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Semi-embeddings and weakly sequential
completeness of the projective tensor product

by

Qingying Bu (University, MS)

Abstract. We show that if {Pk} is a boundedly complete, unconditional Schauder
decomposition of a Banach space X, then X is weakly sequentially complete whenever
PkX is weakly sequentially complete for each k ∈ N. Then through semi-embeddings, we
give a new proof of Lewis’s result: if one of Banach spaces X and Y has an unconditional
basis, then X ⊗̂ Y , the projective tensor product of X and Y , is weakly sequentially
complete whenever both X and Y are weakly sequentially complete.

1. Introduction. The semi-embeddings in Banach spaces were intro-
duced by Lotz, Peck, and Porta (see [10]). A Banach space X is said to
semi-embed into a Banach space Y if there is a one-to-one continuous lin-
ear operator from X to Y such that the image of the closed unit ball of
X is closed in Y . A Banach space property is said to be semi-embedding
inherited if it is inherited from a Banach space Y to a separable Banach
space X whenever X semi-embeds into Y . Delbaen (see [1]) showed that the
Radon–Nikodym property is semi-embedding inherited. Moreover, the near
Radon–Nikodym property (see [7]), the analytic Radon–Nikodym property
and a type I Radon–Nikodym property (see [3]), a type II Radon–Nikodym
property (see [11]), the (analytic) complete continuity property, and a type
II complete continuity property (see [12, 13]) are semi-embedding inherited
properties.

In addition, non-containment of c0 is also a semi-embedding inherited
property due to Dowling’s result: a Banach space contains no copy of c0 if
and only if it has some type I Radon–Nikodym property (see [4]).

However, reflexivity and non-containment of `1 are not semi-embedding
inherited. For example, `2 ⊗̂ `2 semi-embeds into `strong

2 (`2) (see [2]). It is
known that `strong

2 (`2) is reflexive and does not contain a copy of `1. But
`2 ⊗̂ `2 contains a complemented copy of `1 (see [14, p. 23]).

Recently Bu, Diestel, Dowling, and Oja [2] showed that if U is a Banach
space with a boundedly complete, 1-unconditional basis and if X is any
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Banach space, then U ⊗̂X, the projective tensor product of U and X, semi-
embeds into an X-valued Banach sequence space U(X). Then they used this
semi-embedding to show that several types of Radon–Nikodym properties
are inherited from Banach spaces (one of which has an unconditional basis)
to their projective tensor product. In this paper, we will also use this same
semi-embedding to show that the weakly sequential completeness is inherited
from U(X) to U ⊗̂ X, and then use this inheritance to give a short proof
of Lewis’s result [8]: the weakly sequential completeness is inherited from
Banach spaces (one of which has an unconditional basis) to their projective
tensor product.

For any Banach space X, its topological dual and closed unit ball will be
denoted by X∗ and BX , respectively. For two Banach spaces X and Y , let
X ⊗̂Y denote the completion of the tensor product X⊗Y with respect to the
projective tensor norm; and let L(X,Y ) denote the space of all continuous
linear operators from X to Y .

2. Semi-embeddings

Definition 1. A continuous linear operator T from a Banach space X
to a Banach space Y is called a semi-embedding if T is one-to-one and T (BX)
is closed in Y . A Banach space X is said to semi-embed into a Banach space
Y if there is a semi-embedding from X to Y .

Lemma 2. Suppose that X and Y are Banach spaces such that Y is
weakly sequentially complete and there is a semi-embedding T from X to Y .
If {xn}∞n=1 is a weakly Cauchy sequence in X, then there exists an x ∈ X
such that T (xn) converges to T (x) weakly in Y .

Proof. Since T is weakly-weakly continuous, {T (xn)}∞n=1 is a weakly
Cauchy sequence in Y . Thus there exists a y ∈ Y such that T (xn) converges
to y weakly in Y . Let zn = xn/c, where c = supn ‖xn‖ <∞. Then zn ∈ BX
and T (zn) converges to y/c weakly in Y . Since T (BX) is closed and convex
in Y , T (BX) is also weakly closed in Y . Thus y/c ∈ T (BX). Therefore there
exists a z ∈ BX such that T (z) = y/c. Let x = cz. Then x ∈ X and T (xn)
converges to T (x) = y weakly in Y .

Let U be a Banach space with a boundedly complete, 1-unconditional
basis. Let {ei}∞i=1 be a normalized, boundedly complete, unconditional ba-
sis of U whose unconditional basis constant is 1, and let {e∗i }∞i=1 be the
normalized biorthogonal functionals associated to the basis {ei}∞i=1, i.e.,

e∗i (ej) =
{

1 if i = j,

0 if i 6= j.
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For a Banach space X, define

U(X) =
{
x = (xi)i ∈ XN :

∑

i

‖xi‖ei converges in U
}
,

and define a norm on U(X) to be

‖x‖U(X) =
∥∥∥
∞∑

i=1

‖xi‖ei
∥∥∥
U
.

