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Perturbation theorems for local integrated semigroups

and their applications

by

Sheng Wang Wang, Mei Ying Wang and Yan Shen (Nanjing)

Abstract. Motivated by a great deal of interest in operators that may not be densely
defined and do not generate global integrated semigroups, we establish general perturba-
tion theorems for local integrated semigroups and describe their applications to local
complete second order abstract differential equations.

1. Introduction. Let X be a complex Banach space, and consider the
following local complete second order abstract differential equation on X:

(1.1) u′′(t) = Au(t) +Bu′(t), t ∈ [0, τ); u(0) = x, u′(0) = y,

where 0 < τ ≤ ∞ is fixed, and A and B are closed linear operators
on X which are not necessarily densely defined. As shown in [8, Chapter
VIII] equation (1.1) may have solutions which are either not exponentially
bounded or not defined on [0,∞) for dense sets of initial data. We deal with
these two cases, in this paper, from the following point of view: we first
establish several perturbation theorems for local integrated semigroups in
Sections 2 and 3; then, in Section 4, we reduce (1.1) to two kinds of systems
of first order differential equations and apply the results obtained in Sec-
tions 2 and 3 to prove the wellposedness of these two systems in a certain
sense.

The methods employed in this paper seem to be natural and direct, and
the results obtained are more general than the perturbation theorems for
strongly continuous semigroups and integrated semigroups appearing in [6,
7, 9, 10, 16]. In fact, to reach our target, we follow a quite different path
from these references.

As regards the theory of strongly continuous semigroups, cosine operator
families and their applications to partial differential equations, the reader
will find the books [9, 12] by J. Goldstein and A. Pazy, respectively, to be of
importance. As regards the theory of integrated semigroups and regularized

2000 Mathematics Subject Classification: Primary 47D06; Secondary 47B40.

[121]



122 S. W. Wang et al.

semigroups and their applications to partial differential equations, the book
[4] by R. deLaubenfels is of importance.

Throughout, L(X) is the algebra of all bounded linear operators on X.
For a closed linear operator A on X, D(A) and Im(A) denote its domain
and image, respectively, while ̺(A) and σ(A) stand for the resolvent set
and spectrum of A. For λ ∈ ̺(A), set R(λ,A) = (λ− A)−1. The set D(A),
equipped with the graph norm, is denoted by [D(A)] and is a Banach space.
If B ∈ L(X) satisfies: Bx ∈ D(A) and BAx = ABx for all x ∈ D(A) then
we write BA ⊆ AB and say that A and B commute.

Definition 1.1. Let n ∈ N and 0 < τ ≤ ∞ be given. A strongly contin-
uous family of operators {S(t)}t∈[0,τ) ⊂ L(X) is a local n-times integrated
semigroup if:

(i) S(0) = 0.

(ii) For every x ∈ X, one has

S(t)S(s)x =
1

(n− 1)!

[ s+t\
t

−
s\
0

]
(s+ t− r)n−1S(r)x dr

whenever 0 ≤ s, t, s+ t < τ .

The n-times integrated semigroup {S(t)}t∈[0,τ) is nondegenerate if S(t)x
= 0 for all t ∈ [0, τ) implies that x = 0. The generator of a nondegenerate
{S(t)}t∈[0,τ) is the following operator:

D(A) :=

{
x ∈ X : ∃y ∈ X such that

S(t)x =

t\
0

S(r)y dr +
tn

n!
x ∀t ∈ [0, τ)

}
;

Ax := y ∀x ∈ D(A).

The generator A is well defined by nondegeneracy.

Throughout, the word “local” will be omitted from all our statements
for simplicity.

Definition 1.2. A function u(·, x) : [0, τ) → X is a strong solution of
the abstract differential equation

(1.2) u′(t) = Au(t), t ∈ [0, τ); u(0) = x, x ∈ X,

if u(·, x) ∈ C1([0, τ), X) ∩ C([0, τ), [D(A)]) and satisfies (1.2).

Let n ∈ N. A function v(·, x) : [0, τ) → X is an n-times integrated mild

solution of (1.2) if v(0, x) = 0, v(·, x) ∈ C([0, τ), X),
Tt
0
v(s, x) ds ∈ D(A)
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and

(1.3) v(t, x) = A

t\
0

v(s, x) ds+
tn

n!
x, x ∈ X, t ∈ [0, τ).

In [2], (1.3) is written as Cn+1(τ) and if for every x ∈ X, (1.3) has a
unique solution then Cn+1(τ) is said to be well-posed (see [2, Section 1]).
Some basic properties of integrated semigroups stated in the following

theorem and proposition can be found in [5] for the global case. But all these
properties remain valid for our local case (see also [2]).

Theorem1.3.AssumeA is a closed linear operator onXand {S(t)}t∈[0,τ)
⊂ L(X) is a strongly continuous family of bounded linear operators. Then
the following conditions (i)–(iii) are equivalent :

(i) {S(t)}t∈[0,τ) is an n-times integrated semigroup generated by A.

(ii) (a) For every x ∈ X and t ∈ [0, τ),
Tt
0
S(r)x dr ∈ D(A) and

A

t\
0

S(r)x dr = S(t)x−
tn

n!
x.

(b) Either S(t)A ⊆ AS(t) or the solutions of (1.2) are unique.
(iii) (1.2) has a unique n-times integrated mild solution for every x ∈ X.

If the equivalent conditions (i)–(iii) hold , then

(iv) (1.2) has a unique strong solution for every x ∈ D(An+1) given by
u(t, x) := S(n)(t)x.

The fact that u(t, x) = S(n)(t)x is the unique strong solution of (1.2) for
x ∈ D(An+1) is stated in

Proposition 1.4. If {S(t)}t∈[0,τ) is an n-times integrated semigroup
generated by A then:

(i) For k ∈ N and x ∈ D(Ak), we have S(k−1)(t)x ∈ D(A) (t ∈ [0, τ))
and

AS(k−1)(t)x = S(k)(t)x−
tn−k

(n− k)!
x ∀t ∈ [0, τ), 1 ≤ k ≤ n,

AS(k−1)(t)x = S(k)(t)x ∀t ∈ [0, τ), k > n.

