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Completions of normed algebras of differentiable functions

by

William J. Bland and Joel F. Feinstein (Nottingham)

Abstract. We look at normed spaces of differentiable functions on compact plane
sets, including the spaces of infinitely differentiable functions considered by Dales and
Davie in [7]. For many compact plane sets the classical definitions give rise to incom-
plete spaces. We introduce an alternative definition of differentiability which allows us to
describe the completions of these spaces. We also consider some associated problems of
polynomial and rational approximation.

1. Introduction. In this paper we shall investigate problems concern-
ing the normed spaces of differentiable functions on compact plane sets
which were originally studied by Dales, Davie and McClure with particular
reference to the Banach algebra case in [7] and [8]. These spaces are the
D(X,M) spaces where X is a perfect compact plane set and M is a se-
quence of positive real numbers. We shall give the definitions of these and
some of the related spaces that we wish to study in Section 2.

There are many interesting problems concerning these spaces. One strand
of their study concerns problems of approximation of functions by means of
polynomials or rational functions. For example, in [8] Dales and McClure
proved that, if X is the closed unit disk, then the polynomials are always
dense in D(X,M). In the one-dimensional case, some results on polynomial
approximation were obtained by O’Farrell in [17] (see also Theorem 4.4.15
of [6]). It was shown under very mild conditions on M that the polynomials
are dense in D(I,M), where I is a closed interval. Further results on holo-
morphic and polynomial approximation, and related problems concerning
extensions of functions in these spaces, were obtained in [10]. There are still
many fascinating open problems in this area.

Another set of problems concerns the completeness of these spaces. Dales
and Davie ([7]) gave some conditions on X which guaranteed the complete-
ness of the D(X,M) spaces. It was also noted in [1] that a union of any
finite number of sets for which these spaces are complete gives another such
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set. Some further results on this are given in [13]. We shall discuss this prob-
lem further in Section 2. We prove that for any perfect, compact plane set
which has infinitely many components all of these spaces are incomplete.
We also give an example of an X which is a rectifiable Jordan arc and yet
the normed algebra of once continuously differentiable functions on X (with
the classical definition) is incomplete.

In the setting of normed or Banach algebras, work on these spaces in-
cludes the study of their endomorphisms. In [16], Kamowitz came close to
classifying all the endomorphisms of D(I,M), in terms of self-maps of the
interval I. The second author and Kamowitz made further progress on the
remaining problems, and investigated more general compact plane sets in [9].
We will not investigate these problems in this paper, but it is worth noting
that some of the results of [9] depend on the completeness of the D(X,M)
spaces. (See also further joint papers of the second author and Kamowitz,
and [3] for some work on homomorphisms between these spaces.)

In Section 3 we discuss various matters related to rectifiable arcs, in-
cluding the Fundamental Theorem of Calculus for rectifiable paths, and the
conditions of uniform regularity and pointwise regularity for compact plane
sets. These latter conditions are sufficient to imply completeness of all the
normed spaces defined in Section 2 ([7], [13]). In the case where the spaces
are incomplete, it becomes important to investigate their completions. We
do this in Section 4. There we determine the completions of the normed
spaces above, at least for compact plane sets X such that the union of the
images of all the injective, rectifiable arcs in X is a dense subset of X. In
this setting we define a less restrictive notion of differentiation which en-
sures that the spaces we end up with are complete. The original versions of
the spaces embed isometrically in our new versions, so the completions of
the original spaces are simply their closure in the new spaces. Where the
algebras considered in [9] were incomplete, the new versions are complete
and all the arguments of Feinstein and Kamowitz remain valid in the new
setting. This suggests that the new algebras may, in fact, be the correct
place to study endomorphisms.

In Section 5 we investigate two related problems: For which compact
plane sets are the new spaces constructed in Section 4 the same as the
original spaces as defined in Section 2? For which compact plane sets are
the original spaces dense in the new spaces? We also obtain some related
polynomial and rational approximation results for these spaces. For some
work on identifying the maximal ideal spaces in the original setting and on
polynomial and rational/holomorphic approximation in some related spaces
see, for example, [10], [12]–[15], [17] and [19].

We conclude, in Section 6, with some open problems.
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2. Introductory concepts and results. We begin with some standard
notation, definitions and results. Let X be a compact plane set. We denote
the set of all continuous, complex-valued functions on X by C(X). For
f ∈ C(X) we denote the uniform norm of f by ‖f‖∞. More generally we
denote the uniform norm of f on a closed subset E of X by ‖f‖E .

Definition 2.1. Let X be a perfect, compact plane set. We say that a
complex-valued function f defined on X is complex-differentiable at a point
a ∈ X if the limit

f ′(a) = lim
z→a, z∈X

f(z)− f(a)

z − a
exists. We call f ′(a) the complex derivative of f at a. Using this concept
of derivative, we define the terms complex-differentiable on X, continuously
complex-differentiable on X, and infinitely complex-differentiable on X in
the obvious way. We denote the nth complex derivative of f at a by f (n)(a),
and we denote the set of infinitely complex-differentiable functions on X by
D∞(X). We denote the set of continuously complex-differentiable functions
on X by D1(X). More generally, we define the corresponding algebras of
n-times continuously differentiable functions, Dn(X), again in the obvious
way.

Let (Mn) be a sequence of positive real numbers. We define the space

D(X,M) =

{
f ∈ D∞(X) : ‖f‖ =

∞∑

n=0

‖f (n)‖∞
Mn

<∞
}
.

With pointwise addition,D(X,M) is a normed space which is not necessarily
complete.

If further the sequence Mn satisfies M0 = 1 and, for all non-negative
integers m, n, we have (

m+ n

n

)
≤ Mm+n

MmMn

then D(X,M) is a normed algebra with pointwise multiplication.
In [7], Dales and Davie used this class of algebras to give an example

of a commutative semisimple Banach algebra for which the peak points are
of first category in the Shilov boundary, and an example of a commutative
semisimple Banach algebra B and a discontinuous function F acting on B.

Clearly the restrictions of all (analytic) polynomials to X belong to all of
the D(X,M) spaces. It was further proved in [7] that the algebra D(X,M)
includes all of the rational functions with poles off X if and only if

(1) lim
n→∞

(
n!

Mn

)1/n

= 0.

We say that (Mn) is a non-analytic sequence if (1) holds [7].
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Each of the spaces Dn(X) is a normed algebra, using the norm

‖f‖ =
n∑

k=0

‖f (k)‖∞
k!

.

These spaces are often incomplete, even for fairly nice X: we give some
examples of this below. However, for a given X, the completeness of D1(X)
implies the completeness of all the others. This is a consequence of the
following result.

