CHUH%;’@(Q)’UIZ 0>

provided (2.6) holds and
2k+1 2k+1

2.1 = — 1.
(2.10) P % o <
Next we calculate
r . 1/r
@10 ful,, o = (§ @ o dt)
0
T
< c<§) [T dt) ess sup [ul} 7

for any s € (0,1). Putting

2
2.12 = —
(212 =
we obtain
2/r 2/r
(2.13) lul, . or <cllu HL/Q(OTWIk(Q)) ess Sup ]u\Q m,

By the Young inequality, (2.13) implies
(214)  ulypor < &2 lullp, o sy + e ess supula.o
for all e € Ry From (2.10), (2.12) and (2.13) we get (2.1), (2.2), which ends

the proof.
For ¢ = r inequality (2.14) takes the form

(2.15) [ulg or < EQ/2HUHL2(07T;W21,;€(Q)) + ce~9/(@72) ess sup lul2,0,
where ¢ is defined by (2.3).
In this paper we use frequently the imbedding inequality
(2.16) |Viul, , or < clullarpoor, <2,
which holds for

2
(2.17) ————E+¢§2+ﬁ.

In the case when either p or ¢ is equal to oo, the inequality in (2.17) must
be strict.
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Now we formulate the results of [1], which are frequently used in this
paper. Let us consider the Stokes problem

vy —divT(v,p) = f in 27,
divv =g in T,
(2.18) n-Dw)-7;=b;, i=12onST,
v-T = bs on ST,
v|t=0 = v(0) in 0.

Let us introduce the Besov spaces:

B2o(Q) = { Nl s oy = 1l e

ho [25} ]_/q
A, (h, 2)D" q
n [S (H (h, $2) U||LT(QT)> dh}
0

h2s—[2s]
"o 1 ARy (0,7))8 |, ¢ 9t/
» YUy ~(02T)
+ [(S) < e > dh] <oo},

where s € Ry U {0} is noninteger, 1 < r, ¢ < oo, and

B1(2) = {u:

B: (2) = lullz, (@)
ho [s] q 1/q
A, (h, 2) DS
+ “ (l ( hz—[s} HLT(Q)) dh} <oo}7
0

Ap(hy Q)u(z,t) = u(x + h,t) — u(z,t), z,x+h € (2,
Ai(h, (0, T))u(x,t) = u(z, t + h) —u(z,t), t,t+he(0,T).
Moreover, we define
W2A(Q7) = BEA@T), W) = BL(Q)

which is possible in view of [8], where different kinds of differences were
introduced.
Finally, we have

LEMMA 2.2 (see [1]). Letp>1, S, €C?, fe B2%35(027), ge B2 H#(027T),

where

'U(O) c B2s+2—2/r(0) b € B25+1 1/r,s4+1/2— 1/(27")(ST) = 1,2, by €
BZ,S;Q L/rs+1= 1/(QT)(ST), s € Ry noninteger, 1 < q < oco. Suppose there

exist functions A, B € BQS S(QT) diamsupp A < A, where X\ is sufficiently
small, such that the followmg compatibility conditions hold:

DO g — div(D2OP f) = div(D28P B) + D2 A,
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for all|a|, 3 > 0 such that |a|4+203 < [2s]. Then there exists a unique solution
(v,p) to problem (2.18) such that v € B}5H5H1(0T), Vp € B2%5(QT) and

(219) ’|U||B72«?;1+2’5+1(QT) + ||vaBgi]’S(QT) S C(”fHBgiI’S(QT)
+ 1Bl 25y (ory + 1Al 525y 0y + 119l g2 (o)
2
+ Z ||b1;”B'%;sq+1*1/7‘73+1/2*1/(2’”) (ST) + ||b3||BE;SQ+271/T,S+171/(2T)(ST)
=1
[s—1]

+ l0(0) ]| pzsra-a/r gy + > “8Zf|t:0”Bﬁfq—%—Qﬁ(Q))-
1=0

3. Basic formulations. To prove Theorems 1 and 2 we formulate prob-
lems for quantities (1.38) which help us to improve the regularity of the weak
solution.

LeEMMA 3.1. Let gV = f ... Then (B, ¢ is a solution to the problem
hY —divT(hW,¢W) = —v- VAW —hD . vy 4+ ¢O  in 07,

divh™M =0 in 07,
3.1) AV .m=0, 7-DRY).7,=0, a=1,2, on ST,

MO =0, i=12, K =0 on S5,

hVi—o = h1(0) in {2,

where T is the normal vector to S1 and T4, a = 1,2, are tangent.

Proof. Equations (3.1)1,2 and the boundary conditions (3.1)3 follow di-
rectly from (1.1); 2 and (1.1)3 4 by differentiating with respect to z3 because
{2 is a cylindrical domain with respect to the x3 axis.

The boundary conditions (1.1)3 4 on Sy assume the form

v3 =0, Vi T V3,2, = 0, 1=1,2,
SO
(32) Ui,z ‘52 == 07 1= ]-7 27

which implies the first condition of (3.1)4.
Expressing (1.1) in the form

U1z + V20, + V3,0, =0,
we obtain, in view of (3.2),
(3'3) V3,255 = —Vlazz, — V2,252, =0 Ol Sa,

which gives the second condition of (3.1)4. This ends the proof.
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LEMMA 3.2. Let ¢V and f3 be given. Then w is a solution to the problem
w7t+v-Vw—VAw:q(1)+f3 in 21,

n — 0 ST,

(3.4) w, on 1T
w=0 on S, ,

w|i=o = w(0) n £2,

where 0, =1 -V and T is the normal vector to Sy.

Proof. Equation (3.4); is exactly the third equation of (1.1);. Let

_ Vo 1
n Sl = = SO,JA?SO,LUQJO Y
5= Wl ~ ol )
(3.5) _ Vi 1 3
TS = 7o 7 = 7w 4 _(P,m2790,x1707 7218, = 07071 P
| Vol - Vo ( ) | ( )

ﬁ|52 = (0707 1)7 F1’52 = (Loao)v ?2|S2 = (07 170)
Condition (3.4)5 follows from (1.1)3. Expressing boundary conditions
(1.1)4 in the form
ov;  0vj
3.6 i L =L )1y
( ) " <a$j+8$i)7-]sl

where the summation convention over repeated indices is used, we have for
a = 2 the equation

61&' (31)3
3.7 i
Since m|s, does not depend on x3, the above condition implies (3.4)3, and

the proof is finished.

LEMMA 3.3. Let F3 = (vot f)3, h'V), v and w be given. Then x = (rotv)s
is a solution to the problem

=0, a=12,

=0.

S

Xt +v-Vyx— hgl)x + hgl)w,zl - hgl)wﬂg2 —vAx=F3 in 07T,
(3.8) X = Ui(ni,achlj + Tli,acjnj) +v '71(7'12@1 - Tll,wg) =Xx On 5?7
Xzs =0 on ST,
X|t=0 = X(O) in §2,
where tangent and normal vectors to Sy are defined by (3.5).