The first relation, together with S(0) = 0, implies S(k)(0)x = 0 for
all x ∈ D(Ak), 1 ≤ k ≤ n− 1, and S(n)(0)x = x for x ∈ D(An).

(ii) ̺(A) is nonempty and there exist α, β > 0 such that ([2])

E(α, β) := {λ ∈ C : Reλ ≥ β, |Imλ| ≤ eαReλ} ⊆ ̺(A).

(iii) Every operator B ∈ L(X) commuting with A also commutes with
S(t) for all t ∈ [0, τ).
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Proof. We only have to show (iii). [2, Proposition 3.1(c)] gives S(t)A ⊆
AS(t). Let x ∈ X. From

A

t\
0

S(s)Bxds = S(t)Bx−
tn

n!
Bx,

A

t\
0

BS(s)x ds = BA

t\
0

S(s)x ds = BS(t)x−
tn

n!
Bx

and the uniqueness of solutions of (1.2), it follows that S(t)B = BS(t).

We now define the concept and state some basic properties of n-times
integrated cosine operator families.

Definition 1.5. Let n ∈ N and 0 < τ ≤ ∞ be fixed. A strongly con-
tinuous family of operators {C(t)}t∈[0,τ) ⊂ L(X) is an n-times integrated
cosine operator family if:

(i) C(0) = 0.
(ii) For every x ∈ X, we have

2C(s)C(t)x =
1

(n− 1)!

{
(−1)n

|s−t|\
0

(|s− t| − r)n−1C(r)x dr

+
[ s+t\
0

−
s\
0

−
t\
0

]
(s+ t− r)n−1C(r)x dr

+

t\
0

(s− t+ r)n−1C(r)x dr +
s\
0

(t− s+ r)n−1C(r)x dr
}

whenever 0 ≤ s, t, s+ t < τ .
{C(t)}t∈[0,τ) is nondegenerate if C(t)x = 0 for all t ∈ [0, τ) implies x = 0.

The generator of a nondegenerate {C(t)}t∈[0,τ) is the following operator:

D(A) :=

{
x ∈ X : ∃y ∈ X such that

t\
0

(t− r)C(r)y dr = C(t)x−
tn

n!
x ∀t ∈ [0, τ)

}
;

Ax := y ∀x ∈ D(A).

It is also easy to see that A is well defined by nondegeneracy.

Definition 1.6. A function u(·, x, y) : [0, τ)→ X is a strong solution of
the second order abstract differential equation

(1.4) u′′(t) = Au(t), t ∈ [0, τ); u(0) = x, u′(0) = y, x, y ∈ X,

if u(·, x, y) ∈ C2([0, τ), X) ∩ C([0, τ), [D(A)]) and satisfies (1.4).
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Let n ∈ N. A function v(·, x, y) : [0, τ)→ X is an n-times integrated mild

solution of (1.4) if v(0, x, y) = 0, v(·, x, y) ∈ C([0, τ), X),
Tt
0
(t−s)v(s, x, y) ds

∈ D(A) for t ∈ [0, τ) and

v(t, x, y) = A

t\
0

(t− s)v(s, x, y) ds(1.5)

+
tn

n!
x+

tn+1

(n+ 1)!
y, x, y ∈ X, t ∈ [0, τ).

As usual, for a nonnegative real number α we denote by [α] the greatest
nonnegative integer not greater than α.

Theorem 1.7.AssumeA is a closed linear operator on X and {C(t)}t∈[0,τ)
⊂ L(X) is a strongly continuous family of operators. Then the following
conditions (i)–(iii) are equivalent :

(i) {C(t)}t∈[0,τ) is an n-times integrated cosine operator family gener-
ated by A.

(a) C(t)A ⊆ AC(t).

(b) For x ∈ X and t ∈ [0, τ),
Tt
0
(t− r)C(r)x dr ∈ D(A) and

A

t\
0

(t− r)C(r)x dr = C(t)x−
tn

n!
x.

(iii) (1.4) has a unique n-times integrated mild solution for every pair
x, y ∈ X.

If the equivalent conditions (i)–(iii) hold , then

(iv) (1.4) has a unique strong solution for all x, y ∈ D(A1+[(n+1)/2]).

To prove the theorem we need the following lemma.

Lemma 1.8. If A satisfies (ii) of Theorem 1.7 then there exists ω0 > 0
such that (ω20 ,∞) ⊆ ̺(A).

Proof. Define

Rλ(t)x :=

t\
0

e−λs
[ s\
0

C(r)x dr
]
ds ∀x ∈ X, t ∈ (0, τ) and λ > 0.

Apply A to both sides and use integration by parts twice to find

(1.6) ARλ(t)x = A

t\
0

e−λsd
s\
0

(s− r)C(r)x dr

= e−λt
[
C(t)x−

tn

n!
x

]
+ λ

t\
0

e−λs
[
C(s)x−

sn

n!
x

]
ds
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= e−λt
[
C(t)x−

tn

n!
x

]
+ λe−λt

t\
0

C(s)x ds

+ λ2
t\
0

e−λs
[ s\
0

C(s)x dr
]
ds− λ

t\
0

e−λs
sn

n!
x ds

= λ2Rλ(t)x+ λe
−λt

t\
0

C(s)x ds

+ e−λtC(t)x−
t\
0

e−λs
sn−1

(n− 1)!
x ds.

Set Cλ(t)x :=
Tt
0
C(s)x ds+ λ−1C(t)x. Then (1.6) implies that

(1.7) (λ2 −A)Rλ(t)x = λe
−λt[gλ(t)x− Cλ(t)x],

where

gλ(t) :=
1

λ

t\
0

eλ(t−s)
sn−1

(n− 1)!
ds(1.8)

=
eλt

λn+1
−
1

λn+1
−
t

λn
−
t2

2!λn−1
− · · · −

tn−1

(n− 1)!λ2
.

From (1.7), (1.8) and the definition of Cλ(t)x, together with an argument
similar to that of [2, Proposition 2.5], we can prove that there exists ω0 > 0
such that (ω20 ,∞) ⊂ ̺(A). This implies that λ

2−A has bounded inverse for
λ > ω0.

A more precise result than Lemma 1.8 was stated in [13] without proof.
In the following we write R(λ,A) := (λ2 −A)−1 for λ > ω0.