Theorem 2.2. Let X be a perfect , compact plane set and let r be a pos-
itive integer. Suppose that Dr(X) is complete. Then, for all integers n ≥ r,
Dn(X) is complete and , for every sequence M of positive real numbers,
D(X,M) is complete.

Proof. We give the proof for D(X,M). The proof for Dn(X) is similar
but slightly easier. Let fm be a Cauchy sequence in D(X,M). It is clear

that, for all non-negative integers k, the sequence (f
(k)
m )∞m=1 is Cauchy in

Dr(X) and so converges in Dr(X) to a function gk, say. By definition of

the norm on Dr(X), we see that (f
(k)
m )′ converges uniformly to g′k on X as

m → ∞. However, we also know that (f
(k)
m )′ = f

(k+1)
m converges to gk+1

as m → ∞ and so we have g′k = gk+1. The remainder of the proof is a
standard functional analysis argument showing that g0 ∈ D(X,M) and
that the sequence fm converges in D(X,M) to g0; we omit the details.

We now prove that if X has infinitely many components then D(X,M)
is incomplete, and hence all of the spaces Dn(X) are incomplete. In the
proof, and throughout the rest of this paper, we will frequently refer to sets
which are both open and closed, and it will be convenient to call such sets
clopen sets.

Theorem 2.3. Let X ⊆ C be a compact , perfect set which has infinitely
many components, and let M be any sequence of positive real numbers. Then
all of the spaces Dn(X) and D(X,M) are incomplete.

Proof. By Theorem 2.2 it is sufficient to prove the result for D(X,M).
(The proof given below is, anyway, valid in all cases.) We are given that X
has infinitely many connected components. Set E0 = X. Then E0 can be
written as E0 = E1 ∪ F1 where E1 and F1 are non-empty, disjoint, clopen
subsets of E0 and E1 has infinitely many components.

Similarly we can write E1 = E2 ∪ F2 where E2 and F2 are non-empty
disjoint clopen subsets of E1 and E2 has infinitely many components.

Clearly we can continue in this way to form sequences (En) and (Fn). For
each n ∈ N, choose a point zn ∈ Fn. Then the sequence zn has a convergent
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subsequence, znk . Say znk → z0 as n → ∞. Now, we cannot have z0 ∈ Fnk
for any k ∈ N since the sets Fnk are open and pairwise disjoint.

Define f ∈ C(X) by

f(z) =

{
znk for z ∈ Fnk ,
z0 for z ∈ X \⋃∞k=1 Fnk .

Then f is constant on each of the clopen sets Fnk and so has derivative 0
on their union. Thus if f were in D1(X) we would also have f ′(z0) = 0.
However, for all k, we have

f(znk)− f(z0)

znk − z0
= 1,

and so f is not in D1(X). Finally, note that there is an obvious sequence
(fi) ⊆ D(X,M) such that fi → f uniformly on X: for i ∈ N, define fi ∈
D1(X) by

fi(z) =

{
znk if z ∈ Fnk and k ≤ i,
z0 for z ∈ X \⋃ik=1 Fnk .

It is easy to see that f ′i = 0 for all i and that (fi) is a Cauchy sequence
in D(X,M). Since f is not even in D1(X), D(X,M) is incomplete.

The completeness of D1(X) is far from being a topological property
of X: we conclude this section with an example where X is the image of a
rectifiable Jordan arc in the plane and yet D1(X) is incomplete. (We will
look at rectifiable curves in more detail later in this paper.)

Example 2.4. Set zn = 2−2n and wn = 2−2n + 2−ni. We glue together
the origin and the following paths (γn for n ∈ N):

PSfrag replacements

2−2(n+1)

2−2n

2−n

zn

wn

Origin

The resulting path γ can be parametrised by its arc-length. It is clear that
γ is a rectifiable Jordan arc.

The exact position on the x-axis of the leftmost vertical line forming
γn is irrelevant to the working of this example, so long as it lies (strictly)
between 2−2(n+1) and 2−2n.

Theorem 2.5. Let X be the image of the path γ in the previous example.
Then D1(X) is incomplete.
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Proof. Define f ∈ C(X) by f(0) = 0 and for x+ yi in the image of γn,

f(x+ yi) =

{
3 · 2n−1y3 − 9y2/4 + 2−2n if x = 2−2n,

2−2(n+1) otherwise,

It is straightforward to check that the following conditions hold:

1. f is constant everywhere on Image(γn) except on the line joining the
points zn and wn;

2. f is continuous on the whole of Image(γ), and is continuously differ-
entiable on each Image(γn);

3. f ′(zn) = f ′(wn) = 0;

4. f(zn) = zn;

5. f(wn) = zn+1;

6. as n→∞, the supremum of |f ′| on the image of γn converges to zero.

Thus we have

lim
n→∞

f(zn)− f(0)

zn − 0
= lim

n→∞
zn − 0

zn − 0
= 1 6= 0 = lim

n→∞
f ′(zn)

and so f 6∈ D1(X).
However, there is an obvious Cauchy sequence (fn) of functions in D1(X)

with ‖f − fn‖∞ → 0. We simply define fn(z) to be equal to f(z) when the
real part of z is larger than zn, and constantly equal to f(zn) otherwise.
Thus D1(X) is incomplete.

3. Rectifiable paths and regularity conditions for compact plane
sets. In this section we discuss families of rectifiable curves and some related
conditions. We will assume that the reader is familiar with the elementary
results and definitions concerning rectifiable paths including integration of
continuous, complex-valued functions along rectifiable curves. For more de-
tails see, for example, Chapter 6 of [2].

Definition 3.1. A path is a continuous function γ : [a, b] → C, where
a and b are real numbers with a < b. We say that γ is a path from γ(a) to
γ(b) with endpoints γ− = γ(a) and γ+ = γ(b).

Given X ⊆ C, a path in X is a path whose image is a subset of X. (A
Jordan arc in X is, of course, simply an injective path in X.)

The length of a rectifiable path γ will be denoted by |γ|.
We recall the following elementary connection between piecewise smooth

paths, rectifiability and integration.
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Proposition 3.2 (see [5, pp. 58–62]). Let X be a compact subset of C
and γ : [a, b]→ X be a piecewise smooth path in X. Then:

1. γ is rectifiable;

2. |γ| =
� b
a |γ′(t)| dt;

3.
�
γ f(z) dz =

� b
a f(γ(t))γ′(t) dt for any f ∈ C(X).

