Semi-embeddings and weakly sequential completeness of the projective tensor product

by
Qingying Bu (University, MS)

Abstract

We show that if $\left\{P_{k}\right\}$ is a boundedly complete, unconditional Schauder decomposition of a Banach space X, then X is weakly sequentially complete whenever $P_{k} X$ is weakly sequentially complete for each $k \in \mathbb{N}$. Then through semi-embeddings, we give a new proof of Lewis's result: if one of Banach spaces X and Y has an unconditional basis, then $X \widehat{\otimes} Y$, the projective tensor product of X and Y, is weakly sequentially complete whenever both X and Y are weakly sequentially complete.

1. Introduction. The semi-embeddings in Banach spaces were introduced by Lotz, Peck, and Porta (see [10]). A Banach space X is said to semi-embed into a Banach space Y if there is a one-to-one continuous linear operator from X to Y such that the image of the closed unit ball of X is closed in Y. A Banach space property is said to be semi-embedding inherited if it is inherited from a Banach space Y to a separable Banach space X whenever X semi-embeds into Y. Delbaen (see [1]) showed that the Radon-Nikodym property is semi-embedding inherited. Moreover, the near Radon-Nikodym property (see [7]), the analytic Radon-Nikodym property and a type I Radon-Nikodym property (see [3]), a type II Radon-Nikodym property (see [11]), the (analytic) complete continuity property, and a type II complete continuity property (see $[12,13]$) are semi-embedding inherited properties.

In addition, non-containment of c_{0} is also a semi-embedding inherited property due to Dowling's result: a Banach space contains no copy of c_{0} if and only if it has some type I Radon-Nikodym property (see [4]).

However, reflexivity and non-containment of ℓ_{1} are not semi-embedding inherited. For example, $\ell_{2} \widehat{\otimes} \ell_{2}$ semi-embeds into $\ell_{2}^{\text {strong }}\left(\ell_{2}\right)$ (see [2]). It is known that $\ell_{2}^{\text {strong }}\left(\ell_{2}\right)$ is reflexive and does not contain a copy of ℓ_{1}. But $\ell_{2} \widehat{\otimes} \ell_{2}$ contains a complemented copy of ℓ_{1} (see [14, p. 23]).

Recently Bu, Diestel, Dowling, and Oja [2] showed that if U is a Banach space with a boundedly complete, 1-unconditional basis and if X is any

Banach space, then $U \widehat{\otimes} X$, the projective tensor product of U and X, semiembeds into an X-valued Banach sequence space $U(X)$. Then they used this semi-embedding to show that several types of Radon-Nikodym properties are inherited from Banach spaces (one of which has an unconditional basis) to their projective tensor product. In this paper, we will also use this same semi-embedding to show that the weakly sequential completeness is inherited from $U(X)$ to $U \widehat{\otimes} X$, and then use this inheritance to give a short proof of Lewis's result [8]: the weakly sequential completeness is inherited from Banach spaces (one of which has an unconditional basis) to their projective tensor product.

For any Banach space X, its topological dual and closed unit ball will be denoted by X^{*} and B_{X}, respectively. For two Banach spaces X and Y, let $X \widehat{\otimes} Y$ denote the completion of the tensor product $X \otimes Y$ with respect to the projective tensor norm; and let $\mathcal{L}(X, Y)$ denote the space of all continuous linear operators from X to Y.

2. Semi-embeddings

Definition 1. A continuous linear operator T from a Banach space X to a Banach space Y is called a semi-embedding if T is one-to-one and $T\left(B_{X}\right)$ is closed in Y. A Banach space X is said to semi-embed into a Banach space Y if there is a semi-embedding from X to Y.

Lemma 2. Suppose that X and Y are Banach spaces such that Y is weakly sequentially complete and there is a semi-embedding T from X to Y. If $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a weakly Cauchy sequence in X, then there exists an $x \in X$ such that $T\left(x_{n}\right)$ converges to $T(x)$ weakly in Y.