Proof. Differentiating (1.1), with respect to x; and (1.1); with respect
to x2, and subtracting the results we obtain (3.8);.
In view of (3.2) we have
X,:E3 - U2,mlm3 - vl,I2m3 - 0 on 527

so (3.8)3 holds.
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To show (3.8)2, we express v/ = (v1,v2) in a neighbourhood of S in the
form

vV =v-TT1+v-0n,
where we have assumed that the vectors 71,  are defined in a neighbourhood
of S7. Continuing, we have
(3.9) Xls, = (v -Timi2 +v-Mn2) o, — (V- T1711 + 0 N1 a5 |5,
=[(v-T1) a2 = (V- T1) 2,11 + (V- 1) 2,02 — (V) 2,11
U Ti(T12,21 = Tile,) TV - U(N2,0, — N10,)]ls,
=m-Vu-71)=7T1- V@ -n)+ v -T1(T12,2, — T11,25)]]5,
=m-Vv-7T1)+ v -T1(T12,0, — T11,25)]|5,-
Writing (3.6) for a = 1 in the form
(—viNia,; Ty + T - V(0 -T1) = 0jT1j2,n)|s, =0
and inserting it in (3.9) yields (3.8)2. This concludes the proof.

Let 2" be a cross-section of {2 by the plane P perpendicular to the z3
axis. Then 002’ = S; N P = S]. Therefore, we can consider the problem

. /
V2 — Vigy = X in (2,
1) . oy
(3.10) Vlay + Vamy = —hSY  in 2,
v en =0 on Sy,
! _ =/ __ 1 ’ . .
where v/ = (v1,v2), ' = W((p7z17(p7m2)- In the case when S is a circle,

Lemma 3.3 takes the following form:

LEMMA 3.4. Assume that 2 is a cylinder. Then x satisfies (3.8)1.4 and
the boundary conditions

2v-e,

Xls; = :
(3.11) | R,

X,z3 |52 =0.

Proof. We have to prove (3.11); only. To do this we consider (3.8); on

the circle S}. Then = (z1/r,x2/1r), T1 = (—x2/r,21/7), T = /22 + 23.
Hence

_ V1Z2 V21 T2
7—12,11_7—11,12:;7 V-T1 = — , 0 n1,mj71j:—r—27
€1
Til,z;M =0, No gz, 715 = 2 Tzl = 0.

Applying the expressions in (3.8)5 yields (3.11); and concludes the proof.

Finally, we formulate a problem for h(?), ¢(2),
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LEMMA 3.5. Assume that v,hM), g = f . v 4...(0) are given. Then
(h?,¢®2)) is a solution to the problem

WY = divT(h®), ) = =h® . Vo — 200 . VRO

—v-Vh® 4 ¢ in 027,
divh® =0 in 07,
(3.12)
n-h® =0 7-DL?).7,=0 a=1,2, on ST,
W =0, W2 =fom -9 =F;, i=12, on ST,
h?|,—o = h?(0) in 12,

where F =rot f, F = (Fy,—F,, F3).

Proof. (3.12)1,23 follow directly by differentiating (1.1)1234 with re-
spect to x3. Now we calculate the boundary conditions on Ss. From (1.1)3
we have

and (1.1)4 implies
Ov;
(3.14) Vil —0, i=1,2.
8333 So
Then the continuity equation (1.1)s yields
0%vs 2 Ov; o
(3.15) hP|s, = =N Zhm)
2 8x§ S =1 8951 S

Therefore, the first boundary condition for A(?) on S, takes the form
2
h s, = 0.
Expressing (1.1); in the explicit form
(3.16) vy —vA'v — V@iSU +Vp=—-v-Vou—+f,

where A’ = 92 + 02, taking the first two components of (3.16), differ-
entiating them with respect to x3, projecting on Se and using (3.14) we
obtain

’ 1 1 / /
(317 K@, = > v'qWls, + = (v VAW 4 0wy — g,

where V' = (0,,,0:,) and v/ = (ug,uz). In view of (3.13) and (3.14) we
have

(v- VR +pM . T)|g, = 0.
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Hence (3.17) takes the form
/ 1 /
(3.18) W2 s, = = (Vg — g,
’ v

Projecting the third component of (3.16) on Sy and using (3.13), (3.14) we
obtain

(3.19) q(l)‘sz :—v-vv'ﬁ‘52+f3’52 :f3’32-
Employing (3.19) in (3.18) yields
/ 1 /
h) s, = " (V' fs = g")]s,.

This implies the second condition of (3.12)4. This ends the proof.

4. Estimates. First we examine problem (3.8). Let us define a function
X to be a solution of the problem

Xt —vAx=0 in T,

Y = Y on ST,
(4.1) X 1

X.azs =0 on Sg,

jat:(] =0 in (2.

Then the function

(4.2) X' =x-X
is a solution to

X:t +v- VX, - hi(%l)X/ + hgl)w,ml - hgl)wumz - VAX/

:Fg—v-Vi—thl)i in 27T,
(4.3) X =0 on ST,
Xlzy =0 on S5,

X'|t=0 = x(0) in £2.

First we replace (1.17)2 by a more appropriate energy estimate

t 1/2
(4.4)  |v(t)|2,0 + (S ||U(t')||wg”“(rz) dt,)
0

<do(t) + |0F,vla,00 = ds(t), t<T,
where k € N will be chosen later. Then (2.2) and (2.3) imply

(45) ”U| 2(4k+1) ¢ < Cd5(t), t < T.
2k+1
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LEMMA 4.1. Assume that hgl) € Loo1(27) N Lok (27), AL —
18k+7

(h{Y,88) € Lo (07), Fy € Lawesn (27), X € W*2(027) with 2 —
6k+1

420451 +1<s,k>1, x(0) € La(§2). Assume also that v is a weak solution of

(1.1) satisfying (4.4). Assume that |853U|2’QT, |0§35€|27QT7 |v/a§3v|2’QT are
finite. Then solutions of problem (3.8) satisfy

(4.6)  [Xla0.00 + IXIl 0w () < cexplelhE”] o 1 o)
(s + 115 soas s g0+ DIR s +dol RO |2t o g
B3l s o0+ [x(0)|2.0) + ¢l Rlo.or + V'O vlo.0r = Ai(0)
forallt <T.

Proof. Multiplying (4.3) by X/, integrating the result over {2 and using
(1.1)3 we get

1d
(4.7) th\X 3.0 +vIVX'[30
I PN (A
2 2
+ S Fsx'dx — S v-Vxx dr + S hél)fgx’ dx.
2 2 Q

Estimating the first term on the r.h.s. by ]hél)(t)\oo,glx'@ﬂ, applying the
Poincaré inequality and integrating with respect to time yields

t
(48) OB+ v IN N o) dt < coxplelh§” ] 4 o)
0

. [ [ 10w |x’|d:vdt’+‘ {
(]

S v-Vxx dzrdt
ot ot

t
+1 § BT dwdt |+ [XO)B o] +€§ 105, () o d'
0

where h()' = <h§”, ), w0 = w0y, wa,).
To estimate the first four integrals on the r.h.s. of (4.8) we use the imbed-
ding (see (2.15))

(4.9) ‘u‘%ﬁ,(ﬂ < C(‘u‘Z,oo,QT + HUHLQ(QT;W;’“(Q))):

valid for all £ € N.
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By the Holder inequality, the third integral on the r.h.s. of (4.8) is
bounded by

|U|%7Qt|v%|%’gtb{/|%ﬁ7gt =1.