The next result is an analogue of the Fundamental Theorem of Calculus.
We have not been able to find a proof of it in the literature, although a similar
theorem is given in [5] (Theorem 1.18, p. 65). However, the functions in that
theorem are defined on open subsets of C, whereas we need the same result
for functions defined only on images of rectifiable paths. Elegant proofs of
this general result using the method of repeated bisection have been shown
to us by G. R. Allan, T. W. Körner and W. K. Hayman. The proof provided
by Allan may be found in full in [4].

Theorem 3.3 (Fundamental Theorem of Calculus for rectifiable paths).
Let γ : [a, b]→ C be a rectifiable path. Then for every f ∈ D1(Image(γ)) we
have �

γ

f ′(z) dz = f(γ+)− f(γ−).

We now discuss, in terms of rectifiable paths, some standard conditions
a compact plane set X may satisfy which are sufficient to ensure the com-
pleteness of D1(X) (and hence of all the other spaces defined in Section 2).
In [1] it was shown that the collection of sets X for which D1(X) is complete
is closed under finite unions. (In fact the result is only stated there for the
D(X,M) spaces, but the proof for the other spaces is the same.)

Definition 3.4. Let X ⊆ C be compact. We say X is regular at a point
z ∈ X if there is a constant kz > 0 such that, for every w ∈ X, there is a
path γ : [a, b]→ X with γ(a) = z, γ(b) = w and |γ| ≤ kz|z − w|.

We say X is pointwise regular if X has more than one point and X is
regular at every point z ∈ X. (In [13] such a set is simply said to be regular.)
If, further, there is one constant k > 0 such that, for all z and w in X, there
is a path γ : [a, b]→ X with γ(a) = z, γ(b) = w and |γ| ≤ k|z − w| then we
say that X is uniformly regular.

Clearly all pointwise and uniformly regular sets are perfect and path-
connected. For points z and w in a set X ⊆ C, we define

d(z, w) = inf{|γ| : γ is a rectifiable path from z to w in X}.
Dales and Davie showed that D1(X) is complete whenever X is a finite

union of uniformly regular sets. However, as observed in [13], the proof given
in [7] is equally valid for pointwise regular sets. Thus D1(X) is complete
whenever X is a finite union of pointwise regular sets. We will give another
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proof of this fact in Section 5, after investigating the completions of these
normed spaces in the next section.

We now note that for a compact plane set X to satisfy one of these two
regularity conditions it is sufficient (though of course not necessary) for the
boundary to satisfy the same condition.

Theorem 3.5. Let X ⊆ C be compact. If ∂X is uniformly regular then
X is uniformly regular.

Proof. We know that there is a constant k > 0 such that d(z, w) ≤
k|z −w| for all z, w ∈ ∂X. Let z1, z2 ∈ X. If the line segment connecting z1

and z2 is contained in X then d(z1, z2) = |z1 − z2|. Otherwise, the line seg-
ment must intersect ∂X at at least two points. In this case, let Z be the set of
points of intersection, and (for i = 1, 2) let wi be the closest point of Z to zi.

We know that there is a path γ in ∂X between w1 and w2 such that
|γ| ≤ k|w1 − w2|. We have

d(z1, z2) ≤ |γ|+ |z2 − w2|+ |w1 − z1|
≤ k|w1 − w2|+ |z1 − w1|+ |z2 − w2| ≤ (k + 1)|z1 − z2|.

The proof of the same theorem for pointwise regularity requires a little
more thought, but is essentially the same.

Theorem 3.6. Let X ⊆ C be compact. If ∂X is pointwise regular then
X is pointwise regular.

Proof. Let z1 ∈ X. Choose a point w1 ∈ ∂X such that no other point in
∂X is closer to z1 than w1. We know that there is a constant kw1 > 0 such
that for any w2 ∈ ∂X we have d(w1, w2) ≤ kw1 |w1−w2|. Set cz1 = 2 + 3kw1 .
We show that, for all z2 ∈ X, d(z1, z2) ≤ cz1 |z1 − z2|.

Take z2 ∈ X. Again, choose a point w2 ∈ ∂X such that no other point
in ∂X is closer to z2 than w2. If the line segment connecting z1 to z2 is
contained in X then d(z1, z2) = |z1 − z2| ≤ cz1 |z1 − z2|. Otherwise we have

|z1 − w1| ≤ |z1 − z2| and |z2 − w2| ≤ |z1 − z2|.
Thus

d(z1, z2) ≤ kw1 |w1 − w2|+ |z1 − w1|+ |z2 − w2|
≤ kw1 |w1 − w2|+ 2|z1 − z2|

Now

|w1 − w2| = |(w1 − z1) + (z1 − z2) + (z2 − w2)| ≤ 3|z1 − z2|
and so d(z1, z2) ≤ cz1 |z1 − z2| as required.

The following elementary lemma will be useful later.

Lemma 3.7. Each component of a finite union of pointwise regular sets
is pointwise regular.
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Proof. We show that a union of two non-disjoint, pointwise regular com-
pact plane sets is again pointwise regular. The result then follows easily from
this.

LetX andY be pointwise regular compact plane sets such thatX ∩Y 6=∅.
Clearly there is a rectifiable path in X ∪ Y between each pair of points of
X ∪ Y . Take z ∈ X ∪ Y . We show that X ∪ Y is regular at z. In view of the
pointwise regularity of X and Y , this is clear if z ∈ X ∩ Y . Otherwise, we
may assume without loss of generality that z ∈ X \ Y . Then dist(z, Y ) > 0,
where dist(z, Y ) is the usual Euclidean point-set distance between z and Y .
From this and the pointwise regularity of X it is now elementary to show
that X ∪ Y is regular at z.

Pointwise regularity is a local property in the following sense: say a set X
is locally pointwise regular if each point in X has a pointwise regular compact
neighbourhood in X. The following result is now an immediate consequence
of compactness.

Theorem 3.8. Let X ⊆ C be a locally pointwise regular , compact plane
set. Then X is a finite union of pointwise regular sets.

We finish this section by noting that there are examples of rectifiable
paths in the complex plane whose images are not pointwise regular. For ex-
ample, the fact that the path γ in Example 2.4 has D1(Image(γ)) incomplete
implies that γ cannot be pointwise regular.

We are now ready to introduce the new normed spaces that we wish to
study.

4. The F-differentiation spaces. In this section we investigate the
completions of the normed spaces considered above by weakening the differ-
entiability requirement on the functions.