Proof of Theorem 1.7. [15, Theorem 1.5 and Proposition 1.8] implies
that (i), (ii) and (iii) of Theorem 1.7 are equivalent for a not necessarily ex-
ponentially bounded global n-times regularized cosine operator family with
A as a subgenerator (see [15, Definition 1.3]); it is easy to see that the proof
there is valid for our local case. Therefore it remains to show that A is the
generator of {C(t)}t∈[0,τ) under the equivalent conditions (i)–(iii). To do this
it suffices to prove that if x, z ∈ X satisfy

(1.9)

t\
0

(t− s)C(s)z ds = C(t)x−
tn

n!
x,

then x ∈ D(A) and Ax = z. Now (ii)(a) implies C(t)R(λ,A) = R(λ,A)C(t)
for all λ2 ∈ ̺(A). Hence
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t\
0

(t− s)C(s)R(λ,A)z ds = R(λ,A)
t\
0

(t− s)C(s)z ds

= R(λ,A)C(t)x−
tn

n!
R(λ,A)x = C(t)R(λ,A)x−

tn

n!
R(λ,A)x

= A

t\
0

(t− s)C(s)R(λ,A)x ds =
t\
0

(t− s)C(s)AR(λ,A)x ds.

Differentiate both sides with respect to t twice to find C(t)R(λ,A)z =
C(t)AR(λ,A)x. Since {C(t)}t∈[0,τ) is nondegenerate, it follows thatR(λ,A)z
= AR(λ,A)x. This gives AR(λ,A)x ∈ D(A) and hence R(λ,A)x ∈ D(A2).
Consequently, x = (λ2 −A)R(λ,A)x ∈ D(A) and Ax = z.
When the equivalent conditions (i)–(iii) of Theorem 1.7 hold, we may

apply the method used in [11, Theorems 4.2 and 7.6] or [17, Theorem 5.2]
to show that (iv) is true. Here we mention that (iv) is not necessary in what
follows. We include it only for completeness.

2. Bounded perturbations. In this section, we study bounded per-
turbations for n-times integrated semigroups. Let f(·) be a given function
and define

Jk(f)(t) =

t\
0

t1\
0

· · ·

tk−1\
0

f(tk) dtk dtk−1 · · · dt1

=
1

(k − 1)!

t\
0

(t− tk)
k−1f(tk) dtk.

Lemma 2.1. For B ∈ L(X) and n ∈ N,

n∑

k=0

Ckn(−B)
kJk+1

[
etB

tn−1

(n− 1)!

]
x =
tn

n!
x ∀x ∈ X,

where Ckn =
n!

k!(n−k)! .

Proof. We first show the following relation for 0 ≤ k ≤ n− 1:

(2.1) BkJk+1
[
etB

tn−1

(n− 1)!

]
x

=
k∑

j=0

(−1)jCjkJ
j+1

[
etB

tn−j−1

(n− j − 1)!

]
x ∀x ∈ X.

(2.1) is true for k = 0. Assume that it is true for 0 < k < n − 1. Applying
integration by parts and making use of Cjk+C

j−1
k = Cjk+1 and the convention

C−1k = 0 we find that
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(2.2) Bk+1Jk+2
[
etB

tn−1

(n− 1)!

]
x = BJ

{
BkJk+1

[
etB

tn−1

(n− 1)!

]
x

}

= BJ

{ k∑

j=0

(−1)jCjkJ
j+1

[
etB

tn−j−1

(n− j − 1)!

]
x

}

=
k∑

j=0

(−1)jCjkJ
j+1BJ

[
etB

tn−j−1

(n− j − 1)!

]
x

=
k∑

j=0

(−1)jCjkJ
j+1

[
etB

tn−j−1

(n− j − 1)!
− J

(
etB

tn−j−2

(n− j − 2)!

)]
x

=

k∑

j=0

(−1)j [Cjk + C
j−1
k ]J

j+1

[
etB

tn−j−1

(n− j − 1)!

]
x

+ (−1)k+1Jk+2
[
etB

tn−k−2

(n− k − 2)!

]
x

=

k+1∑

j=0

(−1)jCjk+1J
j+1

[
etB

tn−j−1

(n− j − 1)!

]
x,

and (2.1) follows. Next we show that

(2.3) BnJn+1
[
etB

tn−1

(n− 1)!

]
x

=

n−1∑

j=0

(−1)jCjnJ
j+1

[
etB

tn−j−1

(n− j − 1)!

]
x+ (−1)n

tn

n!
x.

Consider the left side of (2.1) for k = n − 1. Make use of (2.2) and apply
integration by parts to find

BnJn+1
[
etB

tn−1

(n− 1)!

]
x = BJ

{
Bn−1Jn

[
etB

tn−1

(n− 1)!

]
x

}

= BJ
n−1∑

j=0

(−1)jCjn−1J
j+1

[
etB

tn−j−1

(n− j − 1)!

]
x

= (−1)n−1B[Jn+1etB]x

+
n−2∑

j=0

(−1)jCjn−1J
j+1

[
etB

tn−j−1

(n− j − 1)!
− JetB

tn−j−2

(n− j − 2)!

]
x
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=
n−1∑

j=0

(−1)j [Cjn−1 + C
j−1
n−1]J

j+1etB
tn−j−1

(n− j − 1)!
x+ (−1)nJnx

=

n−1∑

j=0

(−1)jCjnJ
j+1

[
etB

tn−j−1

(n− j − 1)!

]
x+ (−1)n

tn

n!
x,

so (2.3) is true. Here we make use of Cjn−1+C
j−1
n−1 = C

j
n and the convention

C−1n−1 = 0.

From (2.1), (2.3) and the relations

n−j∑

k=0

(−1)kCkn−j = 0 ∀0 ≤ j ≤ n− 1, CknC
j
k = C

j
nC
k
n−j ,

we have, for all x ∈ X,

n∑

k=0

Ckn(−B)
kJk+1etB

tn−1

(n− 1)!
x

=
n−1∑

k=0

Ckn(−1)
k
k∑

j=0

(−1)jCjkJ
j+1etB

tn−j−1

(n− j − 1)!
x

+
n−1∑

j=0

(−1)n+jCjnJ
j+1etB

tn−j−1

(n− j − 1)!
x+
tn

n!
x

=
n−1∑

j=0

(−1)j
{[ n−1∑

k=j

(−1)kCknC
j
k+(−1)

nCjn

]
Jj+1
[
etB

tn−j−1

(n− j − 1)!