In view of (4.4) and (4.9), we have, for any €1 > 0,

t
1 < e (OB e 0+ N IN s g @) + e(1/e0) A0 TR nir .
0

where to estimate the last norm we apply the imbedding
(4.10) HVSCVHLM(QT) < CHXVHs,r,QT,
2k

which holds if
5 10k
4.11 - —
( ) r 4k +1

Using the imbedding (see [6, Ch. 3, Sec. 10])

+1<s, seRy, re(l,00).

(412) |U’2(2k+1)79 S CHUHW;,k(Q), Q C Rg,

we estimate the first integral on the r.h.s. of (4.8) by
t

thl [52|X,(t,)’g(2k+1),9 + 0(1/52)|h(1)/|2—k,j'—1,(z|w,m"§,(z]
0

t
< 3 (I B oo + §IN @) g @) + e1/2)l D Bass e dB(0),
0

for any e5 > 0, where (1.17)2 was applied.
We bound the second term on the r.h.s. of (4.8) by

’X”%’Qt’FE}’%,Qt < 83‘X,‘22(24:I11)79t + c<1/€3)‘F3‘22(64:j11)79t

for any €3 > 0. By the Holder inequality, the fourth term on the r.h.s. of
(4.8) is bounded by

(OF
|X/|2<2%++11),m|h3 X|2(64kkj11)79t
(1) v —
< |X’| 2(24:1-11) ’Qt|h3 |/\1 2(64:_?11) ot |X|)\2 2<64kkr11)’9t = I,

whenever 1/A; + 1/Xy = 1.

To estimate the last factor in Is by the r.h.s. of (4.10) with r, s satisfying
(4.11) we have to calculate Ay from the equality case of (4.11) and from the
relation

) )

r 2(4k+1))\
6k+1

=5,
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SO
10k 5(6k + 1)

4k +1 T 204k + )Ny’

which implies that Ay = % and A\ 5§gzi;) Hence

I < ey’ ’2<4k+1> ot + 0(1/54)’h3 |10<4k+1> Qt”XH?,T,Qt?

for any €4 > 0 and any r, s satisfying (4.11).
Applying the above estimates in (4.8) and assuming that 1 to €4 are
sufficiently small we obtain

t
(413) OB+ v IN )3 g dt' < cexplelhy” ] o0)
0

. ;2
L5+ 115 o ) XS r + 3 1A T2 o

t
+ |F3|22(s4kkff) o T |X(0)|%Q] + CS ’a£3xl(t,)’g,9 dt’
0

t
L(0) + e § 105X ()5, dt’
0

In view of transformation (4.2) we have

t

(414) (OB + 0§ IXE 0 i < AL(0)
0

t t
~12 ~
(1K e + VIR 10 g @) + €108 1 () B 0 0
0

0

t
< A5 + e (I¥5 e + IRE)E o dt') + SWMX(Higﬁ’
0
t
+c\[V'aE vl3 o dt'.
0
We need the imbedding

(4.15) IXl2 0. or + X[ 220,781 (2)) < cllXlst 7

which holds for r and s’ such that

5 3< ,
-—=-<s.
r 2
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10k

Since T — 1< %, we see that s’ can be chosen less than s. Therefore

(4.14) implies (4.6), and this ends the proof.

From the assumption of Lemma 4.1 we have Y € W, =/ (02T whenever
s and r satisfy (4.11). Then solving problem (4.1) we get

(4.16) X

‘s,nQT < CHX*HS*]./’!‘J‘,S?‘
In view of (3.8)1 or (3.11); we see that v must belong to WTS’S/Q(_QT) and
(417) ||X*||s—1/7’,r,SlT < CHUHS,T,QT'

Next we obtain an estimate for h(1). We recall that

(4.18) X hél) dx = X V3 4y AT = S vy dr — S vzdr =0,
-Q -Q SQ(ISZ—G) SQ(IgZ(Z)

and hgl), hél) vanish on Sy. Hence for h(!) we have the Poincaré inequality
(4.19) 8IS, < ¢ VAW, 0.

LEMMA 4.2. Assume that v is a weak solution to problem (1.1) satisfying
(1.17). Assume that h(Y) € Lo (0,T; L3(£2)), gV € Ly(27), f3 € Ly(ST),
R (0) € Lo(R2). Then

t
2
(4.20) W05 o + v IBOW)E o dt" < bV o oid3(8) + el f3]5 s
0

+clg3 g + RV (0)[3 o
forallt <T.

Proof. Multiplying (3.1); by A(!) and integrating over {2 yields, for all
€1,€2,€3 > 07
1d

4.21
( ) 2 dt

KV o +vnR g

< {1 Vo hD]dz + | |gDrD|dx + { |qVhS"|dS,
N 9} Sa

< e iV o+ e(1/e)|BVE o Vi3 o + e2lh M]3 o

+e(1/22)lgW 3 0 +esl BT o + e(1/ea)lf3l3 5,

where (3.19) was used. Hence, after integration with respect to time, for
sufficiently small €1, €2 and €3 we obtain the estimate (4.20). This ends the
proof.
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The inequality (4.20) implies

2
dt' < | h W[5 o ud3(t)+el f3]3 g1

)
t
W (¢ ¢
(4.22) |h 1/§)Hh Wlk( |

+ g3 g +IMD0) o + |0, h V5 o = As(t),  t<T.

Next we consider the problem

Vl,xg — V227 = X in ‘Qla
(4.23) Uty + Va.my = —h$Y in 12,
v -m' =0 on S,

where 2/ = 2N {plane x5 = const € (—a,a)}, S| = 51 N {plane x3 = const
€ (—a,a)}, and x3, t are treated as parameters.

LEMMA 4.3. Let the assumptions of Lemmas 4.1 and 4.2 be satisfied. Let
|a§3h(1)|2’QT be finite, where k € N. Then the solutions of problem (4.23)
satisfy

@24)  sup V)l + IV gy S e(AL(E) + Aat)

for allt < T, where Ay is defined by (4.6) and Ay by (4.22).
Proof. For solutions of problem (4.23) we get the estimates
1
11 < X + 115" B ),
1
1.0 < elixliEor + 1957170,

where v/ = (v1,v3), 2’ is defined above,

1/2
vk, = ( Z S 021 9220|? dzy dxg) . oq,00,k e NU{0}.
artaz<k

(4.25)

Integrating the above estimates with respect to 3 and the second one also
with respect to time, and adding them, we obtain

a a

(4.26) sup X [0 (@3, 1")|3 o das + S S "(w3, )13, das dt’

—a 0—a
1
(xltpcany + 1057 lvp )
Adding (4.20) for h(1)" = (hgl),hgl)) and employing (4.20) to estimate the

second term on the r.h.s. of (4.26), we obtain
t

(4.27)  sup 1'11%. + § 107113, dt” < ellx[IF oy
0

+ e d3 (V5 00 + 19013 0 + 1 f315,55 + [BD(0)3 ).
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Applying estimates (4.6) and (4.22) to (4.27) gives (4.24). This concludes
the proof.