One well known, related class of Banach spaces is obtained by looking at
analytic functions on an open subset U of C with some specified number of
the function’s derivatives being bounded. This gives a set of Banach spaces
corresponding to the spaces Dn(X) above. Indeed, when X is the closure
of U , the spaces Dn(X) embed isometrically in these new, complete, spaces.
A similar construction provides complete versions of the spaces D(X,M).
However, these constructions are only helpful for compact spaces X where
the interior of X is dense in X. This is too restrictive for our purposes.
Instead, we will mostly work with the larger class of compact plane sets X
for which the union of the images of all rectifiable Jordan arcs in X is dense
in X. We will then use appropriate sets of Jordan arcs to define our notion
of derivative.
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Definition 4.1. Let X ⊆ C be compact and F be a set of paths in X.
We say F is useful if the following conditions are satisfied.

1. Every path in F is a rectifiable Jordan arc.
2. If γ ∈ F is defined on [a, b], then the restriction of γ to [c, d] is in F

whenever [c, d] ⊆ [a, b] and c < d.

We write

F(X) =
⋃

γ∈F
Image(γ).

Clearly the sets of rectifiable Jordan arcs and smooth, rectifiable Jordan
arcs in X are both useful. Also, for any L > 0, the set of rectifiable Jordan
arcs in X with length ≤ L is useful.

We are now ready to define the notion of differentiability associated with
a set of rectifiable paths. Recall that the endpoints of a path γ are denoted
by γ− and γ+.

Definition 4.2. Let X ⊆ C be compact and F be a set of rectifiable
paths in X. For f ∈ C(X), we say g ∈ C(X) is an F-derivative of f if, for
all γ ∈ F , we have �

γ

g(z) dz = f(γ+)− f(γ−).

Note that we assume neither that F(X) = X, nor that there is a path in
F between each pair of points of F(X): indeed F(X) may be disconnected.

We will mostly restrict attention to the case where F is a useful set of
paths.

Definition 4.3. Let X ⊆ C be compact and F be a set of rectifiable
paths in X. Define

D1
F (X) = {f ∈ C(X) : f has an F-derivative in C(X)}.

Clearly we would not expect F-derivatives to be unique. We will see
below, however, that their restriction to F(X) is unique.

The following theorem is the F-derivative analogue of a standard result
of elementary real analysis.

Theorem 4.4. Let X be a compact plane set and let F be a useful set
of paths in X. Let fn, gn be uniformly convergent sequences in C(X) with
limits f , g respectively. Suppose that , for all n, gn is an F-derivative of fn.
Then g is an F-derivative of f .

Proof. This is essentially immediate from the definitions.

As we have already seen, the analogous statement for the original notion
of differentiation is false: this is the reason why the spaces D1(X) are often
incomplete.
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Before going any further, we deal with the issue of “piecewise” curves.
For every set F of paths in X, there is a corresponding set FPW of paths
that are “piecewise-F” paths. In other words, each path in FPW consists of
finitely many paths in F that are joined together at their endpoints. The
question is: do F and FPW lead to different theories of differentiation?

Theorem 4.5. Let X ⊆ C be compact and F be a useful set of paths
in X. Let FPW be the piecewise version of F , as described above. Then
D1
F (X) = D1

FPW
(X).

Proof. Again this is an elementary consequence of the definitions.

In view of this result we can now take F to be (for example) either the
set of smooth Jordan arcs in X, or the set of piecewise smooth Jordan arcs
in X; it does not make any difference to the resulting object D1

F(X). Also
we may assume that the lengths of the paths in F are bounded: for example,
for each L > 0, the same theory is obtained by using the set of all rectifiable
Jordan arcs in X as is obtained by using the set of those rectifiable Jordan
arcs in X whose length is at most L. (Every rectifiable curve is “piecewise
short”.)

Note that we always have F(X) = FPW(X). Also, the set FPW is useful
if F is useful (the converse is, however, not true).

We will prove that D1
F (X) is always a Banach algebra. As part of this we

need to check that F-derivatives behave in the way we expect with regard
to sums, scalar multiples and products.

Theorem 4.6. Let X ⊆ C be compact and F be a useful set of paths in
X. Let f1, f2 ∈ C(X) and λ ∈ C. If g1, g2 ∈ C(X) are F-derivatives of f1

and f2 respectively then g1 + λg2 is an F-derivative of f1 + λf2.

Proof. Set f = f1 + λf2 and g = g1 + λg2. Clearly g ∈ C(X). Now let
γ ∈ F . We have�

γ

g(z) dz =

�

γ

(g1(z) + λg2(z)) dz =

�

γ

g1(z) dz +

�

γ

λg2(z) dz

= f1(γ+)− f1(γ−) + λ(f2(γ+)− f2(γ−)) = f(γ+)− f(γ−).

Thus g is an F-derivative of f .

Corollary 4.7. Let X ⊆ C be compact and F be a useful set of paths
in X. Then D1

F(X) is a vector space.

We now look at multiplication of functions in D1
F (X). First we note an

elementary lemma concerning polynomials.

Lemma 4.8. Let X ⊆ C be compact and γ be an injective rectifiable path
whose image is contained in X. Set F = {γ}. Then for any polynomials p1

and p2 defined on X, the function p′1p2 + p1p
′
2 is an F-derivative of p1p2.
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Proof. We know that p1, p2 and p1p2 are all complex-differentiable on
any complex plane set, and (p1p2)′ = p′1p2 + p1p

′
2. The result now follows

from the Fundamental Theorem of Calculus for rectifiable paths (or indeed
the special case of this theorem for polynomial functions).

Theorem 4.9. Let X ⊆ C be compact and γ be an injective rectifiable
path whose image is contained in X. Let F be the set of all subpaths of γ (in-
cluding γ itself ). Then for any functions f1, f2 ∈ D1

F (X) with F-derivatives
g1 and g2 respectively , the function g1f2 + f1g2 is an F-derivative of f1f2.

Proof. Set Y = Image(γ). Note that, since γ is injective, C \ Y must be
connected. Hence by Mergelyan’s (or Lavrentiev’s) theorem we can choose
two sequences of analytic polynomials pn, qn converging uniformly on Y to
g1, g2 respectively. Now (anti-differentiating) choose analytic polynomials
Pn,Qn such that P ′n = pn,Q′n = qn, Pn(γ−) = f1(γ−) andQn(γ−) = f2(γ−).

The Fundamental Theorem of Calculus for rectifiable paths tells us that
pn is an F-derivative of Pn and similarly for qn and Qn. It now follows easily
that Pn, Qn converge uniformly on Y to f1, f2 respectively.

By the preceding lemma we know that Pnqn + pnQn is an F-derivative
of PnQn. Taking uniform limits, and applying 4.4, we see that f1g2 + f2g1

is an F-derivative of f1f2, as required.