Then U(X) with this norm is a Banach space (see [2]). Moreover, by [2,
Theorem 11], U ⊗̂X semi-embeds into U(X) through the semi-embedding
ψ defined as follows:

(1) ψ : U ⊗̂X → U(X), z 7→
( ∞∑

k=1

e∗i (uk)xk
)
i
,

where
∑∞

k=1 uk ⊗ xk is a representation of z.

Lemma 3. For each T ∈ L(U,X∗), define

IT : U ⊗̂X → `1, z 7→ (〈ψ(z)i, T ei〉)i.
Then IT is a continuous linear operator.

Proof. For each ε > 0, any element z ∈ U ⊗̂X admits a representation
z =

∑∞
k=1 uk ⊗ xk such that

∞∑

k=1

‖uk‖ · ‖xk‖ ≤ ‖z‖U⊗̂X + ε.

For each (si)i ∈ `∞, define

vk =
∞∑

i=1

sie
∗
i (uk)ei, k = 1, 2, . . . .

Since {ei} is a 1-unconditional basis of U , it follows that vk ∈ U and

‖vk‖ ≤ ‖(si)i‖`∞ · ‖uk‖, k = 1, 2, . . . .

Thus
∣∣∣
∞∑

i=1

si〈ψ(z)i, T ei〉
∣∣∣ =

∣∣∣
∞∑

i=1

si

〈 ∞∑

k=1

e∗i (uk)xk, T ei
〉∣∣∣

=
∣∣∣
∞∑

k=1

〈
xk,

∞∑

i=1

sie
∗
i (uk)Tei

〉∣∣∣ =
∣∣∣
∞∑

k=1

〈xk, T vk〉
∣∣∣

=
∣∣∣
〈 ∞∑

k=1

vk ⊗ xk, T
〉∣∣∣ ≤ ‖T‖ ·

∥∥∥
∞∑

k=1

vk ⊗ xk
∥∥∥
U⊗̂X
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≤ ‖T‖ ·
∞∑

k=1

‖vk‖ · ‖xk‖ ≤ ‖T‖ ·
∞∑

k=1

‖(si)i‖`∞ · ‖uk‖ · ‖xk‖

≤ ‖T‖ · ‖(si)i‖`∞ · (‖z‖U⊗̂X + ε).

It follows that

‖(〈ψ(z)i, T ei〉)i‖`1 ≤ ‖T‖ · (‖z‖U⊗̂X + ε).

Letting ε→ 0 gives

‖(〈ψ(z)i, T ei〉)i‖`1 ≤ ‖T‖ · ‖z‖U⊗̂X .
Therefore IT is well defined and continuous.

Theorem 4. The weak sequential completeness is inherited from U(X)
to U ⊗̂X.

Proof. Suppose U(X) is weakly sequentially complete. Let {zn}∞n=1 be a
weakly Cauchy sequence in U ⊗̂X. Since ψ defined in (1) is a semi-embedding
from U ⊗̂X to U(X), by Lemma 2, there exists a z ∈ U ⊗̂X such that ψ(zn)
converges to ψ(z) weakly in U(X). Next we will show that zn converges to
z weakly in U ⊗̂X.

Fix T ∈ L(U,X∗) = (U ⊗̂ X)∗. By Lemma 3, IT : U ⊗̂ X → `1 is
continuous, and hence weakly-weakly continuous. Thus {IT (zn)}∞n=1 is a
weakly Cauchy sequence in `1, and hence a relatively weakly sequentially
compact subset of `1. By the Schur property, {IT (zn)}∞n=1 is a relatively
sequentially compact subset of `1. Therefore there exists, for each ε > 0, an
m1 ∈ N such that

(2)
∞∑

i=m1+1

|〈ψ(zn)i, T ei〉| ≤ ε/3, n = 1, 2, . . . .

Since (〈ψ(z)i, T ei〉)i ∈ `1, there exists an m2 > m1 such that

(3)
∞∑

i=m2+1

|〈ψ(z)i, T ei〉| ≤ ε/3.

Note that ψ(zn) converges to ψ(z) weakly in U(X). It follows that ψ(zn)i
converges to ψ(z)i weakly in X for each i ∈ N. Thus there exists an n0 ∈ N
such that for each n > n0,

(4) |〈ψ(zn)i − ψ(z)i, T ei〉| < ε/3m2, i = 1, . . . ,m2.