Next we obtain an estimate for v in terms of h(1), h(2),

LEMMA 4.4. (i) Assume that v is a weak solution to problem (1.1) such

that the assumptions of Lemma 1.3 are satisfied. A
(ii) Assume that hY) € Lo 1(27) N L4 /17(027) N L3 o0 (£27), QNS
Ly(0,T; HY(£2)), i = 1,2, and

v(T) = |h(1)|oo7179T + W54 17,07 + |h(1)|3,oo,QT

2
+ MO 0,rm1(2)) < 00

i=1
(111) Assume that f € L6/5,OO(QT)HL27/16(QT), F3 € ng/lg(QT), g(l) S
L2<QT)7 f3’52 € L2(Sg)7

GUT) = |flo5,00,0r + | flarj16.07 + [F3l18/13 07
+1gW o, 0r + | fala,57 < 00,

v(0) € Wi /5 (52), X(0) € La(£2), hV(0) € Ly(2), and

Go(0) = [[0(0)l22/27,27/16,2 + [X(0)|2,2 + [AV(0) 2,2 < 0.

Then v € W227’}16(_QT) and there exists an increasing positive func-

tion o = wo(0(T), G1(T),G;(0)) (see (4.43)) such that

(4.28) [vll2,27/16,07 < wo(0(T),G1(T), G5(0)).
Proof. In view of (2.1) and (2.2) we obtain from (4.24) the inequality
(4.29) [V ] e 10 g e < (A + Ag),
which holds if
2 2k+1 2k +1
4. - = .
(4.30) r * qk 2k
Hence
(4.31) 10| 2. o,msw (2)) < e(Ar + Aa).
Let us use the imbedding
(4.32) Vo2 < cl[v]|1,q,0,
which holds if 11 ) 1
g 3 o

Applying (4.32) in (4.31) yields
(4.33) [V, 0r < (A1 + Ag),
provided
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2 1\1 1 1
(4.34) ;_‘_(2—1_%);:5—1_@‘
Inserting o0 = r in (4.34) we have
 6(4k+1)
2k+1

Hence (4.33) takes the form

(4.35) ‘U/’6(4k+1) or < C(A1 + AQ).
2k+1

To improve regularity of v we consider the problem

vy — divT(v,p) = —v' - Vo — wh + £,

dive =0,

(4.36)
v-1mlg=0, n-T(v,p) Tals=0, a=12
V|i=0 = v(0).

Let us examine the regularity of the r.h.s. of (4.36);. By the Holder inequal-
ity,
‘UI : VU|U,QT < |v/|a/\1,QT|vv’U>\2,QT = -[17

with 1/ +1/X =1, 0\, = 6(24kk:11), oAo = 2. Hence 0 = 3(74:121) and

I < cda(Ar + Ay).

Next
1) (1) =
wh( 3(4k+1 < |w| s(ak+1 h 3(4k+1 =1
| |(7k—+2)7QT _| |(7k—+2))\/1’_QT| |(7k—+2))\/2’_QT 2,

whenever 1/\] +1/\, = 1.

3(4k+1) v/ _ 2(4k+1) — 2(Tk+2) = 2Tk+2)
Let s M = Tgpr - Then Ay = 5pny, A2 = g and

1
_[2 S Cd5’h( )‘6(4k+1) N7
8k+1

where (4.5) was employed.
Making use of the above considerations in (4.36) yields

(4.37) [0y saren or < Pr|v]lsror + P2
»TTR+2

whenever s and r satisfy (4.11) and

@1 = cda(T) exp(el | 1, r) (@5(T) + 115 rown or +1).

s = cdy(T) exp(el B | o 1 ) [T RD | 2621 oo v + | Filagassns g
(438)  +[(O)lao) + (VD5 vlaor + 1RO, . gr + gD 0r

+ | fslasp + RV (0)2,0 + 105,005 07 +ds(T) M sk or
8k+4+1

+ ‘f‘3§4k+12 0T + HU(O)H272 Tk+2) 3(4k+1) Q)
Th+2

(
3(dk+1)° Tk+2 °
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To obtain an estimate for v from (4.37) we apply the interpolation inequality

1—
(4.39) HUHV[/fvS/Q(QT) <e %IHUHW?(LCH)

TE+2

(or) T e lz o,

which holds for any € > 0 provided

5 5 1
(4-4()) n = [m — (; — S)] 3 <1,
Tk+2

and r, s satisfy (4.11), 80 2 — s = % —-1= %.
Now, the inequality in (4.40) holds if
5k + 10
3(4k +1) <5
which is satisfied for k£ > 1. Since k € N we assume that k = 2.
Hence s, = égfkfrlf’) = 2T Therefore applying (4.39) in (4.37) yields

(4.41) |v]l2,27/16,07 < (57/54“7)”2,27/16,QT + 05_47/54d2)€151 + Ps.
Taking £7/°4®, = ¢, implies that ¢ = (g,/1)°%/7, s0 e47/%4 = (& /1)*7/7.
Finally, inserting £; = 1/2 we obtain

54/7
(4.42) v]|2,27/16,07 < (P} Tdy + D),
where

By = cdy(T) exp(c] B ] . 1. or ) (ds(T) + 85" lao 43,07 + 1),
By = cdy(T) exp(c] b5 | . 1 or) [d2(DIBD [ 0 o

+ | F3l18/13,07 + [X(0)]2,2) + C(||h(2)HL2(O,T;H1(Q))

+ |hi(’>1)|3,oo,QT + 19V 2,00 + | f3l2,s7

+ [B(0) ]2, + |2 |y or + ds(T)|hV|54/17. 07

+ [fl27/16,07 + 10(0)|l22/27,27/16,22)-
Making use of the form of dy and ds we obtain

@1 < oI flgss.00.0m + [0(0)]2,0) exp(c| V] 1 or)
: (|h(1)|54/17,m“ + ||h(1)||L2(0,T;H1(Q)) + |f|6/5,oo,QT + [0(0)]2,0 + 1)
=),
By < eI flg 5,00, 07 + [0(0)]2,2) exp(cl kD] 1 or)
(RO, o or + IRV, oy + | Filisyis.or + X(0)]2,.0)
+ (1M | 0,750 (2)) + 1RV 0 o + 1R Ly0,300 (2))

2
+ ‘h(1)|§4/17,QT +1fl6/5,00,0m + |U(0)’§,Q
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+1gWg0r + | f3la,57 + | fl27 /16,07

+ [P (0)]2,0 + [[0(0)[l22/27,27/16,2) = Bb.
Hence in view of assumptions (i) and (iii) we get from (4.42) the inequality
(4.43) [vll2,27/16,07 < Pd2 + Py < @o(y0(T), G1(T), G(0)),
which concludes the proof.

In the assumption of Lemma 4.4 the quantity h(®) € Lo(0,T; H'(£2))
appears. Therefore we need some estimates for h(2).

LEMMA 4.5. Assume that v is a weak solution of (1.1) satisfying (1.17).
Assume that h®) b € Ly (QT), f3 € Lo(ST), F' € Ly(ST), gV €
Ly(ST) N Ly(027), K2 (0) € Ly(£2), hV(0) € Ly(2), g € Ly(27). Then
solutions of (3.12) satisfy

t
2
(.44) WP o + v §IIRP )] o dt' < cd3 (IR o o
0

2 2
+ C(lh(l)l?),oo,!?td%(t) + |9(1)’§,m + ’f3|§,sg + |h(1)(0)|§,ﬂ)|h(1)|3,oo,.Qt
+e(|F')3 51 19215 00) + WP (030, t<T.

