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A non-doubling Trudinger inequality
by

AMIRAN GOGATISHVILI (Praha) and PEKKA KOSKELA (Jyviskyld)

Abstract. We establish a Trudinger inequality for functions that satisfy a suitable
Poincaré inequality in a Euclidean space equipped with a Borel measure that need not be
doubling.

1. Introduction. It is by now well understood that a Poincaré inequal-
ity improves itself to a Sobolev-type inequality when we consider a doubling
measure. To be more precise, suppose that a pair u, g of measurable functions
with g > 0 satisfies the inequality

1) § o upldy < Cdiam(B)( {7 an) "
B B

for all balls B in a metric space X. Here and in what follows, § 4 Tefers to
u(A)~t {1 ua is the average of u over a set A, and we assume that u is
integrable on each ball B. Assume then that u is doubling:

(2) w(B(x,2r)) < Cap(B(z,7)),
for each x and all radii » > 0. By iterating this inequality one obtains a lower
estimate for the volume decay:

(3) p(B(z,r)) = C(r/R)*u(B(z, R))

whenever B(z,r) C B(z, R). This exponent s plays the role of the dimension:
when p < s and g is p-integrable, the function u is g-integrable for each
q < ps/(s —p), and when p = s and ¢ is s-integrable, u is exponentially
integrable. Here s can be replaced by any exponent as in (3), not necessarily
obtained by iterating the doubling condition. These integrability results are
in fact realized as inequalities. For example, for ¢ < ps/(p — s), one obtains
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the inequality
( fu— us\qdﬂ)l/q < diam(B)< f o du)l/p,
B 2B

where 2B is the ball with the same center as B and of twice the radius of B.
When the geometry of balls is sufficiently nice, the constant 2 can be omitted.
Under the mild additional assumption that the space X be connected, one
even has a Trudinger inequality in the borderline case p = s. For these results
see the papers [3], [4] by Hajlasz and Koskela.

A version of the improved regularity is also known to hold for certain non-
doubling measures. The first result of this kind that we know of is from the
paper [6] by Mateu, Mattila, Nicolau and Orobitg, where a John—Nirenberg
type estimate is proven for functions in BMO. For motivations for relaxing
the doubling assumption see [6] and the references therein.

Let us describe the non-doubling setting. Let 1 be a non-negative Radon
measure on R”, not necessarily doubling. We assume that p(7") = 0 for each
hyperplane T orthogonal to one of the coordinate axes. In [6], the authors
studied BMO for cubes with respect to such a measure and established an
exponential integrability result. The point here is that cubes in R™ have
special covering properties. An example was given in [6] to show that one
cannot necessarily gain any improved integrability for functions in BMO if
the measure fails to be doubling and the definition is given in terms of balls.

Subsequently, in [8], Orobitg and Pérez gave a version of the Sobolev-
type inequalities for p < s. Here s refers to a decay order of the measure,
analogous to (3). It is natural to impose this assumption on the measure. As
in the case of BMO, the Poincaré inequality was assumed to hold for cubes.

In this short note, we establish a version of the Trudinger inequality in
the setting considered in [§].

THEOREM 1.1. Let i be a non-negative Radon measure on R™ so that
w(T) = 0 for each hyperplane T' orthogonal to one of the coordinate axes.
Assume that

(4) Q) = Gy diam(Q)°

for each cube @), where s > 1. Suppose that u is a locally integrable function
so that

(5) Flu— uqldp < caiam(@)(&gpdu)” '
Q Q

for each cube Q) with edges parallel to coordinate azes, where g € LZ(]R”),
and 1 < p < s. Then there exists a constant C' independent of u, g such that
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for each cube as above we have

/s
Hu - uQ”expLS/(Q,#) = C( S gs d'u>1
Q

where

Hv||eXpLS/(Q’H) = inf {)\ : S exp((g/\)®) dp < 1}
Q

and s' = s/(s —1).

The claim of Theorem 1.1 can be localized: if we assume (4) and (5) for
each cube Q C Q, all with edges parallel to coordinate axes, then the claim
holds for each analogous subcube of ().

Our proof also gives the same integrability estimate for locally integrable
functions u that satisfy a.e. the pointwise estimate

(6) [u(x) —u(y)| < [z —yl(g(x) + 9(y))

with g locally s-integrable. We believe that even this case is new. When
u is doubling, this class of functions introduced by Hajtasz in [2]| coincides
with the class of functions u studied in Theorem 1.1. In our setting, the
given pointwise estimate implies the indicated Poincaré inequality but the
converse direction is doubtful.

Let us close this introduction by pointing out that we do not know if it is
sufficient to assume the Poincaré inequality of Theorem 1.1 with exponent s.
Our method, based on certain ideas from [6] and [8], breaks down if this
inequality is taken as the starting point.