Corollary 4.10. Let X ⊆ C be compact and F be a useful set of paths
in X. Then D1

F(X) is an algebra.

Proof. Clear.

We now wish to establish the extent to which F-derivatives are unique.
We start with a simple lemma.

Lemma 4.11. Let X ⊆ C be compact and γ be a rectifiable path in X
defined on [a, b] and with γ(a) 6= γ(b). Then there exist a constant k > 0 and
a sequence (γn) of subpaths of γ defined on nested decreasing subintervals of
[a, b], with |γn| = 2−(n−1)|γ| and such that for each n ∈ N, |γn| < k|γ+

n −γ−n |.
Proof. Clearly |γ| < k|γ(b) − γ(a)| for some k > 0. This will be our k.

We set γ1 = γ. Now suppose that n > 1 and that we have constructed the
sequence of subpaths up to and including the path γn−1, defined on some
interval [an−1, bn−1], with |γn−1| = 2−(n−2)|γ| and |γn−1| < k|γ+

n−1 − γ−n−1|.
Choose c ∈ (an−1, bn−1) in the usual way to bisect the length of γn−1. Let
γA and γB be the restrictions of γn−1 to [an−1, c] and [c, bn−1] respectively.

Suppose, for contradiction, that |γA| ≥ k|γ+
A−γ−A | and |γB| ≥ k|γ+

B−γ−B |.
Then

|γn−1| = |γA|+ |γB| ≥ k(|γ+
A − γ−A |+ |γ+

B − γ−B |) ≥ k|γ+
n−1 − γ−n−1|,

which contradicts the choice of γn−1. Thus we must have |γA| < k|γ+
A − γ−A |
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or |γB| < k|γ+
B − γ−B |. We now set γn to be either γA or γB accordingly, and

the inductive construction may proceed.

We are now ready to prove the uniqueness of F-derivatives in the case
where F(X) is dense in X. Note again that we do not assume that there is
a path in F between each pair of points of F(X).

Theorem 4.12. Let X ⊆ C be compact and F be a useful set of paths
in X such that F(X) is dense in X. Then for f ∈ C(X), any F-derivative
of f is unique.

Proof. Let f ∈ C(X). In view of Theorem 4.6, the difference of any two
F-derivatives of f is an F-derivative of the constant function 0. Thus it is
sufficient to prove that no non-zero g ∈ C(X) can be an F-derivative of 0.

Suppose, for contradiction, that g ∈ C(X) is a non-zero F-derivative
of 0. Choose z0 ∈ X such that g(z0) 6= 0. Then there exist R > 0 and δ > 0
such that |g(w)| ≥ δ for all w ∈ X with |w − z0| < R.

Choose a path γ ∈ F with Image(γ) ⊆ {w ∈ X : |w − z0| < R}. By
Lemma 4.11, there exist a constant k > 0 and a sequence (γn) of subpaths
of γ defined on nested decreasing subintervals of the domain of γ such that
|γn| → 0 and

|γn| < k|γ+
n − γ−n |

for each n ∈ N. Now there must be a point α ∈ ⋂n∈N Image(γn), because
these images are compact and nested. Clearly |g(α)| ≥ δ. For z ∈ X, write

g(z) = g(α) + r(z)

where r ∈ C(X) and r(z)→ 0 as z → α in X. Now choose n ∈ N such that
|r(z)| < δ/2k for z ∈ Image(γn). We have�

γn

g(z) dz =

�

γn

g(α) dz +

�

γn

r(z) dz = g(α)(γ+
n − γ−n ) +

�

γn

r(z) dz.

Now

|g(α)(γ+
n − γ−n )| = |g(α)| |γ+

n − γ−n | ≥ δ|γ+
n − γ−n |

and ∣∣∣
�

γn

r(z) dz
∣∣∣ ≤ |γn| sup{|r(z)| : z ∈ Image(γn)} ≤ δ

2
|γ+
n − γ−n |.

Thus we have
�
γn
g(z) dz 6= 0. This contradicts the fact that g is an F-

derivative of 0, and the result follows.

Note that, even if F(X) is not dense in X, it is clear that for any function
f ∈ D1

F(X), any two F-derivatives g1 and g2 of f must agree on F(X). This
point will be crucial in the following development of the analytic properties
of D1

F (X).
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Note that the converse to the previous theorem is clear: if F(X) is not
dense in X then every f in D1

F(X) has infinitely many F-derivatives. How-

ever, these F-derivatives will all agree on F(X).

We now define the norm we need to make D1
F (X) into a Banach algebra.

Definition 4.13. Let X ⊆ C be compact and F be a non-empty, useful
set of paths in X. For f ∈ D1

F (X) we define

‖f‖ = ‖f‖∞ + ‖g‖F(X)

where g ∈ C(X) is any F-derivative of f .

Note that ‖ · ‖ is well defined even when F(X) is not dense in X and
F-derivatives are non-unique, because we know that any two F-derivatives
of a function f ∈ D1

F(X) do agree on F(X).

Theorem 4.14. Let X ⊆ C be compact and F be a useful set of paths
in X. Then D1

F(X) is a normed space.

Proof. Clearly we have ‖f‖ ≥ 0 for all f ∈ D1
F (X), and ‖f‖ = 0 if

and only if f = 0. Choose f ∈ D1
F (X) and λ ∈ C. Let g ∈ C(X) be an

F-derivative of f . We have already seen that λg is an F-derivative of λf .
We have

‖λf‖ = ‖λf‖∞ + ‖λg‖F(X)
= |λ| · ‖f‖∞ + |λ| · ‖g‖F(X)

= |λ| · ‖f‖.

Choose f1, f2 ∈ D1
F (X), and F-derivatives g1 and g2 respectively. We have

already seen that g1 + g2 is an F-derivative of f1 + f2. We have

‖f1 + f2‖ = ‖f1 + f2‖∞ + ‖g1 + g2‖F(X)

≤ ‖f1‖∞ + ‖f2‖∞ + ‖g1‖F(X)
+ ‖g2‖F(X)

= ‖f1‖+ ‖f2‖.

We now show that D1
F (X) is a Banach space.

Theorem 4.15. Let X ⊆ C be compact and F be a useful set of paths
in X. Then D1

F(X) is complete.

Proof. Set Y = F(X). Let (fn) be a Cauchy sequence in D1
F(X). For

each n ∈ N, choose an F-derivative gn of fn. Then (fn) is Cauchy in C(X)
and (gn|Y ) is Cauchy in C(Y ), so these sequences converge uniformly. Say
fn → f ∈ C(X) and gn|Y → g ∈ C(Y ).

