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Small ball probability estimates in terms of width
by

RAFAL LATALA and KRZYSZTOF OLESZKIEWICZ (Warszawa)

Abstract. A certain inequality conjectured by Vershynin is studied. It is proved
that for any symmetric convex body K C R" with inradius w and ~,(K) < 1/2 we have
Yn(sK) < (25)w2/4'yn(K) for any s € [0, 1], where v, is the standard Gaussian probability
measure. Some natural corollaries are deduced. Another conjecture of Vershynin is proved
to be false.

1. Introduction. In his lecture at Snowbird’2004 AMS Conference Ro-
man Vershynin posed two conjectures relating to the rate of decay of the
Gaussian measure of convex symmetric sets under homothetic shrinking. The
first conjecture concerned some bounds in terms of the width of a convex
symmetric set. The second one stated that among all convex symmetric bod-
ies with fixed both Gaussian measure and width the cylinders are the ones
that have the slowest decay of Gaussian measure under homothetic shrink-
ing. Both conjectures will be described more precisely below. In this paper
we prove some version of the first conjecture (Section 2) and we demonstrate
that the second conjecture cannot hold in general (Section 4). We also sketch
some natural direct applications that motivated Vershynin’s questions. More
sophisticated geometric consequences related to the Dvoretzky theorem were
recently proved by Klartag and Vershynin [4].

Let us introduce some notation and results that will be used. By ~,, we
will denote the standard Gaussian probability measure on R", with v, (dx)
= (2m)2e71"/24z. For a set A in R™ we will write A, = {z € R" :
d(z, A) < t}. Gaussian isoperimetry [1, 8| states that if v, (A) = &(x), then
n(As) > @(z +t) for all ¢ > 0, where @(z) := v ((—o00, x)).

The S-inequality [6] says that if K C R™ is convex symmetric with
W (K) = 71([—a,a]) then ~,(tK) < yi1([—ta,ta]) for all 0 < ¢ < 1. This
easily implies that for some universal constant C,

(1) Vo<i<i 1K) < Cty(K)  if 3, (K) < 1/2.
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The inequality (1) was first proved in [3] (see also its generalization to log-
concave measures in [5]). Although in general one cannot improve (1), Ver-
shynin conjectured that a stronger inequality can hold for sets of large width.

For a convex symmetric set K in R” let the inradius of K be defined as

w(K) =sup{r >0: B(0,r) C K}

Notice also that w(K) is half of the width of K.

The B-inequality proved recently by Cordero, Fradelizi and Maurey
[2] implies that for any symmetric convex set K in R" the function ¢ —
In~, (e'K) is concave. In particular

Ya(sK) _ (a(tK)\ Wi
1 (E) S(mm) |

(2) Vo<s<i<1

2. Main results

THEOREM 1. For any convex symmetric set K in R™ with v,(K) < 1/2
we have

w2
(3) Vo<i<i/2 m(tK) < tﬁ%(K)-

Proof. Let s > 1 be such that 7, (sK) = 1/2. By the concavity of t —
(et K), we get v (tK) /¥ (K) < yn(tsK)/yn(sK) for t < 1. Since w(sK) >
w(K), we may and will assume that ~,(K) = 1/2.

Notice that 3 K+3B(0, w(K)) C §K+3K = K, 50 (K),y(50)2N5 K = 0.
Thus by Gaussian isoperimetry,

(35 £ 1=K i) < 1 2(a(E)/2)
w?(K)

S e—w2(K)/8 _ 'Yn(K) <l) 81In 2 ‘

2

—_ N =

We get (3) by applying (2

. n
The following related conjecture seems reasonable.

CONJECTURE 1. For any k € (0,1) there ezist positive constants C =

C (k) and wy = wo(k) such that for any convex symmetric set K in R™ with
W (K) <1/2 and w(K) > wy we have

(4) Vosi<t Yn(tK) < (C1)" Fy, (K).

Vershynin’s first conjecture (originally formulated in the language of our
Theorem 4) was that the above inequality is true for some fixed « € (0, 1).
Inequality (3) shows that (4) holds for k = 1/(81n2) > 1/6; we will now
present some more elaborate argument for k = 1/4.
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LEMMA 1. For any u,v > 0 we have
Y1((u+v,00)) < ey ((u, 00)).
Proof. We have

o o o o
S e~ /2 ds = S e~ (s10)%/2 g < S e~ 50e=5"/2 s <e W S e /2 ds. w
u+v U u u
THEOREM 2. For any conver symmetric set K in R" with w = w(K)
and v, (K) < 1/2 we have
Yn(sK) < (28)"/(K)  for s € [0,1].