]
x

}
+
tn

n!
x

=

n−1∑

j=0

Cjn

{[ n−j∑

k=0

(−1)kCkn−j ]J
j+1

[
etB

tn−j−1

(n− j − 1)!

]
x

}
+
tn

n!
x =
tn

n!
x.

The following lemma is an immediate consequence of (ii) of Theorem 1.3
and integration by parts.

Lemma 2.2. Assume B ∈ L(X) and A is the generator of {S(t)}t∈[0,τ).

If BA ⊆ AB then
Tt
0
esBS(s)x ds ∈ D(A) and

A

t\
0

esBS(s)x ds = etB
[
S(t)x−

tn

n!
x

]

−B
t\
0

esB
[
S(s)−

sn

n!

]
x ds ∀x ∈ X, t ∈ [0, τ).
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Theorem 2.3. Assume that {S(t)}t∈[0,τ) is an n-times integrated semi-
group generated by A and that B ∈ L(X) with BA ⊆ AB. Then A + B
generates an n-times integrated semigroup given by

SB(t)x := e
BtS(t)x+

t\
0

P (t− s)esBS(s)x ds,

=
n∑

k=0

Ckn(−B)
kJketBS(t)x ∀x ∈ X, t ∈ [0, τ),

where P (t) =
∑n
k=0

(−1)ktk−1
(k−1)! C

k
nB
k (see also [2, 16] for the exponentially

bounded case).

Proof. Let x ∈ X. From Lemma 2.2,

A

t\
0

SB(s)x ds =

n∑

k=0

Ckn(−B)
kAJk+1etBS(t)x(2.4)

=

n∑

k=0

Ckn(−B)
kJkA

t\
0

esBS(s)x ds

=

n∑

k=0

Ckn(−B)
kJketB

[
S(t)−

tn

n!

]
x

+
n∑

k=0

Ckn(−B)
k+1Jk+1etB

[
S(t)−

tn

n!

]
x

= SB(t)x−B
t\
0

SB(s)x ds− Ψ1(t)x− Ψ2(t)x,

where

Ψ1(t) :=
n∑

k=0

Ckn(−B)
kJk
[
etB
tn

n!

]
,

Ψ2(t) :=
n∑

k=0

Ckn(−B)
k+1Jk+1

[
etB
tn

n!

]
.

(2.4) gives us

(2.5) (A+B)

t\
0

SB(s)x ds = SB(t)x− Ψ1(t)x− Ψ2(t)x.

Apply integration by parts to Ψ2(t) and then use Lemma 2.1 to find

Ψ2(t)x = −Ψ1(t)x+
n∑

k=0

Ckn(−B)
kJk+1

[
etB

tn−1

(n− 1)!

]
x = −Ψ1(t)x+

tn

n!
x.
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This, together with (2.5), gives

(2.6) (A+B)

t\
0

SB(s)x ds = SB(t)x−
tn

n!
x ∀x ∈ X, t ∈ [0, τ).

It is easy to see from (2.6) that {SB(t)}t∈[0,τ) is nondegenerate. Its expres-
sion and the relation BA ⊆ AB, together with Proposition 1.4(iii), imply
that SB(t)(A + B) ⊆ (A + B)SB(t). By Theorem 1.3, {SB(t)}t∈[0,τ) is an
n-times integrated semigroup generated by A+B.

By the expression of {SB(t)}t∈[0,τ) in Theorem 2.3, if τ = ∞ and
{S(t)}t∈[0,∞) is exponentially bounded then so is {SB(t)}t∈[0,∞).
Before proving the following theorem, we first note that if B ∈ L(X)

satisfies Im(B) ⊆ D(An) then the equality

S(n)(t)Bx = S(t)AnBx+
n−1∑

k=0

tk

k!
AkBx ∀x ∈ X, t ∈ [0, τ)

is an easy consequence of Proposition 1.4 and hence S(n)(t)B is bounded
for every t ∈ [0, τ) and strongly continuous on [0, τ).

Theorem 2.4. Let {S(t)}t∈[0,τ) be an n-times integrated semigroup gen-
erated by A and let B ∈ L(X) be such that Im(B) ⊆ D(An). Then, for all
x ∈ X, the following equation has a unique strongly continuous solution:

(2.7) V (t)x = S(t)x+

t\
0

S(n)(t− s)BV (s)x ds ∀t ∈ [0, τ).

Proof. Set V0(t) = S(t) and assume inductively that Vm−1(t) ∈ L(X) is
well defined for t ∈ [0, τ) and that Vm−1(·)x ∈ C([0, τ), X) for every x ∈ X.
We now define Vm(t) by

(2.8) Vm(t)x =

t\
0

S(n)(t− s)BVm−1(s)x ds.

Then it is easy to verify that Vm(t) ∈ L(X) for every t ∈ [0, τ) and Vm(·)x ∈
C([0, τ), X) for every x ∈ X.

For given t ∈ [0, τ) define

M(t) := sup
0≤s≤t

{‖S(n)(s)B‖, ‖S(s)‖}.

Then M(t) ≥ 0 is finite for every t ∈ [0, τ) and increasing on [0, τ). We now
claim that

(2.9) ‖Vm(t)‖ ≤
M(t)m+1tm

m!
∀m ∈ N ∪ {0}, t ∈ [0, τ).
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Indeed, (2.9) is true for m = 0. Assume it is true for m replaced by m− 1.
From (2.8) we have

‖Vm(t)‖ ≤
t\
0

M(t− s)Mm(s)sm−1

m!
ds ≤

M(t)m+1tm

m!
.

Hence (2.9) is true for all m ∈ N ∪ {0} and t ∈ [0, τ). Define

SB(t) :=
∞∑

m=0

Vm(t).

Then (2.9) implies that the series converges uniformly on every closed subin-
terval [0, b] ⊆ [0, τ) in the uniform operator topology. Since

SB(t)x = S(t)x+

t\
0

S(n)(t− s)B
∞∑

m=0

Vm(s)x ds

= S(t)x+

t\
0

S(n)(t− s)BSB(s)x ds,

SB(·) satisfies (2.7) and is strongly continuous on [0, τ).