Proof. Multiplying (3.12); by h(® and integrating the result over {2
yields

1d _ _ _
(445) 5 £|h(2)|§79 + D)3 5 — |7 -D(P) - 7o h®) -7, dS
S
S x(h(2) Vo420 VAW + v VAR dr + S g3 gy,
2 2
Here the boundary term equals
[ (00, h? + 05, BYRD dSy = § 00, hPRP dSy = | Fuh® dS = 1,
Sy Sy S
where in the first and second equality we used the first and second con-

dition of (3.12)4 respectively. Moreover, summation over « from 1 to 2 is
understood. Finally, for all £; > 0,

1] < el|B®)2 g + e(1/e)| Fl3 s,

In view of the boundary conditions 7-h(?|s, = 0, where we can choose for 7
two different linearly independent vectors (if we choose two different points

on S1), and hg,2)|52 = 0, we obtain the Korn inequality

(4.46) 110 < eDR®)]2,0.
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In view of (1.1)s, the first term on the r.h.s. of (4.45) equals

Iy ==\ (® - vo-1® + 200 a1 de,
2
so that, for all e5 > 0,

|I2| < e2| PG o + e(1/e2)(IVul3 o h? I3 o + VAW olh M]3 o).

Making use of the above estimates in (4.45) and assuming that e, e2 are
sufficiently small we obtain

d
(447) WP o +vllhP} o < c|Vo3 ok o+ VRVE ok o)

+e(|[F's, + 190150 +19715,0)-
Integrating (4.47) with respect to time and using (1.17)2 implies

t
(4.48) WP o + v §IIRP @) o at
0

< BOIL g +§ O g [WOL
0
+ C(’F/@,sg + \g(l)]%m + yh<2>(0)\379 + \9(2)\3,@)-
Employing (4.20) in (4.48) yields (4.44), and this ends the proof.
In view of Lemmas 4.4 and 4.5 we obtain
(4.49) [vll2,27 /16,07 < @1(11(T), G1(T), Go(0), T),
where 7 is an increasing positive function and
1(T) = |h(1)|oo,1,QT + |h(1)|3,oo,QT
+ ’h(1)|54/17,nT + |h(2)|3,oo7gm

G1(T) = sup |f(t)le/5,2 + | flor /16,07 + [F3l18/13,07
(4.50) =

+1gWg,0r + |F'|o 51 + | falo,s7 + 9P |2, r,
Go(0) = [1(0)|2,2 + [x(0)|2.2 + [PV (0) 2,02 + [P (0) 2,02
+ |[v(0)[l22/27,27/16,02-
Let us introduce the space
Mo (27) = {(BV,h®)) : 11 (T) < o0}
Then (4.49) shows that the transformation
(4.51) Mo(27) 3 (W, hD) 1= (bW 2D e W) (27),
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is well defined. Having this transformation, we consider problems (3.1) and
(3.12), where v is replaced by v(h!), h(?)). Therefore, to prove the existence
of solutions to problems (3.1) and (3.12) we need the following lemmas.

LEMMA 4.6. Let v € W2L(QT), r > 5/3. Let hV) € Ly(27T), ¢V €
Wf’ﬂ/Q(QT), h(l)(()) c W52+572/6((2), where 3 > 0, 6 > 1. Then solutions
of (3.1) satisfy

(452) 1M 245,507 + Ve 6,07
< SO(HUH2,T,QT)’h(1)|2,QT + C(Hg(l)”ﬁ,&(ﬂ + Hh(l)(o)sz—z/a,a,Q)‘
Proof. By Lemma 2.2 (see [1]) we have
(4.53) 1MV o 5.0r + IV M 5501 < e(llv- VD[54 0r
hY - Vollgs.or + 1905607 + 100 (0) |24 s-2/6.5.2)-
Applying Lemma 2.2 from [19] to the first term on the r.h.s. of (4.53) yields
(4.54)  lv- VA gs.0r < |[0llp1esss,0r VD |5 0

+ VRV | 1e 550,07 [V]sy,0r = 1,

whenever € > 0 and 1/0; +1/9; =1/6,i=1,2.
To estimate I; we use the imbeddings

(4.55) [0llg1e/6.61,0m + [vlsy,0r < clvlla,0r,
which hold for any ¢ > 0 if

5 5 5 5
4.56 - — — <2, —-—-——=<2
(4.56) r +5 roo 8y T
and

(4 57) |Vh(1)\61,QT < 5%7%1 Hh(1)||2+5,5,9T + 661_%1|h(1)|2,QT7

HVh(l)HﬁJre/Mz,QT <ey ”h(l)sz,J,nT + C€z_%z|h(1)\2,(ﬂ7
which hold for any 1,2 > 0 if

> 5+1 ! <1, / > 5+1 L
o= | = — w==-—- = —
'\o 6’ 2+ﬁ 1=\ 7y 21 3

1
4.58) = ———+ +- +1 <1,
@50 == (G-
5 1
=(2-2 41—,
(2 52+5+5+ >2+5
The 1nequahtles (4.56) and (4.58) imply the restrictions
) 5 )
(4.59) +8<24— <348, -<24- <3
51 r 5



272 W. M. Zajaczkowski

By Lemma 2.2 from [19], the second term on the r.h.s. of (4.53) is esti-
mated in the following way:

(4.60) 1KY - Vollg5.0r <IVllgtess.65,0r 1R |5y 0
+ 1A p1e /550,07 | V05 0r = I

whenever € > 0 and 1/§; +1/0, =1/, i = 3,4.
To estimate Is we make use of the imbeddings

(4.61) IVl g4e/s,65,0r + VUl 0r < cllv]la, or,
which hold if

5 5 5 5
4.62 - — — 1 <2 —— —4+1<2
(4.62) . 53+ﬂ+ S 5i+ <2,

and the interpolation inequalities

(4.63) ’h(l)\ag,!ﬂ < ey R W |gyp5.0r +cgg P [RD]y or,

1BV gse g0 < et NN agp0.0r + i 4 Vg 0r,

which hold for any €3 > 0 if

= (22 L (2o L
ST\ 62y BT\ 6 )2+ 8
5 5 € 1
4.64 = (22 S)l— <1
@) = (G- F e84y <
5 5 € 1
/ fr— —_——— —_— _—
”4_<2 5 TP 6)2+ﬁ
From (4.62) and (4.64) we obtain the restrictions
) ) 5 )
(4.65) —+08<1+=<3+8, -<1+55<3
r 03 r 0y
From (4.59) and (4.65) we have r > 5/3. Employing the above estimates in
(4.53) and assuming that ¢;, i = 1,...,4, are sufficiently small we obtain

(4.52). This ends the proof.