Proof. Let us notice that v,(K¢) > 3 and K N (K)ws2 = 0, hence by
isoperimetry

(55) £ 1= 9((Eupa) < ((w/2,0))

Let us define u > w/2 by the formula

(5 5) = (w0,

We also have %Kﬂ ((%K) C) Lty = () for 0 < t < 1, so again by isoperimetry
and Lemma 1,

) (o 50 s 5t

< e‘%"ﬂ%(l K>

2
Thus
" w? =1
"}/n(ﬁK) < (t/—z) 4 Int
'Vn(%K) N 1/2
Hence, by the B-inequality for any s < ¢/2 we obtain
77n(fK) < (23)%2%.
W (3K)

Taking the limit ¢ — 1~ we get, for s € [0,1/2],
1
Y (sK) <, (5 K> (25)“’2/4. .

Before stating the next result let us introduce some notation. By 0,1 we
will denote the (normalized) Haar measure on S" ! = {z € R" : |z| = 1}.
For a set A in R™ to simplify the notation we will write o,,_;(A) instead of
O'n_l(A N Sn_l).
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THEOREM 3. For any conver symmetric set K in R™ with o,_1(K) <
1/2 we have

(5) Vocic1  ono1(tK) < (12¢)1(VRwE)=6)7%
The proof is based on the following simple lemma.

LEMMA 2. There exists a universal constant o > 1/60 such that for any
star body K C R"™ we have

(6) MWV K) > aop1(K),
(7) m((VnK)%) > aop1(K°).
Proof. Let
L={¢eR":[(]<v/n, &/lg|e KNS},
Notice that L C /n K and by the rotational invariance of ~,,
YV K) > (L) = 1 (B(0, Vn))on-1(K).
Let X = Y "' (g? — 1), where g; are ii.d. N(0,1) r.v.’s. Since E|X|/2 =
EX_ < (EX?)'?P(X < 0)Y/2 we get
(BlX])? _ (BX?)? 1
= < > > —
where the last inequality follows by an easy calculation, since E(g? —1) = 0,
E(g? —1)2 =2 and E(¢? — 1)* = 60.
In a similar way we show that for

L={¢eR":|¢|>Vn, ¢/l ¢ KNS}

>

we have

~ 1
(VR K)®) 2 (L) = P(X 2 0)on-1(K®) = o5 on-1(K). =

Proof of Theorem 3. Obviously we may assume that /nw(K) > 6
and ¢t < 1/12. Let « be the constant given by the preceding lemma. If
on—1(K) < 1/2, then by (7), v((v/n K)?) > a/2 > &(—2.5). Hence by
Gaussian isoperimetry (since dist((y/n — $)K, (v/n K)¢) > sw(K)) we get

5 _
il (VA= o)) £ 1= (VAR < 1= 0@ a/2) 5
<1—¢(2.5) < min(a,1/2).
Let to = v/n — 5(w(K))™! > /n/6 > t\/n. Then by (6) and Theorem 2 we
get
w?(tgK)

On 1 (tK) < (VA tK) < - <2Nﬁ>  qaltoR) < (126) 5 VU9
« 0

o t
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3. Applications to Gaussian processes. Theorem 2 can be easily
translated to the “small ball” inequality for Gaussian processes in the same
way as the concentration of Gaussian measures yields the large deviation
inequality for Gaussian processes (cf. [7, Theorem 7.1]).

THEOREM 4. Let G = (Gi)ier be a centered Gaussian process indexed
by a countable set T' such that sup,cr |G| < 0o almost surely. Then for any

s € [0, 1] we have
2
P(sup |G¢| < sM) < (23)%7
teT

where M = Med(sup,er |Gy|) and o = sup,ep(EG7)'/2.

N —

Proof. A standard argument (cf. [7, Sect. 7.1]) shows that we may assume
that 7' is a finite subset of R” and Gy = > ", t;g;, where g; are i.i.d. N'(0, 1)
r.v.’s. Let

K = {feansup‘Ztifi §M}.
=1

teT

Obviously v, (K) = P(supser |Gt| < M) = 1/2, moreover if £ ¢ K then for

some ¢t € T we have
n n 1/2
M<|Sng] < (38) e <ok
i=1 i=1

Thus w(K) > M /o and by Theorem 2,

1 M2
P(sup |G| < sM) =y, (sK) < = (23)%2. n
teT 2

REMARK. The Gaussian isoperimetric inequality gives, for s € [0, 1],
P(sup |G| < sM) =P(sup |G| <M — (1 —s)M) <1—-®((1 —s)M/o).
teT teT

In particular one cannot get this way a better bound than 1 — ®(M /o), and
Theorem 4 obviously provides a sharper estimate for sufficiently small s.