Now let zn, z ∈ U ⊗̂X have representations

zn =
∞∑

k=1

uk,n ⊗ xk,n, z =
∞∑

k=1

uk ⊗ xk.
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By (2)–(4), for each n > n0,

|〈zn − z, T 〉| =
∣∣∣
∞∑

k=1

〈Tuk,n, xk,n〉 −
∞∑

k=1

〈Tuk, xk〉
∣∣∣

=
∣∣∣
∞∑

k=1

〈 ∞∑

i=1

e∗i (uk,n)Tei, xk,n
〉
−
∞∑

k=1

〈 ∞∑

i=1

e∗i (uk)Tei, xk
〉∣∣∣

=
∣∣∣
∞∑

i=1

〈 ∞∑

k=1

e∗i (uk,n)xk,n, T ei
〉
−
∞∑

i=1

〈 ∞∑

k=1

e∗i (uk)xk, T ei
〉∣∣∣

=
∣∣∣
∞∑

i=1

〈ψ(zn)i − ψ(z)i, T ei〉
∣∣∣

≤
m2∑

i=1

|〈ψ(zn)i − ψ(z)i, T ei〉|

+
∞∑

i=m2+1

|〈ψ(zn)i, T ei〉|+
∞∑

i=m2+1

|〈ψ(z)i, T ei〉|

≤ ε.
Therefore zn converges to z weakly in U ⊗̂X, and hence U ⊗̂X is weakly
sequentially complete.

3. Weak sequential completeness and Schauder decompositions.
Let X be a Banach space. A Schauder decomposition of X is a sequence {Pk}
of continuous projections on X such that Pi◦Pj = 0 whenever i 6= j, and x =∑∞

k=1 Pkx for each x in X (see [6] or [9, §1.g]). A Schauder decomposition
{Pk} of X is called boundedly complete if, whenever {∑n

k=1 xk}∞n=1 is a
bounded sequence with xk ∈ PkX for each k ∈ N, then

∑
k xk converges

in X. A Schauder decomposition {Pk} of X is called unconditional if for each
x ∈ X, the series

∑
k Pkx converges to x unconditionally. Let K denote the

unconditional constant of the unconditional Schauder decomposition {Pk}
of X. Then for each x ∈ X and each sequence {θk}∞k=1 of signs,

(5)
∥∥∥
∞∑

k=1

θkPkx
∥∥∥ ≤ K ·

∥∥∥
∞∑

k=1

Pkx
∥∥∥ = K · ‖x‖.

Now for each x∗ ∈ X∗, define

(6) Ix∗ : X → `1, x 7→ (x∗(Pkx))k.

Since
∑

k Pkx converges unconditionally,
∑

k x
∗(Pkx) converges uncondi-

tionally, and hence
∑∞

k=1 |x∗(Pkx)| <∞. Thus Ix∗ is well defined. Moreover,
it follows from (5) that ‖Ix∗(x)‖ ≤ K · ‖x‖ · ‖x∗‖ for each x ∈ X. Therefore
Ix∗ is continuous.
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Theorem 5. Let {Pk} be a boundedly complete, unconditional Schauder
decomposition of a Banach space X. Then X is weakly sequentially complete
whenever PkX is weakly sequentially complete for each k ∈ N.

Proof. Let {x(n)}∞n=1 be a weakly Cauchy sequence in X and let M =
supn ‖x(n)‖. Then {Pkx(n)}∞n=1 is a weakly Cauchy sequence in PkX for each
k ∈ N. Thus there exists, for each k ∈ N, an xk ∈ PkX such that

(7) weak- lim
n
Pkx

(n) = xk in PkX, k = 1, 2, . . . .

Each x∗ ∈ X∗ can be considered as a member of (PkX)∗ for each k ∈ N if
it is restricted to PkX. Now for each fixed m ∈ N, there exists, from (7), an
n0 ∈ N such that

|x∗(Pkx(n0) − xk)| < 1/m, k = 1, . . . ,m.

It follows from (5) that

∣∣∣x∗
( m∑

k=1

xk

)∣∣∣ ≤
∣∣∣
m∑

k=1

x∗(Pkx(n0) − xk)
∣∣∣+
∣∣∣
m∑

k=1

x∗(Pkx(n0))
∣∣∣

≤ 1 + ‖x∗‖ ·
∥∥∥

m∑

k=1

Pkx
(n0)
∥∥∥

≤ 1 +K‖x∗‖ · ‖x(n0)‖ ≤ 1 +KM‖x∗‖.
Thus {∑m

k=1 xk}∞m=1 is bounded. Therefore there exists an x ∈ X such that
x =

∑∞
k=1 xk. Next we want to show that x(n) converges to x weakly in X.