Proof. Since T is weakly-weakly continuous, $\left\{T\left(x_{n}\right)\right\}_{n=1}^{\infty}$ is a weakly Cauchy sequence in Y. Thus there exists a $y \in Y$ such that $T\left(x_{n}\right)$ converges to y weakly in Y. Let $z_{n}=x_{n} / c$, where $c=\sup _{n}\left\|x_{n}\right\|<\infty$. Then $z_{n} \in B_{X}$ and $T\left(z_{n}\right)$ converges to y / c weakly in Y. Since $T\left(B_{X}\right)$ is closed and convex in $Y, T\left(B_{X}\right)$ is also weakly closed in Y. Thus $y / c \in T\left(B_{X}\right)$. Therefore there exists a $z \in B_{X}$ such that $T(z)=y / c$. Let $x=c z$. Then $x \in X$ and $T\left(x_{n}\right)$ converges to $T(x)=y$ weakly in Y.

Let U be a Banach space with a boundedly complete, 1-unconditional basis. Let $\left\{e_{i}\right\}_{i=1}^{\infty}$ be a normalized, boundedly complete, unconditional basis of U whose unconditional basis constant is 1 , and let $\left\{e_{i}^{*}\right\}_{i=1}^{\infty}$ be the normalized biorthogonal functionals associated to the basis $\left\{e_{i}\right\}_{i=1}^{\infty}$, i.e.,

$$
e_{i}^{*}\left(e_{j}\right)= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

For a Banach space X, define

$$
U(X)=\left\{\bar{x}=\left(x_{i}\right)_{i} \in X^{\mathbb{N}}: \sum_{i}\left\|x_{i}\right\| e_{i} \text { converges in } U\right\}
$$

and define a norm on $U(X)$ to be

$$
\|\bar{x}\|_{U(X)}=\left\|\sum_{i=1}^{\infty}\right\| x_{i}\left\|e_{i}\right\|_{U}
$$

Then $U(X)$ with this norm is a Banach space (see [2]). Moreover, by $[2$, Theorem 11], $U \widehat{\otimes} X$ semi-embeds into $U(X)$ through the semi-embedding ψ defined as follows:

$$
\begin{equation*}
\psi: U \widehat{\otimes} X \rightarrow U(X), \quad z \mapsto\left(\sum_{k=1}^{\infty} e_{i}^{*}\left(u_{k}\right) x_{k}\right)_{i}, \tag{1}
\end{equation*}
$$

where $\sum_{k=1}^{\infty} u_{k} \otimes x_{k}$ is a representation of z.
Lemma 3. For each $T \in \mathcal{L}\left(U, X^{*}\right)$, define

$$
I_{T}: U \widehat{\otimes} X \rightarrow \ell_{1}, \quad z \mapsto\left(\left\langle\psi(z)_{i}, T e_{i}\right\rangle\right)_{i} .
$$

Then I_{T} is a continuous linear operator.
Proof. For each $\varepsilon>0$, any element $z \in U \widehat{\otimes} X$ admits a representation $z=\sum_{k=1}^{\infty} u_{k} \otimes x_{k}$ such that

$$
\sum_{k=1}^{\infty}\left\|u_{k}\right\| \cdot\left\|x_{k}\right\| \leq\|z\|_{U \widehat{\otimes} X}+\varepsilon .
$$

For each $\left(s_{i}\right)_{i} \in \ell_{\infty}$, define

$$
v_{k}=\sum_{i=1}^{\infty} s_{i} e_{i}^{*}\left(u_{k}\right) e_{i}, \quad k=1,2, \ldots
$$

Since $\left\{e_{i}\right\}$ is a 1 -unconditional basis of U, it follows that $v_{k} \in U$ and

$$
\left\|v_{k}\right\| \leq\left\|\left(s_{i}\right)_{i}\right\|_{\ell_{\infty}} \cdot\left\|u_{k}\right\|, \quad k=1,2, \ldots
$$

Thus

$$
\begin{aligned}
\left|\sum_{i=1}^{\infty} s_{i}\left\langle\psi(z)_{i}, T e_{i}\right\rangle\right| & =\left|\sum_{i=1}^{\infty} s_{i}\left\langle\sum_{k=1}^{\infty} e_{i}^{*}\left(u_{k}\right) x_{k}, T e_{i}\right\rangle\right| \\
& =\left|\sum_{k=1}^{\infty}\left\langle x_{k}, \sum_{i=1}^{\infty} s_{i} e_{i}^{*}\left(u_{k}\right) T e_{i}\right\rangle\right|=\left|\sum_{k=1}^{\infty}\left\langle x_{k}, T v_{k}\right\rangle\right| \\
& =\left|\left\langle\sum_{k=1}^{\infty} v_{k} \otimes x_{k}, T\right\rangle\right| \leq\|T\| \cdot\left\|\sum_{k=1}^{\infty} v_{k} \otimes x_{k}\right\|_{U \widehat{\otimes} X}
\end{aligned}
$$