LEMMA 4.7. Let v € W2H(QT), r > 5/3, KD b2 ¢ L,(2T), hV) ¢
W62+/3,1+5/2(QT)’ g(2) c Wf"g/Q(QT), F e W61+B*1/571/2+1/2/3*1/(25)(S;F)’

h2)(0) € W62+’8_2/5(!2). Assume that 3> 0 and § > 1 satisfy 5/6 < 3+ .
Then solutions of problem (3.12) satisfy

(4.66) [P ||ayps5.0r +IVE? 55,07
< <P<H”H2,T,QT)W2)\2,QT + @(Hh(l)”2+/8,6,QT)\h(1)’2,QT

+cllg®lgs,0m + 1F has_1/s557 + 1B (0) |21 5-2/65,0)-
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Proof. Lemma 2.2 (see [1]) yields
467) 1P la16.0r +11V4P 5507
<c(llo- VR 55.0r + 1KY - VRV 55 or + |1 - Vol g5 o7

+ 19PN g.5,07 + 1B (0)llo45-2/56,2 + IF l145-1/6,6,57)-

Applying Lemma 2.2 from [19] to the first and third terms on the r.h.s. of
(4.67) yields (4.54)(4.65) with h(}) replaced by h(?).
We examine the second term on the r.h.s. of (4.67) in the following way:

(4.68)  ||h) - VAW|| 55 01 < 1MVl g1es5.65,07 VD |51 or
+ VA g1e /550,07 [R5, 0r = T

whenever 1/§; +1/6, =1/6, i = 5,6, and € > 0.
The imbedding

1B g4es5.65.07 + VRl g1e /565,07 < clhPDl2455.0r
and the interpolation inequality
\h(l)fég,nT + Wh(l)’&g,rﬂ < E)|h |24 55,07 + c(1/21)|M V|3 0r,
which both hold for
(4.69) 5/0 <347,
imply that
I3 < 55”h(l)||2+ﬁ,5,9T + ¢(1/e5, Hh(l)||2+ﬁ,6,QT)|h(1)’2,QT-

In view of the above considerations, inequality (4.66) follows for sufficiently
small £1,...,e5 (see Lemma 4.6). This ends the proof.

Repeating the proof of Lemma 3.4 from [19] we obtain
(4.70) BV 00 < €[ V55 00 exp(e] VO3 5 ) + 1]
Mgl + 1585, + 1BV (0)20),  t<T,
and
(A7) PO W)l0 < exp(c] Vol 5,00)
(9P l2,00 + | fal3 55 + ¢ RV (0)2,0),  t<T.

Finally, we shall obtain energy type estimates for solutions of problem
(3.12). For this purpose we express (4.47) in the form

d
(472) WP o +vIhP R g < (Vo o5 g

+ VRO ok o) + (1F'B.g, + 192 2.0).
This implies
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d vi—c v 2
(4.73) (W3 ger AV haanty < [ VRO 5[0
+(F Bs, +1g® 5 gle 1V e,
Integrating (4.73) with respect to time yields
2 2
(4.74) |h(2)(t)\§,9 < exp(c|Vv|3727m)[c(slt1p|h(1)(t)|§7Q|Vh(1)|3727m
+F[3 5 + 19 3,00) + e RPN (0)3, -
Making use of (4.71) in (4.74) gives
(475) (WP 0 < exp( Vol3 5 00)
2
[e(I VD55 0019V 2,00 + 1 f313 51 + 1M (0)]3 )
IS g + 197 5,00) + e R (0) 3,0
Integrating (4.72) with respect to time and using (4.71) and (4.75) yields
(4.76) ]h(z)\g’m < cexp(c|Vv|§72,m)
2
VRN 5 00 (195,00 + 1 £33 5 + K (0)]3, )
+|F'3 51 + 192 ]2,00 + [P (03,0 (1 + V]34 00)-
5. Local existence and uniqueness. To prove the existence of so-

lutions to problem (1.1), we apply transformation (4.51) to examine the
following problems:

hY — divT(hY, ) = AV, 7@, 7). VA
+ 1 VoM P p)] 4+ g1 in Q7

div ™ =0 in 27,
(5.1)

MV .m=0, n-DAHY).7,=0, a=1,2, on S,

K=o, =12 nf) =0 on Sy,

hW|i—o = h1(0) in £2,
and

W@ — divT(h®,q@) = -\, 52, 7) - Vi

+ 1@ .o, h® 5)] +¢®  in 07,

divh® =0 in 7,
(5.2) ) 5 T

n-h? =0, 7-DAL?) - 7To=0, a=1,2, on ST,

W~ F, H =0 on s

h®i—o = 1 (0) in (2,
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where A € [0, 1] and 7 is the weak solution from Lemma 1.4. Problems (5.1)
and (5.2) lead to the mapping
(5.3) (A, h?) = d(hD h® 5, \).
The main problem of this section is to show the existence of a fixed point
of transformation (5.3) for A = 1, together with an estimate. The above
presentation suggests using the Leray—Schauder fixed point theorem.

To define a domain of mapping (5.3) we take into account (4.51) and also

the proofs of Lemmas 4.6 and 4.7. In view of the interpolation inequalities
(4.57) and (4.63) for h(*) and h(® we define the space

(5.4") M1 = Me(27) Ny (27),

where

ml(QT) _ {(h(l),h(z)) . h(l),h(2) e L(;é(QT) N W£+€/5ﬁ/2+6/(25)(91“)7
(D ¢ L(Sé(QT) n W§+6/5,6/2+6/(25)(QT)’
Vh(l)7 vh? ¢ L51<QT) N W£+5/5»5/2+6/(25)(QT)’
vh() ¢ Léé(QT) N W£+€/6’ﬁ/2+8/(26)(QT)}

with

+ﬁ+% <1+§<3+ﬂ+%,

5 5 5

S 14+ <342
+54< +5< +54,
5

5 5
Z <2453 =
+ﬂ+5g< +35< +ﬁ+6,1,
5 5 5
Z <94+ = =
t5, <2t <3t
, 5

< 5/6 — (1+ )’

(OIS e NS S S N e S S B B
N
()
ot

5< b <

56— 2+5)

here (5.4) comes from (4.59), (4.64) by using the fact that 1/6,+1/5, = 1/9,
i =1,...,6. Moreover, 5/ < 3+ 3, 3/6 < 2+ (3. Therefore, Lemmas 4.6
and 4.7 imply

(5.5) G M(QT) x [0,1] — W22,
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LEMMA 5.1. Assume that g € Wf’ﬁm(QT), h(9(0) € W§+ﬁ_2/6(9),
i=1,2, P/ W, TR COTIEN (1), € L5 00(027) N Larji(27),
Fs € Lysi5(27), v(0) € War/ i (£2), x(0) € La(2). Assume that § € (1,2)
and (8 € (0,1) are such that 5/6 < 3+ 3, 3/6 < 2+ 3. Then the imbedding
(5.6) WA (T c an(nT)

18 compact.

Proof. In view of the interpolation inequalities (4.57) and (4.63) for A(1)
and h(?, we only have to show that

(57) W62+B,1+5/2(QT) - mo(QT)

is compact.
To show this we recall that the following imbeddings are compact:

3
WP QT € Lo a(7) it S <244,

5
(5.8) WEPIER(OTY ¢ Ly o(2T)  if g <344,
1 17

WEHOHBR(QTY € Loy pnr(02T) if 5 <g - 5—4> <24 6.

This implies that (5.7) is also compact. This ends the proof.

Now we find an estimate for a fixed point of mapping (5.3).

LEMMA 5.2. Assume that ¢©¥) € Wf"gm(QT), QNS W;JFB*Q/(S(Q), i=
1’2’ Fl c W;+ﬁ—1/5,1/2+5/2—1/(25) (Sg')’ F3 c ng/lg(QT), f c L6/5,OO(QT)
N Laz/16(27), v(0) € W2272//1267(Q), x(0) € Lo(£2). Assume that 6 € (1,2),
Be(0,1),5/5 <3+p,3/5<2+0. Set

2

d(T) =Y (199 2,0 + 1RDO)l|l2,2) + | fsl2,57 + [F'l2,s7-

i=1
Then there exists a large constant A (see (5.14) and inequality (5.13) below)
such that for sufficiently small d(T') the following estimate holds:

2
(5.9) YT) =Y (10D 24 ps.0r +1V4D [lp.5.07) < A.
i=1
Proof. In view of the imbeddings (5.8) we obtain from (4.49) the estimate
(5.10) [vll2,27/16,07 < @2(¥(T), G1(T), Go(0), T).