To prove the uniqueness, it suffices to show that a continuous X-valued
function v(·) vanishes if it satisfies

v(t) =

t\
0

S(n)(t− s)Bv(s) ds ∀t ∈ [0, τ).

For given t ∈ [0, τ), set N(t) := sup0≤s≤t ‖v(s)‖. Then

‖v(t)‖ ≤
t\
0

M(t− s)‖v(s)‖ ds ≤ N(t)M(t)t.

Repeating the above process, we show that

‖v(t)‖ ≤ N(t)
M(t)mtm

m!
∀t ∈ [0, τ), m ∈ N.

Let m→∞ to find v(t) ≡ 0 for all t ∈ [0, τ).

Theorem 2.5.The strongly continuous family of operators {SB(t)}t∈[0,τ),
defined inTheorem 2.4, is an n-times integrated semigroup generated byA+B.

Proof. From Proposition 1.4(i),

A

t\
0

[ s\
0

S(n)(s− r)BSB(r)x dr
]
ds =

t\
0

A
[ t\
r

S(n)(s− r)BSB(r)x ds
]
dr

=

t\
0

A[S(n−1)(t− r)BSB(r)x] dr
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=

t\
0

[S(n)(t− r)BSB(r)x−BSB(r)x] dr

=

t\
0

S(n)(t− r)BSB(r)x dr −B
t\
0

SB(r)x dr.

This implies that

(A+B)

t\
0

SB(s)x ds

= A

t\
0

S(s)x ds+A

t\
0

[ s\
0

S(n)(s− r)BSB(r)x dr
]
ds

= S(t)x−
tn

n!
x+

t\
0

S(n)(t− r)BSB(r)x dr = SB(t)x−
tn

n!
x,

and hence {SB(t)}t∈[0,τ) is nondegenerate.
In the following we show that the solutions of the following local first

order abstract differential equation are unique:

(2.10) u′(t) = (A+B)u(t), t ∈ [0, τ); u(0) = x.

Let u(·) be a solution of (2.10) with u(0) = 0. Define

v(t) :=
1

n!

t\
0

(t− s)nu(s) ds ∀t ∈ [0, τ).

Then v(·) is (n+1)-times continuously differentiable and satisfies (2.10) with
v(0) = 0. If we can show that v(t) ≡ 0 then the same is true for u(t) and
hence the solutions of (2.10) are unique. It is easily seen that v(t) ∈ D(An+1)
for all t ∈ [0, τ). Thus we have, by Proposition 1.4(i),

t\
0

S(n)(t− s)Bv(s) ds =
t\
0

S(n)(t− s)v′(s) ds−
t\
0

S(n)(t− s)Av(s) ds

=

t\
0

S(n)(t− s) dv(s)−
t\
0

AS(n)(t− s)v(s) ds

= v(t) +

t\
0

S(n+1)(t− s)v(s) ds−
t\
0

S(n+1)(t− s)v(s) ds = v(t).

From the last part of the proof of Theorem 2.4, v(t) ≡ 0 for all t ∈ [0, τ).
Therefore the solutions of (2.10) are unique. An application of Theorem 1.3
shows that {SB(t)}t∈[0,τ) is the n-times integrated semigroup generated by
A+B.
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Corollary 2.6. Under the conditions of Theorem 2.4, if the n-times
integrated semigroup {S(t)}t∈[0,∞) is exponentially bounded then so is
{SB(t)}t∈[0,∞).

Proof. From Theorem 2.4 and [16, Theorem 2.3], the following is true:

S̆B(t) := S(t) +
∞∑

m=1

[S(n)(t)B]mS(t) =
∞∑

m=0

Vm(t) = SB(t).

From [16, Theorem 2.3] again, {SB(t)}t∈[0,∞) is exponentially bounded.

It follows from Theorems 2.3, 2.5 and Corollary 2.6 that ifA+B generates
an (exponentially bounded) n-times integrated semigroup then so does A.

3. Unbounded perturbations. This section is devoted to the study
of unbounded perturbations for n-times integrated semigroups. Two cases
will be considered.

Theorem 3.1. Assume {S(t)}t∈[0,τ) is an n-times integrated semigroup
generated by A, and let B ∈ L([D(A)]) with Im(B) ⊆ D(An+1). If ABx =
BAx for all x ∈ D(A2), then A + B generates an n-times integrated semi-
group {SB(t)}t∈[0,τ) on X that is the unique solution of the equation

(3.1) SB(t)x = S(t)x

+

t\
0

S(n)(t− s)(λ0 −A)BR(λ0, A)SB(s)x ds ∀x ∈ X, t ∈ [0, τ),

for any λ0 ∈ ̺(A).

Proof. We first show that A+B is closed on X. To do this, it suffices to
show that λ0−(A+B) is closed. From the relationABx = BAx (x ∈ D(A2)),
we have R(λ0, A)Bx = BR(λ0, A)x for all x ∈ D(A). Let xm ∈ D(A) and
assume that xm → x and ym = [λ0 − (A + B)]xm → y in X. Then the
following limit holds in [D(A)]:

xm = R(λ0, A)ym +R(λ0, A)Bxm

= R(λ0, A)ym +BR(λ0, A)xm → R(λ0, A)y +BR(λ0, A)x.

Therefore x ∈ D(A) and R(λ0, A)y + BR(λ0, A)x = x, or equivalently,
[λ0− (A+B)]x = y, as desired. For x ∈ X and t ∈ [0, τ), Proposition 1.4(i)
gives

S(n)(t)(λ0 −A)BR(λ0, A)x

= S(t)An(λ0 −A)BR(λ0, A)x+
n−1∑

k=0

tk

k!
Ak(λ0 −A)BR(λ0, A)x.



Perturbation theorems 135

Since D(Ak(λ0 − A)BR(λ0, A)) = X by induction on k, we may show that
Ak(λ0 −A)BR(λ0, A) is closed for 0 ≤ k ≤ n and hence bounded. This and
the foregoing imply that

(3.2) S(n)(t)(λ0 −A)BR(λ0, A) ∈ L(X) ∀t ∈ [0, τ)

and that

(3.3) S(n)(·)(λ0 −A)BR(λ0, A)x ∈ C([0, τ), X) ∀x ∈ X.