Extend g to g̃ ∈ C(X) by the Tietze extension theorem. It is now easy
to check that g̃ is an F-derivative of f , so f ∈ D1

F (X) and hence D1
F (X) is

complete.

The last thing we have to do to show that D1
F (X) is a Banach algebra

is to show that ‖ · ‖ is an algebra norm. Fortunately this is not too difficult.
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Theorem 4.16. Let X ⊆ C be compact and F be a useful set of paths
in X. Then the norm ‖f‖ = ‖f‖∞ + ‖g‖F(X)

(where g is any F-derivative

of f) is an algebra norm on D1
F(X).

Proof. Choose f1, f2 ∈ D1
F (X), and F-derivatives g1 and g2 respectively.

We have already seen that g1f2 + f1g2 is an F-derivative of f1f2. We have

‖f1f2‖ = ‖f1f2‖∞ + ‖g1f2 + f1g2‖F(X)

≤ ‖f1‖∞‖f2‖∞ + ‖g1f2‖F(X)
+ ‖f1g2‖F(X)

≤ ‖f1‖∞‖f2‖∞ + ‖g1‖F(X)
‖f2‖∞ + ‖f1‖∞‖g2‖F(X)

≤ ‖f1‖∞‖f2‖∞ + ‖g1‖F(X)
‖f2‖∞

+‖f1‖∞‖g2‖F(X)
+ ‖g1‖F(X)

‖g2‖F(X)

= (‖f1‖∞ + ‖g1‖F(X)
)(‖f2‖∞ + ‖g2‖F(X)

) = ‖f1‖ · ‖f2‖.
To avoid any complications arising from non-uniqueness of F-derivatives,

when we come to higher derivatives we will restrict attention to the case
where F(X) is dense in X.

We next show that D1(X) ⊆ D1
F(X), and note conditions under which

the inclusion is isometric. We also see the connection between the two kinds
of derivative.

Theorem 4.17. Let X ⊆ C be compact and perfect and F be a useful
set of paths in X. Then D1(X) ⊆ D1

F (X). Indeed , for each f ∈ D1(X) the

derivative (in the old sense) f ′ is also an F-derivative of f . If F(X) = X
then the inclusion above is isometric.

Proof. Choose f ∈ D1(X). Then f ′ (in the old sense) exists and is in
C(X). The Fundamental Theorem of Calculus for rectifiable paths gives us�

γ

f ′(z) dz = f(γ+)− f(γ−)

for all γ ∈ F and so f ′ is an F-derivative of f . The rest is clear.

Note that when F(X) = X the completion of D1(X) is simply its closure
in D1

F (X).
We now introduce the new versions of the higher derivatives. As men-

tioned above, we will simplify matters by restricting attention to the case
where F(X) = X. In view of the equality (in this setting) of the two kinds
of derivatives when both are defined, we may safely use the notation f ′ for
the derivative of f in either sense.

Given such X and F , it is clear how to define (inductively) the notion
of n-times F-differentiable and the nth F-derivative of a function f . An
easy induction using the above theorem shows that if f is in Dn(X) then
f is n-times F-differentiable and the old nth derivative f (n) is also the nth
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F-derivative of f . Thus we may use the notation f (n) for the new notion of
derivative also. Moreover, in view of our earlier results, there is no problem
(in this setting) in checking that the standard Leibniz formula is still valid
for the new notion of nth derivative.

We can now define spaces corresponding to the Dn(X) spaces and the
D(X,M) spaces. We denote these new spaces by DnF (X) and DF (X,M).
For f ∈ DnF (X), we define

‖f‖n =
n∑

k=0

‖f (k)‖F(X)

k!

(with the usual convention that f (0) = f). Similarly we define the norm on
DF (X,M) corresponding to that on D(X,M).

Because D1
F(X) is complete, the new spaces are all Banach spaces and

the old spaces are contained isometrically in the new spaces (the argument
for this is the same as the proof that whenever D1(X) is complete then so
are the Dn(X) and D(X,M) spaces). The spaces DnF (X) are always Banach
algebras. When M is an algebra sequence, DF (X,M) is also a Banach alge-
bra. The completions of the old spaces are simply their closures in the new
spaces.

In the next section we will investigate questions concerning the density
or otherwise of D1(X) in D1

F(X), along with some related questions of
polynomial, rational and holomorphic approximation in these spaces and
the higher derivative spaces.

5. Approximation results. We will show that in many cases, D1
F(X)

is itself the completion of D1(X). We begin with some cases where the two
spaces are equal. In this first result, part of the conclusion (the fact that
D1(X) is complete) was previously observed in [13].

Theorem 5.1. Let X ⊆ C be compact , perfect and the union of finitely
many pointwise regular sets. Let L > 0, and let F be a useful set of paths in
X which includes all injective rectifiable paths with length ≤ L in X. Then
D1(X) = D1

F (X) (and hence D1(X) is complete).

Proof. As we observed before, every rectifiable path is “piecewise of
length at most L” and so we may assume that F is, in fact, the set of
all injective rectifiable paths in X. By Lemma 3.7, each component of X is
pointwise regular and so we have F(X) = X. Thus F-derivatives are unique
and D1(X) ⊆ D1

F(X), the inclusion being isometric.
Choose f ∈ D1

F(X) and let g ∈ C(X) be the F-derivative of f . Choose
a ∈ X and (zn) ⊆ X such that zn 6= a and zn → a. Then zn is eventually
in the same component as a (call the component U). So without loss of
generality we can assume that zn ∈ U for every n ∈ N.
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Since U is pointwise regular, there is a k(a) > 0 such that, for each
n ∈ N, there is an injective, rectifiable path γn from a to zn in U , such that
|γn| ≤ ka|a− zn|.

Set

In =
f(zn)− f(a)

zn − a
− g(a) =

(
1

zn − a

�

γn

g(z) dz

)
− g(a).

We have

g(a) =
1

zn − a

�

γn

g(a) dz

for each n ∈ N, so

|In| =
∣∣∣∣

1

zn − a

�

γn

(g(z)− g(a)) dz

∣∣∣∣

≤ |γn|
|zn − a|

· sup{|g(z)− g(a)| : z ∈ Image(γn)}

≤ ka · sup{|g(z)− g(a)| : z ∈ Image(γn)} → 0

as n→∞. Thus

lim
n→∞

f(zn)− f(a)

zn − a
= g(a)

as required.

Note that it is not enough just to have F being a useful set of paths in
X with F(X) = X, as the following example shows.