Let us introduce the quantity
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(5.11)  D(T) = llgWMgs5.0r + 19Pls60m + 1 F 1 15-2/56.57
+ R (0)ll245-2/5.6,2 + 1KP (0) |21 5-2/55,0-

From (4.52), (4.66) and (5.10) we have

(5.12) Y(T) < o((T), G1(T),Go(0), T)d(T) + c1 D(T),

where ¢ is an increasing positive function.
From (5.12) it follows that for a given T" and sufficiently small d(T") there
exists a large constant A such that

(5.13) ©(A,G1(T),Go(0), T)d(T) + 1 D(T) < A
and

(5.14) aD(T) < A.

Inequality (5.13) implies that

(5.15) v(T) < A.

Hence (5.9) holds, which ends the proof.

REMARK 5.3. Inequalities (5.12) and (5.14) imply (5.9) for T such that
1
(5.16) T< ———in,
p3(d(T))
where @3 an increasing positive function such that limg_.g p3(d) = 0.

Finally, we show the uniform continuity of the mapping @ defined by (5.3).

LEMMA 5.4. Let the assumptions of Lemma 5.2 hold. Then the mapping
@ is uniformly continuous in the product M(NT) x [0,1], where M(NT) is
defined by (5.4), (5.4').

Proof. Uniform continuity with respect to A € [0, 1] is evident. Therefore
we examine the uniform continuity with respect to elements of 9t(£27) for
any A € [0,1]. Since dependence on A is very simple we omit A in the
considerations below because it does not affect the proof.

Let Egl) e M(NT), s =1,2,i = 1,2, be two elements. We consider the
following problems:

h) = divT(AL, ¢) = —v, - VAY — 7D - Vo, + gD i 0T,

divh(Y =0 in 27,
(5.17) AV .m=0, @-DRHWY) Fo=0, a=1,2, on ST,
R =0, i=12 &Y, =0 on ST,
hM|i—o = KD (0) in £,

where s =1, 2;



278 W. M. Zajaczkowski

Xs,t + vs - va - ES),)XS + %glg)ws,xl

- Egll)wS@Q —vAyxs, = F3 in 7,
2
(5.18) Xs = sziai = Yo on Sip,
i=1
Xs =0 on ST,
Xs|t=0 = X(O) on 'Qa
where s = 1,2, a;, i = 1,2, depend on S; and are defined by (3.8)2;
Us2,27 — Usl,zo = Xs in 0/7
(519) Usl,x, + Vs2,20 = _hgé) in Ql?
vl -m' =0 on S,
where s = 1,2, 2/ nad S] are cross-sections of {2 and S; with a plane

perpendicular to the z3 axis;
h?) — divT(h?), ¢?) = ~h? - Vo, — 20D - VAD

— Vg - Vﬁg) +g¢® in 27,
divh(? =0 in 27,
(5.20)
n-h® =0, 7-DA?) To=0 a=12, on ST,
h? =0, n? =F, i=1,2, on ST
51,13
h?|,—o = h?(0) on {2,

where s =1, 2.
First we examine problem (5.18). Let us introduce a function Y as a so-
lution to the problem
Xst —VAXs =0 in 07T,

Ys = Ysx on ST,
(5.21) Xo = Xe L

Xs,z5 =0 on SQT,

Xvs‘tzo =0 in .Q,

where s = 1, 2. Introducing the new function
(522) X; = Xs — %87 s = 1727
we see that it is a solution to the problem

Xa +0s - VX = g X+ hg ey = By w0,

—vAX, = F3 — v, - Vs —l—ﬁg?%s in 27T,
(5.23) X5 =0 on ST,
X;,ws =0 on ST,

Xslt=0 = xs(0) in 0.
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Since we are looking for a solution which is a regularization of a weak
solution, we need an energy type estimate for the weak solution,

(5.24) |v]5. 00,00 + [VVl2, 00 < da(t), t<T.
Repeating the considerations leading to (4.49) we obtain
(5.25)  |lvsll2,27/16,02¢ < w1(d2, V1s(t), G1(t), Go(0)), s=1,2, t<T,
where ; is an increasing positive function and 7;5(t) is equal to 1 (t), where
R, h(? are replaced by E(gl), Eﬁf), respectively.
For solutions of problem (5.17) we have
(5:26)  [1h{V |21 50,00 +IVe) 5,500 < elllvs - VA 15,500
+ B Vosllgs.00 + 190 15,600 + 1R(0)[l245-2/6.5.2)-
Similarly, for solutions of problem (5.20) we get
(527) 0P Narps.00 + V4P [lg,5.00
< e([B? - Vo500 + 10 - VAD g5,0

+ [lvs - VED (156,00 + 19 15,600 + 1K (0)||245-2/6,5.0)-

In view of the definition of the space 91;(27) and imbedding theorems, we
obtain from (5.26) and (5.27) the inequalities

(5:28)  [1hVll21p.0.00 +IIVeD 5,500 < cllvsllzzrjie.ee B o 20
+cllgW g s.00 + 1K (0) |21 5-2/86.02),
and
(5:29)  [1hP 245,500 + 1VaP |g.5.00 < ellvslla,zr/ie,00 1P [lan, 0
+ e BV I5r, oy + cllg® lg0.00 + 1P (O) 121 5-2/86.0)-
In view of the definition of My (27) we can replace (5.25) by
(5.30) vsllz,27/16,00 < QIR 2P lomg (20))

where
1w, vlloncoey = llullomeoy + vllmor.-
From (5.28)-(5.30) we obtain

(531) A, B ooy < @(IB, AP lanor))

2
+¢Y (gD Ngs.20 + 1D O0)la15-2/5.5.0)-
=1

where s = 1,2, t < T. Hence the transformation ¢ maps bounded sets in
M (27) into bounded sets in M(NT).
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Now we shall show the uniform continuity of &. For this purpose we
introduce

HO =pD —p) v =) — v,

Then the problem for H®) takes the form

(5.32)

HY —divT(HD, QW) = —v . VY — vy - VAW
—HY . vo, —hY vV in 07,

divH®™ =0 in QT
(5.33)

H(l).ﬁ:[)’ ﬁ'D(H(l))'Fa:()a a:1a2a OHS?,

HY =0, i=1,2 H{) =0 on 53,

H(l)’t:O -0 in 2.

Next, we have the problem for H?):
HY —divT(H?,Q®) = —H® . vo, - 1Y - vV
—28W .Y —opV vHD — v . R — 0y . VA® i 0T,

divH® =0 in 27T,
(5.34)
n-H? =0, n-DHP).7,=0, a=1,2, on ST,
H? =0, H? =0, i=1,2, on S¥,
1,T3
H(2)|t:0 0 in (2.