$$
\begin{aligned}
& \leq\|T\| \cdot \sum_{k=1}^{\infty}\left\|v_{k}\right\| \cdot\left\|x_{k}\right\| \leq\|T\| \cdot \sum_{k=1}^{\infty}\left\|\left(s_{i}\right)_{i}\right\|_{\ell_{\infty}} \cdot\left\|u_{k}\right\| \cdot\left\|x_{k}\right\| \\
& \leq\|T\| \cdot\left\|\left(s_{i}\right)_{i}\right\|_{\ell_{\infty}} \cdot\left(\|z\|_{U \widehat{\otimes} X}+\varepsilon\right) .
\end{aligned}
$$

It follows that

$$
\left\|\left(\left\langle\psi(z)_{i}, T e_{i}\right\rangle\right)_{i}\right\|_{\ell_{1}} \leq\|T\| \cdot\left(\|z\|_{U \widehat{\otimes} X}+\varepsilon\right) .
$$

Letting $\varepsilon \rightarrow 0$ gives

$$
\left\|\left(\left\langle\psi(z)_{i}, T e_{i}\right\rangle\right)_{i}\right\|_{\ell_{1}} \leq\|T\| \cdot\|z\|_{U \widehat{\otimes} X} .
$$

Therefore I_{T} is well defined and continuous.
Theorem 4. The weak sequential completeness is inherited from $U(X)$ to $U \widehat{\otimes} X$.

Proof. Suppose $U(X)$ is weakly sequentially complete. Let $\left\{z_{n}\right\}_{n=1}^{\infty}$ be a weakly Cauchy sequence in $U \widehat{\otimes} X$. Since ψ defined in (1) is a semi-embedding from $U \widehat{\otimes} X$ to $U(X)$, by Lemma 2, there exists a $z \in U \widehat{\otimes} X$ such that $\psi\left(z_{n}\right)$ converges to $\psi(z)$ weakly in $U(X)$. Next we will show that z_{n} converges to z weakly in $U \widehat{\otimes} X$.

Fix $T \in \mathcal{L}\left(U, X^{*}\right)=(U \widehat{\otimes} X)^{*}$. By Lemma 3, $I_{T}: U \widehat{\otimes} X \rightarrow \ell_{1}$ is continuous, and hence weakly-weakly continuous. Thus $\left\{I_{T}\left(z_{n}\right)\right\}_{n=1}^{\infty}$ is a weakly Cauchy sequence in ℓ_{1}, and hence a relatively weakly sequentially compact subset of ℓ_{1}. By the Schur property, $\left\{I_{T}\left(z_{n}\right)\right\}_{n=1}^{\infty}$ is a relatively sequentially compact subset of ℓ_{1}. Therefore there exists, for each $\varepsilon>0$, an $m_{1} \in \mathbb{N}$ such that

$$
\begin{equation*}
\sum_{i=m_{1}+1}^{\infty}\left|\left\langle\psi\left(z_{n}\right)_{i}, T e_{i}\right\rangle\right| \leq \varepsilon / 3, \quad n=1,2, \ldots . \tag{2}
\end{equation*}
$$

Since $\left(\left\langle\psi(z)_{i}, T e_{i}\right\rangle\right)_{i} \in \ell_{1}$, there exists an $m_{2}>m_{1}$ such that

$$
\begin{equation*}
\sum_{i=m_{2}+1}^{\infty}\left|\left\langle\psi(z)_{i}, T e_{i}\right\rangle\right| \leq \varepsilon / 3 \tag{3}
\end{equation*}
$$

Note that $\psi\left(z_{n}\right)$ converges to $\psi(z)$ weakly in $U(X)$. It follows that $\psi\left(z_{n}\right)_{i}$ converges to $\psi(z)_{i}$ weakly in X for each $i \in \mathbb{N}$. Thus there exists an $n_{0} \in \mathbb{N}$ such that for each $n>n_{0}$,

$$
\begin{equation*}
\left|\left\langle\psi\left(z_{n}\right)_{i}-\psi(z)_{i}, T e_{i}\right\rangle\right|<\varepsilon / 3 m_{2}, \quad i=1, \ldots, m_{2} \tag{4}
\end{equation*}
$$