2. Proof of Theorem 1.1. We assume that p is as in Theorem 1.1.

Fix a cube Qo and a point = € Q. Let 0 < r < diam(Qg). We define
@(z,r) as the unique cube with edges parallel to the coordinate axes and
of diameter r, containing z, contained in )y, and with center as close to x

as possible. Clearly, for a fixed z, the function u(Q(z,r)) is a continuous
function of » when 0 < r < diam(Q). Consequently, there exists a sequence
(ri(x)) so that

(7) u(Q(a,ri(x))) = 27" 1(Qo)-
Let us define Q;(z) = Q(x,7i(z)). Because Q(z,7) C Q(z, R) when r < R,

we have

(8) Qi+1(z) C Qi(z)

for all 7. Associate a sequence (Q;(x)) to each z € Qg by the above procedure.
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We now define a maximal operator associated to our family of cubes by
setting

__ 1 1/p
Mpg(z) = fgg (m st(z) lg(y)IP du) :

LEMMA 2.1. We have

p({z € Qo : Myg(z) > A}) < b(n)AP | g7 dp,
Qo

where b(n) only depends on n. Moreover, for each 0 < q < p,

(@ Lot w) =2 () (s I W)

Estimates like the one in Lemma 2.1 are well known when either the mea-
sure is doubling or when the cubes in the definition of Mg are centered at the
point x. In the first case, the doubling allows one to effectively use the Vitali
covering theorem and in the second case one relies on the Besicovitch cover-
ing theorem. Thus the second case is heavily Euclidean whereas the doubling
assumption on the measure suffices in general metric measure spaces. In our
setting, we cannot directly apply the Besicovitch covering theorem. The key
idea in our argument comes from [6]. For the sake of completeness we give a
rather detailed proof.

Proof of Lemma 2.1. For each x € E) := {z € Qo : Mpg(:ﬂ) > A} there
is a cube Q;(,)(7) so that

1 1/p

We define R;(,)(z) as the unique rectangle in R™ centered at x so that
Ri(z)(z) N Qo = Qj(z) (7). Denote by R the collection of rectangles obtained
by this procedure. It follows from the definition that the ratio of any two
side lengths of a rectangle in R is at most 2. So, by the Besicovitch cov-
ering theorem (see [1]), we obtain a countable subcollection of rectangles
R; € R covering E) so that each point in R™ belongs to at most b(n) of
these rectangles, where b(n) only depends on n. Therefore,

(10) (B <3 p(R; N Qo) <A Q) s | gl di
i—1 w(Qi) O

i=1

< Azg gl? dj < b(m)A? | [gl? dp.
i=1Q; By
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The second statement follows from the Kolmogorov inequality which states
that every weak-type estimate as in the first part of the claim yields a strong-
type inequality when the exponent p is relaxed to 0 < ¢ < p; this can be
easily checked by hand by using the Cavalieri formula for Lebesgue integrals
(cf. Theorem 14.11 in [4]).

We now give the proof of Theorem 1.1.

Proof of Theorem 1.1. Fix a point x € (g and the associated sequence
(Qi(z)) of cubes. To simplify our notation we will mostly suppress the de-
pendence of (; on x in what follows.

By the Lebesgue differentiation theorem (cf. [7]) we may assume that

lim w =u(x
p-a.e. and hence we may assume that our fixed point x has this property.
Let N = N(z) be a positive integer whose value will be determined later.

Now

1
Qz
N
1
- Z S u—uq,| du
2@ )
> 1
+ Z m S ]u — qu(x)| dp =: 1 + Is.
i=n1 M) o,

Furthermore, by (5), (4), (8), changing the order of summation, using (7)
and the assumption p < s, and finally employing the Holder inequality we
see that

Cl/s 1 1/p
(12) é L < CI/SZdlam Ql)(# S g° d,u>

Qi

S 1/s 1 p s 1/s=1/p p /p
< ;N(Qi) (M(Qi) Cglg du) = ;MQ ) (gig )

N N /p
= Y@ ( | au+ | g dn)

1=0 1 Qr\Qr+1 QN+1

N N /p
< S u@)Y (] g aw

i=0 k=t Qi\Qk+1
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al 1/p & 1/s—1
> ( (I dﬂ) > (@)t e
=0 Qi\Qit1 k=0

+C’M(QN+1)1/S*1/”( | gpdu)l/p

QN1

IN

(] ) Moo
Qi\Qi+1

-

I
o

<C’<

2

+ Qi) (| gpdu)l/p)

QN+1

N 1/s
< C’(Z ( (I dﬂ)
=0 Qi\Qi+1
+( S QSdﬂ>1/S) < O/N(CE)l/SI( S gsdu)1/87
QN+1 Qo

where C' = C'(p, s). To estimate I we first apply the lower decay order (4)
of 1 and the equality (7) to see that

diam(Qs) < C;V*u(Q)"* < 027 u(Qo)*.

Taking this and the Poincaré inequality (5) into account results in the esti-
mate

[e.9]

1
13 I = —ug,|d
(13) 2 i:%;l Q1) QS u — uq;|du
< CC—l/s i 2—i/s (Q )1/3( 1 S by >l/P

—1/s > —i/s s 1 s s
<ceMs > 27 Qo) ( ~ g du)
i=N+1 Q

< C'(C, 5,002 N5 1(Qo) P Mg ().

We now choose N(z) to be the integer part of
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With this choice inequalities (11)-(13) give us the estimate
|u(z) — uq,|
Ms z))* /s 1/s 1/s
< C”(log2 <—§ o )Zd )) ( | g du) +C”( | g du) ;
w(Qo) SQo g-ap Qo Qo
where C" = C(p, s, Cy, C'). Consequently, for A > 0,
p g )\C//(S gs du)l/s H= 1 sd /X"
QO QO QO (,U,(Qo) SQQ g H)

The claim of Theorem 1.1 follows by employing the boundedness of the
maximal operator given by Lemma 2.1, which can be applied when A\ > 1.

REMARK 2.2. The proof of Theorem 1.1 above shows that we actually
proved the Trudinger-type estimate for the potential

J(x)—idiam(c)(x)(; [ ¢d >1/,,
= A VIR DS I A
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