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A non-doubling Trudinger inequalityby
Amiran Gogatishvili (Praha) and Pekka Koskela (Jyväskylä)Abstra
t. We establish a Trudinger inequality for fun
tions that satisfy a suitablePoin
aré inequality in a Eu
lidean spa
e equipped with a Borel measure that need not bedoubling.1. Introdu
tion. It is by now well understood that a Poin
aré inequal-ity improves itself to a Sobolev-type inequality when we 
onsider a doublingmeasure. To be more pre
ise, suppose that a pair u, g of measurable fun
tionswith g ≥ 0 satis�es the inequality(1) <

B

|u − uB| dµ ≤ C diam(B)
( <

B

gp dµ
)1/p

for all balls B in a metri
 spa
e X. Here and in what follows, 4A refers to
µ(A)−1

T
A, uA is the average of u over a set A, and we assume that u isintegrable on ea
h ball B. Assume then that µ is doubling:(2) µ(B(x, 2r)) ≤ Cdµ(B(x, r)),for ea
h x and all radii r > 0. By iterating this inequality one obtains a lowerestimate for the volume de
ay:(3) µ(B(x, r)) ≥ C(r/R)sµ(B(x, R))whenever B(x, r) ⊂ B(x, R). This exponent s plays the role of the dimension:when p < s and g is p-integrable, the fun
tion u is q-integrable for ea
h

q < ps/(s − p), and when p = s and g is s-integrable, u is exponentiallyintegrable. Here s 
an be repla
ed by any exponent as in (3), not ne
essarilyobtained by iterating the doubling 
ondition. These integrability results arein fa
t realized as inequalities. For example, for q < ps/(p − s), one obtains2000 Mathemati
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( <

B

|u − uB |
q dµ

)1/q
≤ C ′ diam(B)

( <
2B

gp dµ
)1/p

,

where 2B is the ball with the same 
enter as B and of twi
e the radius of B.When the geometry of balls is su�
iently ni
e, the 
onstant 2 
an be omitted.Under the mild additional assumption that the spa
e X be 
onne
ted, oneeven has a Trudinger inequality in the borderline 
ase p = s. For these resultssee the papers [3℄, [4℄ by Hajªasz and Koskela.A version of the improved regularity is also known to hold for 
ertain non-doubling measures. The �rst result of this kind that we know of is from thepaper [6℄ by Mateu, Mattila, Ni
olau and Orobitg, where a John�Nirenbergtype estimate is proven for fun
tions in BMO. For motivations for relaxingthe doubling assumption see [6℄ and the referen
es therein.Let us des
ribe the non-doubling setting. Let µ be a non-negative Radonmeasure on R
n, not ne
essarily doubling. We assume that µ(T ) = 0 for ea
hhyperplane T orthogonal to one of the 
oordinate axes. In [6℄, the authorsstudied BMO for 
ubes with respe
t to su
h a measure and established anexponential integrability result. The point here is that 
ubes in R

n havespe
ial 
overing properties. An example was given in [6℄ to show that one
annot ne
essarily gain any improved integrability for fun
tions in BMO ifthe measure fails to be doubling and the de�nition is given in terms of balls.Subsequently, in [8℄, Orobitg and Pérez gave a version of the Sobolev-type inequalities for p < s. Here s refers to a de
ay order of the measure,analogous to (3). It is natural to impose this assumption on the measure. Asin the 
ase of BMO, the Poin
aré inequality was assumed to hold for 
ubes.In this short note, we establish a version of the Trudinger inequality inthe setting 
onsidered in [8℄.Theorem 1.1. Let µ be a non-negative Radon measure on R
n so that

µ(T ) = 0 for ea
h hyperplane T orthogonal to one of the 
oordinate axes.Assume that(4) µ(Q) ≥ Cµ diam(Q)sfor ea
h 
ube Q, where s > 1. Suppose that u is a lo
ally integrable fun
tionso that(5) <
Q

|u − uQ| dµ ≤ C diam(Q)
( <

Q

gp dµ
)1/p

for ea
h 
ube Q with edges parallel to 
oordinate axes, where g ∈ Ls
µ(Rn),and 1 < p < s. Then there exists a 
onstant C ′ independent of u, g su
h that



A non-doubling Trudinger inequality 115for ea
h 
ube as above we have
‖u − uQ‖exp Ls′ (Q,µ) ≤ C

( \
Q

gs dµ
)1/s

where
‖v‖expLs′ (Q,µ) = inf

{
λ :