Now let $z_{n}, z \in U \widehat{\otimes} X$ have representations

$$
z_{n}=\sum_{k=1}^{\infty} u_{k, n} \otimes x_{k, n}, \quad z=\sum_{k=1}^{\infty} u_{k} \otimes x_{k}
$$

By (2)-(4), for each $n>n_{0}$,

$$
\begin{aligned}
\left|\left\langle z_{n}-z, T\right\rangle\right|= & \left|\sum_{k=1}^{\infty}\left\langle T u_{k, n}, x_{k, n}\right\rangle-\sum_{k=1}^{\infty}\left\langle T u_{k}, x_{k}\right\rangle\right| \\
= & \left|\sum_{k=1}^{\infty}\left\langle\sum_{i=1}^{\infty} e_{i}^{*}\left(u_{k, n}\right) T e_{i}, x_{k, n}\right\rangle-\sum_{k=1}^{\infty}\left\langle\sum_{i=1}^{\infty} e_{i}^{*}\left(u_{k}\right) T e_{i}, x_{k}\right\rangle\right| \\
= & \left|\sum_{i=1}^{\infty}\left\langle\sum_{k=1}^{\infty} e_{i}^{*}\left(u_{k, n}\right) x_{k, n}, T e_{i}\right\rangle-\sum_{i=1}^{\infty}\left\langle\sum_{k=1}^{\infty} e_{i}^{*}\left(u_{k}\right) x_{k}, T e_{i}\right\rangle\right| \\
= & \left|\sum_{i=1}^{\infty}\left\langle\psi\left(z_{n}\right)_{i}-\psi(z)_{i}, T e_{i}\right\rangle\right| \\
\leq & \sum_{i=1}^{m_{2}}\left|\left\langle\psi\left(z_{n}\right)_{i}-\psi(z)_{i}, T e_{i}\right\rangle\right| \\
& +\sum_{i=m_{2}+1}^{\infty}\left|\left\langle\psi\left(z_{n}\right)_{i}, T e_{i}\right\rangle\right|+\sum_{i=m_{2}+1}^{\infty}\left|\left\langle\psi(z)_{i}, T e_{i}\right\rangle\right| \\
\leq & \varepsilon .
\end{aligned}
$$

Therefore z_{n} converges to z weakly in $U \widehat{\otimes} X$, and hence $U \widehat{\otimes} X$ is weakly sequentially complete.

3. Weak sequential completeness and Schauder decompositions.

 Let X be a Banach space. A Schauder decomposition of X is a sequence $\left\{P_{k}\right\}$ of continuous projections on X such that $P_{i} \circ P_{j}=0$ whenever $i \neq j$, and $x=$ $\sum_{k=1}^{\infty} P_{k} x$ for each x in X (see [6] or [9, §1.g]). A Schauder decomposition $\left\{P_{k}\right\}$ of X is called boundedly complete if, whenever $\left\{\sum_{k=1}^{n} x_{k}\right\}_{n=1}^{\infty}$ is a bounded sequence with $x_{k} \in P_{k} X$ for each $k \in \mathbb{N}$, then $\sum_{k} x_{k}$ converges in X. A Schauder decomposition $\left\{P_{k}\right\}$ of X is called unconditional if for each $x \in X$, the series $\sum_{k} P_{k} x$ converges to x unconditionally. Let K denote the unconditional constant of the unconditional Schauder decomposition $\left\{P_{k}\right\}$ of X. Then for each $x \in X$ and each sequence $\left\{\theta_{k}\right\}_{k=1}^{\infty}$ of signs,$$
\begin{equation*}
\left\|\sum_{k=1}^{\infty} \theta_{k} P_{k} x\right\| \leq K \cdot\left\|\sum_{k=1}^{\infty} P_{k} x\right\|=K \cdot\|x\| \tag{5}
\end{equation*}
$$

Now for each $x^{*} \in X^{*}$, define

$$
\begin{equation*}
I_{x^{*}}: X \rightarrow \ell_{1}, \quad x \mapsto\left(x^{*}\left(P_{k} x\right)\right)_{k} \tag{6}
\end{equation*}
$$

Since $\sum_{k} P_{k} x$ converges unconditionally, $\sum_{k} x^{*}\left(P_{k} x\right)$ converges unconditionally, and hence $\sum_{k=1}^{\infty}\left|x^{*}\left(P_{k} x\right)\right|<\infty$. Thus $I_{x^{*}}$ is well defined. Moreover, it follows from (5) that $\left\|I_{x^{*}}(x)\right\| \leq K \cdot\|x\| \cdot\left\|x^{*}\right\|$ for each $x \in X$. Therefore $I_{x^{*}}$ is continuous.