Example 5.2. Let X be the unit square, [0, 1]× [0, 1] ⊆ C. Let F be the
set of paths of the form γ : [a, b]→ X, γ(t) = k+ti for some set [a, b] ⊆ [0, 1].
It is clear that F is useful and F(X) = X, in fact F(X) = X.

Define f ∈ C(X) by f(x + iy) = x for x + iy ∈ X. It is clear from the
Cauchy–Riemann equations that f 6∈ D1(X). However f ∈ D1

F (X), with
(unique) F-derivative g ∈ C(X) given by g(x+ iy) = 0 for all x+ iy ∈ X.

In this example, D1(X) is a proper closed subalgebra of D1
F (X).

In view of this example, it is worth investigating conditions on F which
ensure that functions in D1

F (X) are analytic on the interior of X. The fol-
lowing lemma and its immediate corollary give one class of useful sets of
paths with this property.

Lemma 5.3. Let X ⊆ C be compact and let F be the set of all injective
rectifiable paths in X. Then every f ∈ D1

F(X) is analytic on the interior
of X.

Proof. Choose a point z ∈ int(X). Then B(z, r) ⊆ int(X) for some
r > 0. Set Y = B(z, r). Let G be the set of paths in F whose images are
contained in Y . Clearly G is in fact the set of injective rectifiable paths in Y .
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Choose f ∈ D1
F(X). Then f |Y ∈ D1

G(Y ). Since Y is pointwise regular, by
Theorem 5.1 we have D1

G(Y ) = D1(Y ). Thus f |Y ∈ D1(Y ) and hence f is
analytic at z.

The following corollary is now immediate.

Corollary 5.4. Let X ⊆ C be compact , let L > 0 and let F be a useful
set of paths in X which includes all those injective rectifiable paths in X
which have length at most L. Then every f ∈ D1

F (X) is analytic on the
interior of X.

In order to show that the original spaces are often dense in the new
spaces, we will look at some related questions concerning polynomial and
rational approximation. We first extend a definition from the original paper
of Dales and Davie. (See [7] and [12] for some work on these spaces in the
original setting.)

Definition 5.5. Let X be a perfect, compact plane set, and let D be
any of the normed algebras of functions on X discussed in this paper such
that D includes all rational functions with poles off X. We define DR to be
the closure in D of the rational functions with poles off X and DP to be the
closure in D of the polynomial functions.

Curiously, it appears to be an open question whether or not DR is always
equal to D, even if we restrict attention to the case where D is D1(X). It
is, however, easy to see that the continuous character space of DR is always
equal to X (recall that D may be incomplete): the proof of Theorem 1.8 of
[7] goes through without need for any modifications. It is also elementary
to see that whenever C \X is connected then DP = DR: for example, this
follows from the fact that the spectrum of the coordinate functional Z must
be the same in the completions of DR and DP.

Theorem 5.6. Let X be a compact plane set and suppose that F is
a useful set of paths in X with F(X) = X. Let D = D1

F (X). Consider
the following subsets of D: B, the set of all f ∈ D1

F (X) such that the F-
derivative of f is the zero function; A, the linear span of the idempotents
in D; and C, the closure of A in D. Then C is equal to the set of all functions
in C(X) which are constant on every component of X. Moreover we have
A ⊆ D1(X), C ⊆ B and C ⊆ DR.

Proof. It is clear that all of the subsets of D mentioned are in fact
subalgebras of D and that A ⊆ B and A ⊆ D1(X). It is also clear that
all of the idempotents in C(X) are in A, and that B is a closed subalgebra
of D. Since the derivatives of all elements involved are 0, C is equal to the
uniformly closed linear span in C(X) of the idempotents in C(X), and this is
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easily seen to be equal to the set of all functions in C(X) which are constant
on every component of X.

Finally, we turn to the rational approximation result. For this we need
only prove that all of the idempotents are in DR. This is, of course, imme-
diate from the Shilov idempotent theorem, but can also be seen directly by
extending any idempotent to be a function analytic on a neighbourhood of
X and applying Runge’s theorem.

Note that Example 5.2 shows that C need not coincide with B unless
further conditions are placed on F .

We now prove some closely related approximation results.

Theorem 5.7. Let X be a perfect , compact plane set such that C \X is
connected and X has empty interior. Suppose that F is a useful set of paths
in X with the following properties: F(X) = X, the set of lengths of paths in
F is bounded above, and every pair of distinct points of X which are in the
same component of X can be joined by a path in F . Set D = D1

F (X). Then
D = DR = DP and D1

F (X) is the completion of D1(X).

Proof. It is clear that the second part of the conclusion follows from the
first, and we have already mentioned that DP = DR in this setting. We
prove the rational approximation result. Set L = sup{|γ| : γ ∈ F}.

Choose f ∈ D1
F(X) with F-derivative g ∈ C(X). By Mergelyan’s theo-

rem we can find a polynomial p ∈ C(X) such that

‖p− g‖X < min

{
ε

3
,
ε

3L

}
.

We have, for any path γ0 ∈ F ,
∣∣∣

�

γ0

(p(z)− g(z)) dz
∣∣∣ ≤ |γ0| · ‖p− g‖X <

ε|γ0|
3L
≤ ε

3
.

Choose an analytic polynomial F whose derivative is p. Certainly we
have F ∈ DR.

Since F−f is uniformly continuous on X, we may choose δ > 0 such that
whenever z, w ∈ X with |z − w| < δ then |(F − f)(z)− (F − f)(w)| < ε/3.

Noting that every component of X is the intersection of the clopen sets
containing it, by compactness we may choose components K1, . . . ,Kn of X
and pairwise disjoint clopen subsets U1, . . . , Un of X such that for each i we
have

Ui ⊆ {z ∈ C : dist(z,Ki) < δ} and X =
n⋃

i=1

Ui.

For each i, choose a point zi ∈ Ki. Define h on X as follows: h(z) =
F (z) − F (zi) + f(zi) for z ∈ Ui. Then h is F plus a linear combination of
idempotents, so h ∈ DR. We now look at h − f . First note that h′ = p, so
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‖h′ − g‖X < ε/3. We now wish to estimate ‖h − f‖X . Although we have
not assumed that Ki ⊆ Ui, our choice of δ ensures that if |F (z) − F (zi) +
f(zi)− f(z)| is small on Ki then |h− f | is small on Ui. Let z ∈ Ki. Choose
any path γ ∈ F from zi to z. Then

F (z)− F (zi) + f(zi)− f(z) =

�

γ

(p(w)− g(w)) dw,

and so |F (z) − F (zi) + f(zi) − f(z)| < ε/3 for z ∈ Ki. It follows from our
choice of δ that |h(z) − f(z)| < 2ε/3 for z ∈ Ui and so |h − f |X < 2ε/3.
Thus ‖h− f‖ < ε.