Before formulating the next result let us recall that we define for p # 0
the pth moment of a random vector S as ||S||, = (E[S||?)*/? and for p = 0
as [|Slo = exp(EIn||S])).

COROLLARY 1. Under the assumptions of Theorem 4 for any p > q >
r = min(—1, —M?/40?) there ezists a constant C,,,, that depends on p, q
and r only such that

[sup |G| [[p < Cpgrllsup |Gl [lg-
teT teT

Proof. Let S := sup;cp |Gy|. It is well known that ||S||, < CpM, so it
is enough to show that for each ¢ > r, || X||; > ¢,,M. However, by (1)
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and Theorem 4 we get P(||X|| < tM) < (Ct)™" and the desired estimate
immediately follows. =

4. Counterexample to Vershynin’s conjecture. Vershynin conjec-
tured that cylinders have the slowest decay of the Gaussian measure un-
der homothetic shrinking among all centrally symmetric convex bodies with
fixed width and Gaussian measure. Namely, he conjectured that if C' =
BY(0,w) x R! (where B5(0,w) = {x € R¥ : |2| < w}) and K is a centrally
symmetric convex body such that v(K) = v+:(C) and w(K) = w = w(C)
then v(tK) < 744:(tC) for any t € (0,1). Certainly, the dimension parame-
ter [ is a bit artificial here and one can easily reduce the problem to the case
{ = 0. This conjecture seemed naturally related to Conjecture 1. Indeed, if a
cylinder C has large width and 73, ;(C) = 1/2 then ~(B5(0,w)) = 1/2 and
w must be close to v/k. On the other hand, log, y54(tC) — k as t — 0%,
Although Conjecture 1 still seems open, we prove that Vershynin’s cylinder
conjecture cannot hold in general.

For simplicity the counterexample will be produced for £ = 2 but one
can easily extend our construction to any k > 2.

Let us recall that for a set A in R",

7 (A) 1= Tim nf 2240 = 9n(A)
t—0-+ t

We begin with two simple and quite standard lemmas.

LEMMA 3. There exist positive numbers w and a such that v2(B3(0,w))
=71((—a,a)) and 73 (B3(0,w)) > 71 ((—a,a)).

Proof. Let w and a be positive numbers such that ~2(B2(0,w)) =
y1((—a,a)). We will prove that if a is large enough then ~, (B3(0,w)) >
7 ((—a,a)). Let us recall a standard estimate for the Gaussian tails:
o0 oo d [e.e]
a e /2 _ S e /2 ds = S —( S e /2 ds — x_le_x2/2) dz
dx
a xT
oo

_ 2
:SxQex/de,
a

so that

0o
X 6—82/2 ds < a—le—a2/2
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Since
o

P 1 (B0, ) = 1= () = = [

2
a
2 —-1 — 2
< a"le /2
V2w
we have w > a +a 'Ina+ o(a 'Ina) as a — co. Therefore for sufficiently
large a we have

75 (B3(0,w)) = we™/? > (a+ 227 )e "/

o

2 2
=(a+2a1)—— | e/%ds
(@207 = |
> 2 (a42a"Y(a™t - a_3)e_“2/2 > 2 e /2
- \ 2

9
)

=7 ((—a,a)). =
LEMMA 4. If a sequence of positive numbers u(n) satisfies
lim inf , (B5 (0, u(n))) > 0
n—oo
then liminf,,_oo n Y 2u(n) > 1. Conwversely, if a sequence of positive num-
bers v(n) satisfies liminf, ... n~%v(n) > 1 then

Tim a(B3(0,0(n))) = 1.