For each fixed x∗ ∈ X∗, Ix∗ defined in (6) is continuous, and hence
weakly-weakly continuous. Since {x(n)}∞n=1 is a weakly Cauchy sequence
in X, {Ix∗(x(n))}∞n=1 is a weakly Cauchy sequence in `1, and hence relatively
weakly sequentially compact. By the Schur property, {Ix∗(x(n))}∞n=1 is a
relatively sequentially compact subset of `1. Thus for each ε > 0, there
exists an m1 ∈ N such that

(8)
∞∑

k=m1+1

|x∗(Pkx(n))| ≤ ε/3, n = 1, 2, . . . .

Since x =
∑∞

k=1 xk, there exists an m2 > m1 such that

(9)
∣∣∣

∞∑

k=m2+1

x∗(xk)
∣∣∣ ≤ ε/3.

By (7) there exists an n0 ∈ N such that for each n > n0,

(10) |x∗(Pkx(n) − xk)| < ε/3, k = 1, . . . ,m2.
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It follows from (8)–(10) that for each n > n0,

|x∗(x(n) − x)| =
∣∣∣
∞∑

k=1

x∗(Pkx(n) − xk)
∣∣∣

≤
m2∑

k=1

|x∗(Pkx(n) − xk)|

+
∞∑

k=m2+1

|x∗(Pkx(n))|+
∣∣∣

∞∑

k=m2+1

x∗(xk)
∣∣∣

≤ ε.
Therefore x(n) converges to x weakly in X, and hence X is weakly sequen-
tially complete.

4. Short proof of Lewis’s result. For each k ∈ N, define

(11) Pk : U(X)→ U(X), x 7→ (0, . . . , 0,
(k)
xk, 0, 0, . . .).

Then by [2, Proposition 5], {Pk} is a boundedly complete, unconditional
Schauder decomposition of U(X). Hence Theorem 5 yields the following.

Corollary 6. U(X) is weakly sequentially complete if X is weakly se-
quentially complete.

Finally, by using the results obtained above, we will give a short proof
of the following result of Lewis [8].

Theorem 7. Let X and Y be Banach spaces such that one of them
has an unconditional basis. Then X ⊗̂ Y , the projective tensor product of
X and Y , is weakly sequentially complete whenever X and Y are weakly
sequentially complete.

Proof. Suppose that X has an unconditional basis. Since X is weakly
sequentially complete, X does not contain a copy of c0. By James’s result
[5] (or see [9, Theorem 1.c.10]), X has a boundedly complete unconditional
basis. Without loss of generality, we can assume that X has a boundedly
complete, 1-unconditional basis. It follows immediately from Theorem 4 and
Corollary 6 that X ⊗̂ Y is weakly sequentially complete.

References

[1] J. Bourgain and H. P. Rosenthal, Applications of the theory of semi-embeddings to
Banach space theory , J. Funct. Anal. 52 (1983), 149–188.

[2] Q. Bu, J. Diestel, P. N. Dowling, and E. Oja, Types of Radon–Nikodym properties
for the projective tensor product of Banach spaces, Illinois J. Math. 47 (2003), 1303–
1326.



294 Q. Bu

[3] P. N. Dowling, Radon–Nikodým properties associated with subsets of countable dis-
crete abelian groups, Trans. Amer. Math. Soc. 327 (1991), 879–890.

[4] —, Duality in some vector-valued function spaces, Rocky Mountain J. Math. 22
(1992), 511–518.

[5] R. C. James, Bases and reflexivity of Banach spaces, Ann. of Math. 52 (1950),
518–527.

[6] N. Kalton, Schauder decompositions and completeness, Bull. London Math. Soc. 2
(1970), 34–36.

[7] R. Kaufman, M. Petrakis, L. Riddle, and J. J. Uhl, Nearly representable operators,
Trans. Amer. Math. Soc. 312 (1989), 315–333.

[8] D. R. Lewis, Duals of tensor products, in: Lecture Notes in Math. 604, Springer,
1977, 57–66.

[9] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Sprin-
ger, 1977.

[10] H. P. Lotz, N. T. Peck, and H. Porta, Semi-embeddings of Banach spaces, Proc.
Edinburgh Math. Soc. 22 (1979), 233–240.

[11] N. Randrianantoanina and E. Saab, Stability of some types of Radon–Nikodým prop-
erties, Illinois J. Math. 39 (1995), 416–430.

[12] M. Robdera and P. Saab, The analytic complete continuity property , J. Math. Anal.
Appl. 252 (2000), 967–979.

[13] —, —, Complete continuity properties of Banach spaces associated with subsets of
a discrete abelian group, Glasgow Math. J. 43 (2001), 185–198.

[14] R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer, 2002.

Department of Mathematics
University of Mississippi
University, MS 38677, U.S.A.
E-mail: qbu@olemiss.edu

Received July 23, 2004
Revised version February 11, 2005 (5461)