Define

V0(t)x := S(t)x ∀x ∈ X, t ∈ [0, τ),

Vm(t)x :=

t\
0

S(n)(t− s)(λ0 −A)BR(λ0, A)Vm−1(s)x ds ∀x∈X, t∈ [0, τ),

where m ∈ N. From (3.2) and (3.3), we have Vm(·)x ∈ C([0, τ), X) for all
x ∈ X and m ∈ N ∪ {0}. For t ∈ [0, τ), define

M(t) = sup
0≤s≤t

{‖S(s)‖, ‖S(n)(s)(λ0 −A)BR(λ0, A)‖}.

Then we have the following inequality, similar to (2.9):

(3.4) ‖Vm(t)‖ ≤
Mm+1(t)tm

m!
∀m ∈ N ∪ {0}.

Define

SB(t) :=
∞∑

m=0

Vm(t).

(3.4) implies that the series converges uniformly on every closed subinterval
[0, b] ⊂ [0, τ) in the uniform operator topology. Since

SB(t) =

∞∑

m=0

Vm(t)(3.5)

= S(t) +

t\
0

S(n)(t− s)(λ0 −A)BR(λ0, A)
∞∑

m=0

Vm(s) ds

= S(t) +

t\
0

S(n)(t− s)(λ0 −A)BR(λ0, A)SB(s) ds,

SB(·) is a solution of (3.1). From (3.5) and Proposition 1.4(i),

(3.6) A

t\
0

SB(s)x ds = A

t\
0

S(s)x ds

+A

t\
0

[ s\
0

S(n)(s−r)(λ0−A)BR(λ0, A)SB(r)x dr
]
ds
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= S(t)x−
tn

n!
x+A

t\
0

S(n−1)(t− r)(λ0 −A)BR(λ0, A)SB(r)x dr

= SB(t)x+

t\
0

S(n)(t− r)(λ0 −A)BR(λ0, A)SB(r)x dr

−
t\
0

(λ0 −A)BR(λ0, A)SB(r)x dr −
tn

n!
x.

The relations
Tt
0
SB(s)xds ∈ D(A) for every x ∈ X and (λ0−A)BR(λ0, A)x

= Bx for every x ∈ D(A) imply that

t\
0

(λ0 −A)BR(λ0, A)SB(s)x ds

= (λ0 −A)BR(λ0, A)
t\
0

SB(s)x ds = B

t\
0

SB(s)x ds.

This, together with (3.6), gives

(3.7) (A+B)

t\
0

SB(s)x ds = SB(t)x−
tn

n!
x ∀x ∈ X.

The uniqueness of solutions of (3.1) may be proved in the same way
employed in Theorem 2.4. As regards the uniqueness of solutions of (2.10)
with A and B given in this theorem, we may prove it in the same way
employed in Theorem 2.5. Thus an application of Theorem 1.3 shows that
{SB(t)}t∈[0,τ) is the n-times integrated semigroup generated by A+B.

Instead of the relation ABx = BAx for all x ∈ D(A2) in Theorem 3.1,
in the following theorem, we assume directly that A+B is closed. So far we
do not know if it is automatically true.

Theorem 3.2. Assume {S(t)}t∈[0,τ) is an n-times integrated semigroup
generated by A, and B ∈ L([D(A)]) with Im(B) ⊆ D(An+1). If A + B
is closed on X then A + B generates an n-times integrated semigroup
{SB(t)}t∈[0,τ) on X that is the unique solution of the equation

SB(t)x = S(t)x+B

t\
0

SB(s)x ds(3.8)

+

t\
0

S(n+1)(t− s)B
[ s\
0

SB(r)x dr
]
ds ∀x ∈ X, t ∈ [0, τ).
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Proof. First of all, we may show, by induction on k, thatAkB∈L([D(A)])
for 1 ≤ k ≤ n. On the other hand, it is routine to show that S(t)|D(A)
is in L([D(A)]) for every t ∈ [0, τ) and that {S(t)|D(A)}t∈[0,τ) is strongly
continuous in [D(A)]. Thus the relation

(3.9) S(n)(t)Bx = S(t)AnBx+
n−1∑

k=0

tk

k!
AkBx ∀x ∈ D(A), t ∈ [0, τ)

implies that S(n)(·)Bx ∈ C([0, τ), [D(A)]) for every x ∈ D(A). Moreover, by
differentiating both sides of (3.9), we have S(n+1)(t)Bx ∈ L([D(A)], X) for
every t ∈ [0, τ) and S(n+1)(·)Bx ∈ C([0, τ), X) for every x ∈ D(A).

Define

V0(t)x :=

t\
0

S(s)x ds ∀x ∈ X, t ∈ [0, τ),

Vm(t)x :=

t\
0

S(n)(t− s)BVm−1(s)x ds ∀x ∈ X, t ∈ [0, τ).

We show that for every x ∈ X and m ∈ N, Vm(·)x ∈ C([0, τ), [D(A)]).
The assertion is true for m = 0. Now assume it is true for m − 1. Then
BVm−1(·)xmakes sense for every x ∈ X, and BVm−1(·)x ∈ C([0, τ), [D(A)]).
From Proposition 1.4(i), AS(n)(t−s)BVm−1(s)x = S(n+1)(t−s)BVm−1(s)x.
This, combined with the properties of S(n+1)(·)Bx, implies that Vm(·)x ∈
C([0, τ), [D(A)]) by its definition, and hence the assertion is true for m ∈ N.

For t ∈ [0, τ), define

M1(t) := sup
0≤s≤t

{
sup
{∥∥∥
s\
0

S(r)x dr
∥∥∥
[D(A)]

: x ∈ X, ‖x‖ ≤ 1
}}
,

M2(t) := sup
0≤s≤t

{‖S(n)(s)B‖L([D(A)])},

and

M(t) := max{M1(t),M2(t)}.