Theorem 5. Let $\left\{P_{k}\right\}$ be a boundedly complete, unconditional Schauder decomposition of a Banach space X. Then X is weakly sequentially complete whenever $P_{k} X$ is weakly sequentially complete for each $k \in \mathbb{N}$.

Proof. Let $\left\{x^{(n)}\right\}_{n=1}^{\infty}$ be a weakly Cauchy sequence in X and let $M=$ $\sup _{n}\left\|x^{(n)}\right\|$. Then $\left\{P_{k} x^{(n)}\right\}_{n=1}^{\infty}$ is a weakly Cauchy sequence in $P_{k} X$ for each $k \in \mathbb{N}$. Thus there exists, for each $k \in \mathbb{N}$, an $x_{k} \in P_{k} X$ such that

$$
\begin{equation*}
\text { weak- } \lim _{n} P_{k} x^{(n)}=x_{k} \quad \text { in } P_{k} X, k=1,2, \ldots \tag{7}
\end{equation*}
$$

Each $x^{*} \in X^{*}$ can be considered as a member of $\left(P_{k} X\right)^{*}$ for each $k \in \mathbb{N}$ if it is restricted to $P_{k} X$. Now for each fixed $m \in \mathbb{N}$, there exists, from (7), an $n_{0} \in \mathbb{N}$ such that

$$
\left|x^{*}\left(P_{k} x^{\left(n_{0}\right)}-x_{k}\right)\right|<1 / m, \quad k=1, \ldots, m
$$

It follows from (5) that

$$
\begin{aligned}
\left|x^{*}\left(\sum_{k=1}^{m} x_{k}\right)\right| & \leq\left|\sum_{k=1}^{m} x^{*}\left(P_{k} x^{\left(n_{0}\right)}-x_{k}\right)\right|+\left|\sum_{k=1}^{m} x^{*}\left(P_{k} x^{\left(n_{0}\right)}\right)\right| \\
& \leq 1+\left\|x^{*}\right\| \cdot\left\|\sum_{k=1}^{m} P_{k} x^{\left(n_{0}\right)}\right\| \\
& \leq 1+K\left\|x^{*}\right\| \cdot\left\|x^{\left(n_{0}\right)}\right\| \leq 1+K M\left\|x^{*}\right\|
\end{aligned}
$$

Thus $\left\{\sum_{k=1}^{m} x_{k}\right\}_{m=1}^{\infty}$ is bounded. Therefore there exists an $x \in X$ such that $x=\sum_{k=1}^{\infty} x_{k}$. Next we want to show that $x^{(n)}$ converges to x weakly in X.

For each fixed $x^{*} \in X^{*}, I_{x^{*}}$ defined in (6) is continuous, and hence weakly-weakly continuous. Since $\left\{x^{(n)}\right\}_{n=1}^{\infty}$ is a weakly Cauchy sequence in $X,\left\{I_{x^{*}}\left(x^{(n)}\right)\right\}_{n=1}^{\infty}$ is a weakly Cauchy sequence in ℓ_{1}, and hence relatively weakly sequentially compact. By the Schur property, $\left\{I_{x^{*}}\left(x^{(n)}\right)\right\}_{n=1}^{\infty}$ is a relatively sequentially compact subset of ℓ_{1}. Thus for each $\varepsilon>0$, there exists an $m_{1} \in \mathbb{N}$ such that

$$
\begin{equation*}
\sum_{k=m_{1}+1}^{\infty}\left|x^{*}\left(P_{k} x^{(n)}\right)\right| \leq \varepsilon / 3, \quad n=1,2, \ldots \tag{8}
\end{equation*}
$$

Since $x=\sum_{k=1}^{\infty} x_{k}$, there exists an $m_{2}>m_{1}$ such that

$$
\begin{equation*}
\left|\sum_{k=m_{2}+1}^{\infty} x^{*}\left(x_{k}\right)\right| \leq \varepsilon / 3 \tag{9}
\end{equation*}
$$

By (7) there exists an $n_{0} \in \mathbb{N}$ such that for each $n>n_{0}$,

$$
\begin{equation*}
\left|x^{*}\left(P_{k} x^{(n)}-x_{k}\right)\right|<\varepsilon / 3, \quad k=1, \ldots, m_{2} \tag{10}
\end{equation*}
$$