Proof. Let g1,92,... be i.id. N (0,1) random variables. The assertion
easily follows from the observation that

(B3 (0,7)) (Zgl<r>

and the Law of Large Numbers. =

Construction of the counterezample. Let w, a >0 be such that 2 (B2(0,w))
= 7 ((—a,a)) and ~v5 (B3(0,w)) > v{ ((—a,a)) and let t € (0,1). For = €
(0, w) let

r  w? 2w?x
y:y(m):§+% and S:S(x):m.
Note that x < s < y. We define a continuous function f : [0,00) — [0, w] by
w for r € [0, z],
F0)i= 4 L2 o e o),

0 for r > y.
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Let K,, = K,(x) be a flying saucer body defined by

o= {eems((£e)") > o)

Clearly, K, is a convex body contained in the symmetric strip S =
{£ € R" : &, < w}. The line {(£1,&) : & = (y — &)w/(y — x)} is tan-
gent to the ball B5(0,w) and the point of tangency is (s, f(s)). Thus K,
contains the inscribed Euclidean ball By (0, w). Hence the inradius w(kK,,)
equals w. For sufficiently large n one can choose x € (0,w) such that
Yu(Ky) = 72(B3(0,w)). Indeed, for fixed n, the body K, tends to S as
z — 07 and it tends to C,, = By '(0,w) x (—w,w) as @ — w~. Since
Y (S) > 42(B2(0,w)) and v,(C,,) — 0 as n — oo, our claim follows by
continuity. Moreover, = z(n) — 0 as n — oo. Indeed, it suffices to note
that y(n) = y(x(n)) — oo since

lm inf 3,1 (B3 (0,y(n)) > liminf 5, (B3~ (0,y(n) x (—w,w))

> hnrglcgf')’n(Kn) = '72(33(()’ w)) > 0.

From now on we assume that n is large enough and = = x(n) is such that
u(Kn) = 2(B3(0,0)). Since 71 ((—a, a)) = 72( B30, ) < y1((—w, w)), we
have w > a. Let b, ¢ and d be positive numbers such that a > b > ¢ > d.
Let u,v,z € (x,y) be such that f(u) = b, f(v) = c and f(z) = d. Simple
calculations show that

+1 Wz ( )
v=zr+-(———)(w—c
2\z  w ’
+1 w T ( d)
z=x+-|———)(w-—
2\z w
Hence v/u — 2= >1and v/z — =5 < 1 as n — oo. Since

K, C (R x (=b,b)) U (By1(0,u) x ([b,w) U (—w, —b]))
we have

M((=a,a)) = 12(B3(0,w)) = va(Ky)
< 71 (=b,b) + 291 (b, w)) Yu-1(B3 ™1 (0, u))
and therefore
lim ior.}f%_l(Bg’l(O,u)) >0,

n—

so that liminf, .o n /2y > 1. Hence liminf,_.on " Y2v > +— > 1 and
consequently

lim 7,—1(By'(0,v)) = 1.

n—oo
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Ift>

w—cC
w—q then

t —d
liminf—z th

n—oo v w —cC

> 1,

so that tz > v for n large enough. Moreover
By Y0, 2) x (—d,d) C K,
=)
BY10,t2) x (—td, td) C tK,
and (assuming Vershynin’s cylinder conjecture is true) we deduce that for
any =5 <t < 1 (and sufficiently large n),
72(B3(0,tw)) = 12(tB3(0,w)) = yn(tKn) > Y1 (By~'(0,t2))n ((~td, td))
> Yn-1(By~H(0,0)) 71 ((~td, td)) — 71((~td, td))
as n — oo. We have proved 72(B2(0,tw)) > y1((—td,td)) if only =5 <
t < 1. Note however that for a fixed ¢ € (0,1) one can let b,¢c — a and
d — (a— (1 —t)w)/t in such a way that ¢t > “=5. Then td — a — (1 — t)w
and we deduce that
12(B3(0,tw)) = m((—(a — (1 = thw),a — (1 = tyw))  for any t € (0,1).

The above inequality becomes an equality for ¢ = 1 so by differentiating at
t = 1 we obtain

2
7 (B3(0,w)) <% ((—a,a)),
contrary to the choice of w and a at the beginning. This proves that Ver-
shynin’s cylinder conjecture cannot be true in general. =

REMARK. Note that one really needs some “extra” dimensions in the
construction of the counterexample. If we assume that K C R* is a convex
symmetric body with inradius w and 4 (K) = v (B5(0,w)) then obviously
K must be equal to B§(0,w) up to some boundary points, so that also
Y (tK) = 3. (B5(0, tw)) for t € (0,1) even though the Euclidean ball has the
fastest decay of the Gaussian measure under homothetic shrinking among
all bodies of a fixed Gaussian measure.
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