Then we can show that

‖Vm(t)‖L(X,[D(A)]) ≤
Mk+1(t)tk

k!

and hence the series S̃B(t) :=
∑∞
m=0 Vm(t) converges uniformly on every

closed subinterval [0, b] ⊂ [0, τ) in L(X, [D(A)]). Clearly, S̃B(·) satisfies

(3.10) S̃B(t)x =

t\
0

S(s)x ds+

t\
0

S(n)(t−s)BS̃B(s)x ds ∀x ∈ X, t ∈ [0, τ),
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where the second integral converges in the norm topology of [D(A)]. More-
over, from

A

t\
0

S̃B(s)x ds = A

t\
0

s\
0

S(r)x dr ds+A

t\
0

[ s\
0

S(n)(s− r)BS̃B(r)x dr
]
ds

=

t\
0

S(s)x ds−
tn+1

(n+ 1)!
x+A

t\
0

S(n−1)(t− r)BS̃B(r)x dr

=

t\
0

S(s)x ds+

t\
0

S(n)(t− r)BS̃B(r)x dr

−
t\
0

BS̃B(r)x dr −
tn+1

(n+ 1)!
x,

the following relation holds:

(3.11) (A+B)

t\
0

S̃B(s)x ds = S̃B(t)x−
tn+1

(n+ 1)!
x ∀x ∈ X, t ∈ [0, τ).

Using the uniqueness argument employed in Theorems 2.4 and 2.5 we may
also show that the solutions of (2.10) are unique for the operators A and B

given in this theorem and hence {S̃B(t)}t∈[0,τ) is a nondegenerate (n + 1)-
times integrated semigroup generated by A+B by Theorem 1.3.
From (3.10), for every x ∈ X, S̃B(t)x is continuously differentiable with

respect to t ∈ [0, τ) in X and

d

dt
S̃B(t)x = S(t)x+BS̃B(t)x+

t\
0

S(n+1)(t− s)BS̃B(s)x ds.

Define SB(t)x :=
d
dt S̃B(t)x for x ∈ X. Then SB(t) satisfies (3.8) and

{SB(t)}t∈[0,τ) is the n-times integrated semigroup generated by A+B.

We note that in Theorems 3.1 and 3.2, since both A and A + B are
closed, from the calculation

‖x‖[D(A+B)] = ‖x‖+ ‖(A+B)x‖ ≤ ‖x‖+ ‖Ax‖+ ‖Bx‖[D(A)]

≤ (1 + ‖B‖[D(A)])‖x‖[D(A)] ∀x ∈ D(A),

it follows that the graph norms ‖ · ‖[D(A)] and ‖ · ‖[D(A+B)] on D(A) are
equivalent. Therefore if B ∈ L([D(A)]) then B ∈ L([D(A + B)]) and vice
versa, hence it is routine to show that if Im(B) ⊆ D(An+1) and A + B
generates an n-times integrated semigroup then so does A.

4. Local complete second order differential equations. Consider
the following local complete second order abstract differential equation (see
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Section 1):

(1.1)
u′′(t) = Au(t) +Bu′(t)x, t ∈ [0, τ);

u(0) = x, u′(0) = y, x, y ∈ X,

where 0 < τ ≤ ∞ and A,B are closed on X throughout, but sometimes B
is bounded.
In this section we will apply the theorems produced in Sections 2 and 3

to establish several sufficient conditions for the existence and uniqueness of
strong solutions of (1.1) (see Definition 4.1) and several equivalent conditions
for the existence and uniqueness of integrated mild solutions of (1.1) (see
Definition 4.2).

Definition 4.1. A function u(·, x, y) : [0, τ)→ X is a strong solution of
(1.1) if u(·, x, y) ∈ C2([0, τ), X)∩C([0, τ), [D(A)]), Bu′(·, x, y) ∈ C([0, τ), X)
and u(·, x, y) satisfies (1.1).

When B is bounded on X, define

N :=

(
0 I
A B

)
.

Then it is easy to see that N with domain D(A) × X is a closed linear
operator on X × X, endowed with the norm

∥∥(x
y

)∥∥ := ‖x‖ + ‖y‖, and
we may reduce (1.1) to the following local first order abstract differential
equation on X ×X (see [10]):

(4.1) w′(t) = Nw(t), w(0) =

(
x
y

)
, t ∈ [0, τ), x, y ∈ X.

Definition 4.2. Assume B is bounded and x, y ∈ X are given. A func-
tion v(·, x, y) : [0, τ) → X is an n-times integrated mild solution of (1.1)

if v(0, x, y) = 0, v(·, x, y) ∈ C([0, τ), X),
Tt
0
(t − s)v(s, x, y) ds ∈ D(A) for

t ∈ [0, τ) and

v(t, x, y) = A

t\
0

(t− s)v(s, x, y) ds+B
t\
0

v(s, x, y) ds(4.2)

−
tn+1

(n+ 1)!
Bx+

tn

n!
x+

tn+1

(n+ 1)!
y, x, y ∈ X.

If B = 0 then (4.2) reduces to (1.5).
The following theorem is a slight generalization of [1, Theorem 3.14.7].

Theorem 4.3. The following conditions (i)–(iii) are equivalent :

(i) (1.4) has a unique n-times integrated mild solution for every pair
x, y ∈ X.

(ii) A generates an n-times integrated cosine family on X.
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(iii) A =
( 0 I
A 0

)
generates an (n + 1)-times integrated semigroup on

X ×X.

If B is bounded and Im(B) ⊆ D(A[(n+1)/2]) then (i)–(iii) are equivalent to
the following two statements:

(iv) N generates an (n+ 1)-times integrated semigroup on X ×X.
(v) (1.1) has a unique n-times integrated mild solution for every pair
x, y ∈ X.

If the equivalent conditions (iv) and (v) hold , then

(vi) (1.1) has a unique strong solution for (x, y) ∈ D(A1+[(n+1)/2]) ×
D(A1+[n/2]).

Proof. The equivalence of (i) and (ii) was proved in Theorem 1.7.

(i)⇔(iii). Consider the following problem:

(4.3)

(
w′1(t)
w′2(t)

)
= A

(
w1(0)
w2(0)

)
=

(
x
y

)
.

If v(·, x, y) is an n-times integrated mild solution of (1.4) then
( Tt

0
v(s, x, y) ds

v(t, x, y)− t
n

n! x

)

is an (n+ 1)-times integrated mild solution of (4.3). In fact, from

v(t, x, y) = A

t\
0

(t− s)v(s, x, y) ds+
tn

n!
x+

tn+1

(n+ 1)!
y,

it follows that
( Tt

0
v(s, x, y) ds

v(t, x, y)− t
n

n! x

)
= A

t\
0

( Ts
0
v(r, x, y) dr

v(s, x, y)− s
n

n! x

)
ds+

tn+1

(n+ 1)!