It follows from (8)-(10) that for each $n>n_{0}$,

$$
\begin{aligned}
\left|x^{*}\left(x^{(n)}-x\right)\right|= & \left|\sum_{k=1}^{\infty} x^{*}\left(P_{k} x^{(n)}-x_{k}\right)\right| \\
\leq & \sum_{k=1}^{m_{2}}\left|x^{*}\left(P_{k} x^{(n)}-x_{k}\right)\right| \\
& +\sum_{k=m_{2}+1}^{\infty}\left|x^{*}\left(P_{k} x^{(n)}\right)\right|+\left|\sum_{k=m_{2}+1}^{\infty} x^{*}\left(x_{k}\right)\right| \\
\leq & \varepsilon .
\end{aligned}
$$

Therefore $x^{(n)}$ converges to x weakly in X, and hence X is weakly sequentially complete.
4. Short proof of Lewis's result. For each $k \in \mathbb{N}$, define

$$
\begin{equation*}
P_{k}: U(X) \rightarrow U(X), \quad \bar{x} \mapsto\left(0, \ldots, 0, \stackrel{(k)}{x_{k}}, 0,0, \ldots\right) \tag{11}
\end{equation*}
$$

Then by [2, Proposition 5], $\left\{P_{k}\right\}$ is a boundedly complete, unconditional Schauder decomposition of $U(X)$. Hence Theorem 5 yields the following.

Corollary 6. $U(X)$ is weakly sequentially complete if X is weakly sequentially complete.

Finally, by using the results obtained above, we will give a short proof of the following result of Lewis [8].

Theorem 7. Let X and Y be Banach spaces such that one of them has an unconditional basis. Then $X \widehat{\otimes} Y$, the projective tensor product of X and Y, is weakly sequentially complete whenever X and Y are weakly sequentially complete.

Proof. Suppose that X has an unconditional basis. Since X is weakly sequentially complete, X does not contain a copy of c_{0}. By James's result [5] (or see [9, Theorem 1.c.10]), X has a boundedly complete unconditional basis. Without loss of generality, we can assume that X has a boundedly complete, 1-unconditional basis. It follows immediately from Theorem 4 and Corollary 6 that $X \widehat{\otimes} Y$ is weakly sequentially complete.

References

[1] J. Bourgain and H. P. Rosenthal, Applications of the theory of semi-embeddings to Banach space theory, J. Funct. Anal. 52 (1983), 149-188.
[2] Q. Bu, J. Diestel, P. N. Dowling, and E. Oja, Types of Radon-Nikodym properties for the projective tensor product of Banach spaces, Illinois J. Math. 47 (2003), 13031326.
[3] P. N. Dowling, Radon-Nikodým properties associated with subsets of countable discrete abelian groups, Trans. Amer. Math. Soc. 327 (1991), 879-890.
[4] -, Duality in some vector-valued function spaces, Rocky Mountain J. Math. 22 (1992), 511-518.
[5] R. C. James, Bases and reflexivity of Banach spaces, Ann. of Math. 52 (1950), 518-527.
[6] N. Kalton, Schauder decompositions and completeness, Bull. London Math. Soc. 2 (1970), 34-36.
[7] R. Kaufman, M. Petrakis, L. Riddle, and J. J. Uhl, Nearly representable operators, Trans. Amer. Math. Soc. 312 (1989), 315-333.
[8] D. R. Lewis, Duals of tensor products, in: Lecture Notes in Math. 604, Springer, 1977, 57-66.
[9] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, 1977.
[10] H. P. Lotz, N. T. Peck, and H. Porta, Semi-embeddings of Banach spaces, Proc. Edinburgh Math. Soc. 22 (1979), 233-240.
[11] N. Randrianantoanina and E. Saab, Stability of some types of Radon-Nikodým properties, Illinois J. Math. 39 (1995), 416-430.
[12] M. Robdera and P. Saab, The analytic complete continuity property, J. Math. Anal. Appl. 252 (2000), 967-979.
[13] —, 一, Complete continuity properties of Banach spaces associated with subsets of a discrete abelian group, Glasgow Math. J. 43 (2001), 185-198.
[14] R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer, 2002.
Department of Mathematics
University of Mississippi
University, MS 38677, U.S.A.
E-mail: qbu@olemiss.edu