<
Q

exp((g/λ)s′) dµ < 1
}

and s′ = s/(s − 1).The 
laim of Theorem 1.1 
an be lo
alized: if we assume (4) and (5) forea
h 
ube Q ⊂ Q0, all with edges parallel to 
oordinate axes, then the 
laimholds for ea
h analogous sub
ube of Q0.Our proof also gives the same integrability estimate for lo
ally integrablefun
tions u that satisfy a.e. the pointwise estimate(6) |u(x) − u(y)| ≤ |x − y|(g(x) + g(y))with g lo
ally s-integrable. We believe that even this 
ase is new. When
µ is doubling, this 
lass of fun
tions introdu
ed by Hajªasz in [2℄ 
oin
ideswith the 
lass of fun
tions u studied in Theorem 1.1. In our setting, thegiven pointwise estimate implies the indi
ated Poin
aré inequality but the
onverse dire
tion is doubtful.Let us 
lose this introdu
tion by pointing out that we do not know if it issu�
ient to assume the Poin
aré inequality of Theorem 1.1 with exponent s.Our method, based on 
ertain ideas from [6℄ and [8℄, breaks down if thisinequality is taken as the starting point.2. Proof of Theorem 1.1. We assume that µ is as in Theorem 1.1.Fix a 
ube Q0 and a point x ∈ Q0. Let 0 < r < diam(Q0). We de�ne
Q̃(x, r) as the unique 
ube with edges parallel to the 
oordinate axes andof diameter r, 
ontaining x, 
ontained in Q0, and with 
enter as 
lose to xas possible. Clearly, for a �xed x, the fun
tion µ(Q̃(x, r)) is a 
ontinuousfun
tion of r when 0 < r < diam(Q0). Consequently, there exists a sequen
e
(ri(x)) so that(7) µ(Q̃(x, ri(x))) = 2−iµ(Q0).Let us de�ne Qi(x) = Q̃(x, ri(x)). Be
ause Q̃(x, r) ⊂ Q̃(x, R) when r < R,we have(8) Qi+1(x) ⊂ Qi(x)for all i. Asso
iate a sequen
e (Qi(x)) to ea
h x ∈ Q0 by the above pro
edure.



116 A. Gogatishvili and P. KoskelaWe now de�ne a maximal operator asso
iated to our family of 
ubes bysetting
M̃pg(x) = sup

i≥0

(
1

µ(Qi(x))

\
Qi(x)

|g(y)|p dµ

)1/p

.

Lemma 2.1. We have
µ({x ∈ Q0 : M̃pg(x) > λ}) ≤ b(n)λ−p

\
Q0

gp dµ,

where b(n) only depends on n. Moreover , for ea
h 0 < q < p,
(

1

µ(Q0)

\
Q0

(M̃pg)q dµ

)1/q

≤ 21/q

(
qb(n)

p − q

)1/p( 1

µ(Q0)

\
Q0

gp dµ

)1/p

.

Estimates like the one in Lemma 2.1 are well known when either the mea-sure is doubling or when the 
ubes in the de�nition of M̃pg are 
entered at thepoint x. In the �rst 
ase, the doubling allows one to e�e
tively use the Vitali
overing theorem and in the se
ond 
ase one relies on the Besi
ovit
h 
over-ing theorem. Thus the se
ond 
ase is heavily Eu
lidean whereas the doublingassumption on the measure su�
es in general metri
 measure spa
es. In oursetting, we 
annot dire
tly apply the Besi
ovit
h 
overing theorem. The keyidea in our argument 
omes from [6℄. For the sake of 
ompleteness we give arather detailed proof.Proof of Lemma 2.1. For ea
h x ∈ Eλ := {x ∈ Q0 : M̃pg(x) > λ} thereis a 
ube Qi(x)(x) so that(9) (
1

µ(Qi(x)(x))

\
Qi(x)(x)

|g(y)|p dµ

)1/p

> λ.

We de�ne Ri(x)(x) as the unique re
tangle in R
n 
entered at x so that

Ri(x)(x) ∩ Q0 = Qi(x)(x). Denote by R the 
olle
tion of re
tangles obtainedby this pro
edure. It follows from the de�nition that the ratio of any twoside lengths of a re
tangle in R is at most 2. So, by the Besi
ovit
h 
ov-ering theorem (see [1℄), we obtain a 
ountable sub
olle
tion of re
tangles
Ri ∈ R 
overing Eλ so that ea
h point in R

n belongs to at most b(n) ofthese re
tangles, where b(n) only depends on n. Therefore,
µ(Eλ) ≤

∞∑

i=1

µ(Rj ∩ Q0) ≤ λ−p
∞∑

i=1

µ(Qi)
1

µ(Qi)

\
Qi

|g|p dµ(10)
≤ λ−p

∞∑

i=1

\
Qi

|g|p dµ ≤ b(n)λ−p
\

Eλ

|g|p dµ.
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ond statement follows from the Kolmogorov inequality whi
h statesthat every weak-type estimate as in the �rst part of the 
laim yields a strong-type inequality when the exponent p is relaxed to 0 < q < p; this 
an beeasily 
he
ked by hand by using the Cavalieri formula for Lebesgue integrals(
f. Theorem 14.11 in [4℄).We now give the proof of Theorem 1.1.Proof of Theorem 1.1. Fix a point x ∈ Q0 and the asso
iated sequen
e
(Qi(x)) of 
ubes. To simplify our notation we will mostly suppress the de-penden
e of Qi on x in what follows.By the Lebesgue di�erentiation theorem (
f. [7℄) we may assume that

lim
i→∞

uQi(x) = u(x)