For solutions of (5.33) we have
(5:35)  [[HW 245,500 + VQW 55,00
<V VI a0+ llea - VHD 5500

Y Vol + 11" VVilss00)-
Repeating the considerations from (4.54), (4.55), (4.60), (4.61) we obtain
(5:36)  1HV2spa0 +1VQVllsa00 < clVIznerlii”, 5" lon, )

+ or v2lz 00 [HY [l (20))
for all > 5/3, where
v, v2ll2,r0t = [[V1ll2,r 00 + [[v2]l2, 0t

For solutions of problem (5.34) we get
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(5.37)  [|H@||asps.0t + [VQP | ps.00 < c(|H? - V| ps5.00
FRY -V g a0+ HD - VED 55,00 + 11 - VHD 15,500

IV IRl 500 + e VH55.00)
Repeating the estimates from (4.54), (4.55), (4.60), (4.61) and (4.68) in
(5.37) yields
T(1) (2
(5:38)  [H 245500 + [VQP|ls 500 < eIV [lare[B5”, hE om, 20)
~ ~ T(1) (2
P om0 [0, 22+ 1H O o, ) [ B2 lom, )

for all » > 5/3.
To show the continuity of the transformation @ we should find an esti-
mate for ||V||2, ot, 7 = 27/16. For this purpose we consider the problem

Vy—divT(V,Q) = -V’ Vv, —vy - VV

— WhiY —w, H® in 27,
(5.39) divV =0 in 7,
V-n=0, 7-T(V,Q) Toa=0, a=12onST,

Vit=o =0 in £,

where V' = (V1, Vo), W = V3, vl = (vs1, Vs2), Ws = Vs3.
For solutions of (5.39) we have
(540)  [[Vllomar +|VQlror < (V' Vuilnor + [vh - VV |, o
+ |Wh§1)|r,9t + lwe HW |, g0).
We bound the first term on the r.h.s. of (5.40) by
Vs atllvillzr e = 1.
5

Since r > 5/3 we have 5 < 55> 50 by interpolation we get, for all 1 > 0,

I < er|Vllzp0r +c(1/en)o([[v1ll2,r00)V 2,00
Similarly, we estimate the second term on the r.h.s. of (5.40) by

c|VVss2,0tl|v2ll2,r0t = L.

2
I < || Vlla,r 0t + c(1/e2)@([lv2ll2,r,00) V]2, 08

By the Holder inequality the third term on the r.h.s. of (5.40) is bounded
by

For 7 > 5/3 we have 2 < 5/%1’ so by interpolation, for all g5 > 0,

C|W|o179t|hgl)|02,flt = I,

provided 5/r —5/01 < 2,5/§ —5/09 <2+, 1/01 +1/02 = 1/r, which are
satisfied for 5/0 < 34 3 and r > 5/3.
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Since 5/r —5/01 < 2, we apply the interpolation inequality to the first
factor in I3 to get, for all 3 > 0,

I < &3] Vlar +c(1/23)p (105" l2+.5.6.00 1V 2,00
Finally, by the Holder inequality, the fourth term on the r.h.s. of (5.40) is
estimated by
C‘w2’9179t ‘H(l)‘m,nt = Iy,
provided 1/901 + 1/02 = 1/r, 5/r — 5/01 = 2, that is, g2 = 5/2. Hence,
Iy < c|jvallaror [HD 5,00

Applying the above estimates in (5.40) and assuming that £1, e, £3 are suf-
ficiently small we obtain

(5.41)  |[Vl2,r0t + VQ|r 0t

< @(lor, vallz,rae, 1B o1 p.5.00) - (1V ]2t + [HD |5/2,00),
provided r > 5/3,5/6 < 3+ .

Assume that Egl), %gz), s = 1,2, belong to a bounded set in M(N2T).
Hence, there exists a constant A such that

(5.42) 11, B flanar) < A.
Making use of (5.30), (5.31) and (5.42) in (5.41) implies
(5.43) Vlle,r,00 + IV Qlr0r < 9(A)(IVI2,00 + [HM]5/2,00)-

Finally, we estimate the r.h.s. of (5.43). Multiplying (5.33); by H") and
integrating over {2 yields

d ~ -
(5:44) < [HVE o +v[HV|R o < (V- VAR5 5+ o2 VAV 5

~ qe!
FHD Vol 0+ B VVIE 5 0)-
By the Holder inequality, (5.44) implies, for A1, Ao such that 1/A;+1/X\s =1,

d

(5.45) E|H(1)’§,Q +u[HV| o
< c(IVI3,0lVEW o + [valfs /5,0l VHD 2 /5900
~ ~(1
+IHOE ol Vorl3 o+ sup (157 ol V3 ),
where, in view of (5.42), the first and last expressions are estimated by
P(A|VII o
Multiplying (5.39)1 by V and integrating over (2 shows that

d 1

(5.46) = VEo+vVIEo < cVE ol Vorlio +VEolhi" 50

+ ’w2|§,Q’H(1)’§,Q)'
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Multiplying (5.46) by a constant ¢, such that vc, — cp(A) > v and adding
to (5.45), we get

d
(547) (Vo +HDE o) +v(IVIEe + 1HV )

7 1
< c(|HVE olVuil3 o + V3ol Vorlie + [V elhi" 5 0
+ |wal3 o[ HDNS o + clvals syn .ol VEM B 5)00.0)-
Integrating (5.47) with respect to time yields

t
(5.48) V()30 + HVOBo+ v UIVEE o+ I1HV W) o) dt
0

2
< cexple(|Voilz g.00 + 1B |55 00 + 10]3.2,00)]

2 ~2(1)12 2 77 _
(2l ssyas 2,2 N VH D 65y 3g 210,020 + 1V 050,06 HO 5 g 00) =,
provided 1/A; +1/Ay =1 and 1/p3 + 1/ue = 1. By imbedding we get
J < cexple((or]3 00 + 10V 1345.5,00)]
’ <|”2|§,oo,m‘VH(1)‘§,Qt + |V”1|§,27Qt|H(l)|27oo7Qt) = J1.
By (5.30), (5.31) and (5.42) we obtain
~ ~ 2
I < p(A)(VHDE g0 + [HO], o g0).

Therefore, (5.48) takes the form
(549)  [Vlvgcon + IH e < e(A(VHV 3,00 + [HV |y o0 o0)-
Employing (5.49) in (5.43) and the result in (5.36) and (5.38) we obtain
(5.50) 12D, HO|gpor) < (A HD, H? |-
This implies the uniform continuity of @ and ends the proof.

Proof of Theorem 1. Lemmas 5.1, 5.2, 5.4 and the Leray—Schauder fixed
point theorem imply that there exists a fixed point of transformation (5.3).
Hence there exists a solution to problem (1.1) and Theorem 1 is proved.

Proof of Theorem 2. Assume that we have two solutions (v, p;), ¢ = 1,2,
of problem (1.1). Then V' = v; —v9, P = p; —py are solutions to the problem

Vi—divT(V,P) =~V Vv, —vy-VV  in 2T,
divV =0 in 27T,
V-m=0 7-DV) 7To=0 a«a=12onS7,
V=0 =0 in £2.

(5.51)
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Multiplying (5.51) by V and integrating over {2 we obtain

d
(5.52) Eﬂ/’%,() +UIIVIE o < cdVuil3 ol VI o

For v1 € Ly(0,T; W4(£2)) we obtain |V (t)|2.o = 0, and this ends the proof.
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