A similar theorem is valid when the interior is non-empty, provided that
we ensure that the functions in D1

F (X) are analytic on the interior of X.
(This is of course also necessary for rational approximation.) We saw some
conditions which were sufficient for this above in Lemma 5.3 and Corol-
lary 5.4. Here is one fairly general version of the result for X with interior.

Theorem 5.8. Let X be a perfect , compact plane set such that C \ X
is connected and let r > 0. Suppose that F is a useful set of paths in X
with the following properties: F(X) = X, the set of lengths of paths in F
is bounded above, every pair of distinct points of X which are in the same
component of X can be joined by a path in F , and F includes all injective
rectifiable paths in X of length ≤ r. Set D = D1

F (X). Then D = DR = DP

and D1
F (X) is the completion of D1(X).

The proof is the same as that of 5.7 in view of the fact that, since f is
analytic on the interior of X, so is the F-derivative g of f . As g is continuous
on X we may still apply Mergelyan’s theorem.

When C \X is not connected then the polynomials cannot be dense. If
we attempt to imitate the above proofs using rational functions we hit the
obstacle that it may not be possible to anti-differentiate these. However, if a
rational function is uniformly close to an F-derivative, we may obtain good
estimates on the residues at the poles and this may allow us to modify the
rational function slightly to obtain one which may be anti-differentiated.
Here is one rational approximation result valid for finitely connected X.

Theorem 5.9. Let X be a perfect , compact plane set such that C \ X
has only finitely many bounded components, say U1, . . . , Un. Choose one
point aj in each of the bounded components Uj (1 ≤ j ≤ n). Suppose that F
is a useful set of paths in X satisfying the conditions of Theorem 5.8 and ,
in addition, for each j with 1 ≤ j ≤ n there is a closed curve γj in F with
non-zero winding number about aj. Set D = D1

F (X). Then D = DR and
D1
F (X) is the completion of D1(X).
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Proof. The proof is again similar to that of Theorem 5.7. Let f ∈ D1
F(X)

and let g be the F-derivative of f . Then g is continuous on X and analytic
on the interior of X, so it is standard (see for example [11]) that g may be
uniformly approximated on X by a sequence of rational functions, say rk.
By Runge’s theorem we may further assume that the poles of the rational
functions rk all lie in {a1, . . . , an}. As

�
γj
g(z) dz = 0 for each j, the residue

at each aj of rk tends to 0 as k →∞. Thus we may modify the sequence rk
(subtracting rational functions with simple poles in {a1, . . . , an} if necessary)
to show that g may be uniformly approximated on X by anti-differentiable
rational functions. The remainder of the proof is identical to that of Theorem
5.7, using such a rational function r in place of the polynomial p used there
and taking F to be a rational anti-derivative of r.

These theorems cover many cases where completeness has previously
been an issue, for example the simple sets and the radially self-absorbing
sets considered in [10] (we define these below), and the combs and stars
considered in [4].

Recall the following definition from [10].

Definition 5.10. Let X ⊆ C be non-empty and compact. Then X is
radially self-absorbing if, for every r > 1, we have X ⊆ int(rX).

We conclude this section by transferring to our new spaces a result about
holomorphic approximation for radially self-absorbing sets, originally proved
for the D(X,M) spaces in [10] (Lemma 3.1). The bulk of the proof is iden-
tical, but we need to use Lemma 5.3.

Theorem 5.11. Let X ⊆ C be compact and radially self-absorbing. Let
F be the set of injective rectifiable paths in X. Let M be a sequence of
positive numbers. Set

S = {f ∈ D(X,M) : f extends to be analytic on a neighbourhood of X}.
Then S is dense in DF (X,M).

Proof. Note that F(X) = X and so D(X,M) embeds isometrically in
DF (X,M).

Choose f ∈ DF (X,M). Then by Lemma 5.3, f is analytic on int(X). For
n ∈ N and z ∈ C, set gn(z) = nz/(n+ 1) and set Fn = f◦gn. Then Fn is ana-
lytic on n+1

n int(X), which is a neighbourhood of X, and so Fn|X ∈ D∞(X).

Set fn = Fn|X . We have, for all n ∈ N and all k ≥ 0, ‖f (k)
n ‖∞ ≤ ‖f (k)‖∞.

Thus fn ∈ D(X,M) for each n ∈ N. Now ‖f (k)
n − f (k)‖∞ → 0 as n → ∞.

Hence, by dominated convergence for series, ‖fn − f‖ → 0 as n→∞.

Remarks. This holomorphic approximation result also shows that the
new space is the completion of the old. The same result is, of course, valid
for the DnF (X) spaces (with a slightly easier proof).
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In the algebra setting, the completeness of our DF (X,M) algebras allows
us to apply the holomorphic functional calculus to the coordinate functional
Z, as in Corollary 3.2 of [10], to see that the polynomials are dense in our
spaces: the same proof goes through without the need for any changes. Of
course, this result from [10] follows from our result, without need for the
completeness assumption made there. This eliminates the need to appeal to
the Runge argument given in Section 5 of that paper to cover the possibility
that the normed algebras concerned might be incomplete.

6. Open problems. We conclude with some open problems.

1. Do there exist a compact plane set X and a non-analytic sequence M
such that the rational functions with poles off X are not dense in D(X,M)?

We have mentioned a small number of positive results on polynomial
and rational approximation, but in general this problem is wide open. In
particular the answer for D(X,M) is apparently not known for the “square
annulus” obtained by deleting an open square from the middle of a compact
square. (Note that in view of these open problems, some authors have worked
directly with the closures in these spaces of the set of rational functions
instead.)

2. If X is a radially self-absorbing set, is D1(X) already complete? More
generally, suppose that X is the closure of a bounded, connected open subset
of C. Is D1(X) already complete?

3. Let X be a compact plane set and let F be the set of all injective,
rectifiable paths in X. Suppose that F(X) = X. Is it always true that
D1
F (X) is the completion of D1(X)? Is it always true that the rational

functions are dense in D1
F(X)?

Note that here the answer for the square annulus is easily seen to be yes,
using Theorem 5.9. More generally, any function f ∈ D1

F (X) which may be
extended to have continuous first-order partial derivatives on a neighbour-
hood of X and whose ∂ derivative vanishes on X may be approximated in
D1
F (X) by rational functions (see [19]). However, even functions in D1(X)

need not in general have such extensions. Our question on rational approxi-
mation is equivalent to the question of whether a dense set of functions may
be so extended.
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