µ-a.e. and hen
e we may assume that our �xed point x has this property.Let N = N(x) be a positive integer whose value will be determined later.Now
1

2
|u(x) − uQ0 | ≤

1

2

∞∑

i=0

|uQi
− uQi+1 | ≤

∞∑

i=0

1

µ(Qi)

\
Qi

|u − uQi
| dµ(11)

=
N∑

i=0

1

µ(Qi)

\
Qi

|u − uQi
| dµ

+

∞∑

i=N+1

1

µ(Qi)

\
Qi

|u − uQi(x)| dµ =: I1 + I2.Furthermore, by (5), (4), (8), 
hanging the order of summation, using (7)and the assumption p < s, and �nally employing the Hölder inequality wesee that
(12)

C
1/s
µ

C
I1 ≤ C1/s

µ

N∑

i=0

diam(Qi)

(
1

µ(Qi)

\
Qi

gp dµ

)1/p

≤

N∑

i=0

µ(Qi)
1/s

(
1

µ(Qi)

\
Qi

gp dµ

)1/p

=

N∑

i=0

µ(Qi)
1/s−1/p

( \
Qi

gp dµ
)1/p

=

N∑

i=0

µ(Qi)
1/s−1/p

( N∑

k=i

\
Qk\Qk+1

gp dµ +
\

QN+1

gp dµ
)1/p

≤
N∑

i=0

µ(Qi)
1/s−1/p

N∑

k=i

( \
Qk\Qk+1

gp dµ
)1/p

+

N∑

i=0

µ(Qi)
1/s−1/p

( \
QN+1

gp dµ
)1/p
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≤

N∑

i=0

( \
Qi\Qi+1

gp dµ
)1/p

i∑

k=0

µ(Qk)
1/s−1/p

+ C ′µ(QN+1)
1/s−1/p

( \
QN+1

gp dµ
)1/p

≤ C ′
( N∑

i=0

( \
Qi\Qi+1

gp dµ
)1/p

µ(Qi)
1/s−1/p

+ µ(QN+1)
1/s−1/p

( \
QN+1

gp dµ
)1/p)

≤ C ′
( N∑

i=0

( \
Qi\Qi+1

gs dµ
)1/s

+
( \

QN+1

gs dµ
)1/s)

≤ C ′N(x)1/s′
( \

Q0

gs dµ
)1/s

,

where C ′ = C ′(p, s). To estimate I2 we �rst apply the lower de
ay order (4)of µ and the equality (7) to see that
diam(Qi) ≤ C−1/s

µ µ(Qi)
1/s ≤ C2−i/sµ(Q0)

1/s.Taking this and the Poin
aré inequality (5) into a

ount results in the esti-mate
I2 =

∞∑

i=N+1

1

µ(Qi)

\
Qi

|u − uQi
| dµ(13)

≤ CC−1/s
µ

∞∑

i=N(x)

2−i/sµ(Q0)
1/s

(
1

µ(Qi(x))

\
Qi

gp dµ

)1/p

≤ CC−1/s
µ

∞∑

i=N+1

2−i/sµ(Q0)
1/s

(
1

µ(Qi)

\
Qi

gs dµ

)1/s

≤ C ′(C, s, Cµ)2−N(x)/sµ(Q0)
1/sM̃sg(x).We now 
hoose N(x) to be the integer part of

s log2

(
M̃sg(x)

(
4
Q0

gs dµ)1/s

)
.
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hoi
e inequalities (11)�(13) give us the estimate
|u(x) − uQ0 |

≤ C ′′

(
log2

(
(M̃sg(x))s

1
µ(Q0)

T
Q0

gs dµ

))1/s′( \
Q0

gs dµ
)1/s

+ C ′′
( \

Q0

gs dµ
)1/s

,where C ′′ = C(p, s, Cµ, C). Consequently, for λ > 0,\
Q0

exp

(
log 2

(
|u(x) − uQ0 |

λC ′′(
T
Q0

gs dµ)1/s

)s′)
dµ ≤ 21/λ

\
Q0

(M̃sg(x))s/λ dµ
(

1
µ(Q0)

T
Q0

gs dµ
)1/λ

.The 
laim of Theorem 1.1 follows by employing the boundedness of themaximal operator given by Lemma 2.1, whi
h 
an be applied when λ > 1.Remark 2.2. The proof of Theorem 1.1 above shows that we a
tuallyproved the Trudinger-type estimate for the potential
Jg(x) =

∞∑

i=0

diam(Qi(x))

(
1

µ(Qi(x))

\
Qi(x)

gp dµ

)1/p

.
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