(
x
y

)
.

Conversely, assume that w(·, x, y) =
(
w1(·,x,y)
w2(·,x,y)

)
is an (n + 1)-times inte-

grated mild solution of (4.3):

(
w1(t, x, y)
w2(t, x, y)

)
= A

t\
0

(
w1(s, x, y)
w2(s, x, y)

)
ds+

tn+1

(n+ 1)!

(
x
y

)
.

Then

w1(t, x, y) =

t\
0

w2(s, x, y) ds+
tn+1

(n+ 1)!
x,(4.4)

w2(t, x, y) = A

t\
0

w1(s, x, y) ds+
tn+1

(n+ 1)!
y.(4.5)



Perturbation theorems 141

(4.4) implies that w1(t, x, y) is continuously differentiable with respect to
t ∈ [0, τ). Set v(t, x, y) = w′1(t, x, y) = w2(t, x, y) +

tn

n!x. Then (4.4) and
(4.5) imply that v(·, x, y) is an n-times integrated mild solution of (1.4). An
application of Theorem 1.3 shows that (i) and (iii) are equivalent. Thus we
have proved that (i), (ii) and (iii) are equivalent.
(iii)⇔(iv). Define B :=

( 0 0
0 B

)
. Then the condition Im(B)⊆D(A[(n+1)/2]),

together with the relations (see [3, 17])

(4.6) A2k =

(
Ak 0
0 Ak

)
, A2k+1 =

(
0 Ak

Ak+1 0

)
∀k ∈ N ∪ {0},

implies that Im(B) ⊆ D(An+1). An application of Theorem 2.5 and the
remark following Corollary 2.6 show that (iii) and (iv) are equivalent.
(iv)⇔(v). Assume (iv) is true. From Theorem 1.3, for every

( x
y

)
∈ X×X

there exists a unique continuous function
(w1(·,x,y)
w2(·,x,y)

)
: [0, τ)→ X ×X such

that w1(0, x, y) = 0 = w2(0, x, y) and
(
w1(s, x, y)
w2(t, x, y)

)
=

(
0 I
A B

)(Tt
0
w1(s, x, y) dsTt
0
w2(s, x, y) ds

)
+
tn+1

(n+ 1)!

(
x
y

)
∀t ∈ [0, τ).

The last relation is equivalent to

w1(s, x, y) =

t\
0

w2(s, x, y) ds+
tn+1

(n+ 1)!
x,(4.7)

w2(s, x, y) = A

t\
0

w1(s, x, y) ds+B

t\
0

w2(s, x, y) ds+
tn+1

(n+ 1)!
y.(4.8)

(4.7) implies that w1(·, x, y) is continuously differentiable on [0, τ). Define
v(t, x, y) = w′1(t, x, y) = w2(t, x, y) +

tn

n!x. Then v(0, x, y) = 0 and (4.7),
(4.8) give

v(t, x, y) = A

t\
0

(t− s)v(s, x, y) ds

+B

t\
0

v(s, x, y) ds−
tn+1

(n+ 1)!
Bx+

tn

n!
x+

tn+1

(n+ 1)!
y,

that is, v(·, x, y) is an n-times integrated mild solution of (1.1) by Defini-
tion 4.2. From the uniqueness of the solutions of (1.1) we may show that
v(·, x, y) is uniquely determined by x, y ∈ X. Thus (v) is true.
Conversely, assume that (1.1) has a unique n-times integrated mild so-

lution v(·, x, y) for x, y ∈ X. Then

( Tt
0
v(s, x, y) ds

v(t, x, y)− t
n

n! x

)
is the unique (n+1)-

times integrated mild solution of (4.1). Theorem 1.3 implies that (iv) is true.
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To prove (vi), fromN = A+B and Im(B) ⊆ D(A[(n+1)/2]), we can imme-
diately show that D(Nn+2) = D(A1+[(n+1)/2])×D(A1+[n/2]) (see (iii)⇔(iv)
and [3, 17]). Thus (vi) is a direct consequence of (iv) of Theorem 1.3.

It is worthwhile to mention that the condition Im(B) ⊆ D(A[n+1)/2]) is
not necessary for the equivalence of (iv) and (v) in Theorem 4.3.

Corollary 4.4. Assume τ = ∞ and w0 > 0. Then the following con-
ditions (i)–(iii) are equivalent :

(i) (1.4) has a unique n-times integrated mild solution u(·, x, y) satisfy-
ing

‖u(t, x, y)‖ = O(eω0t)

for every pair x, y ∈ X.
(ii) A generates an n-times integrated cosine family {C(t)}t≥0 satisfying

‖C(t)‖ = O(eω0t).

(iii) A generates an (n+ 1)-times integrated semigroup {S(t)}t≥0 satis-
fying

‖S(t)‖ = O(eω0t).

If the equivalent conditions (i)–(iii) hold , and B is bounded with Im(B)
⊆ D(A[(n+1)/2]), then

(iv) N generates an (n + 1)-times integrated semigroup {S̃(t)}t≥0 on
X ×X satisfying

‖S̃(t)‖ = O(e(ω0+‖B‖)t).

Corollary 4.5 ([3, 16]). Assume τ =∞ and ω0 > 0. Then the follow-
ing conditions (i)–(iii) are equivalent.

(i) A generates an n-times integrated cosine family {C(t)}t≥0 satisfying

lim
h→0+

1

h
‖C(t+ h)− C(t)‖ ≤M0e

ω0t,

where M0 > 0 is a constant.

(ii) (ω20 ,∞) ⊆ ̺(A), and

‖(λ− ω0)
k+1[λ2−nR(λ2, A)](k)‖ ≤M0k! ∀k ∈ N ∪ {0}.

(iii) A generates an (n+ 1)-times integrated semigroup {S(t)}t≥0 satis-
fying

lim
h→0+

1

h
‖S(t+ h)− S(t)‖ ≤M1e

ω0t.

If the equivalent conditions (i)–(iii) hold , and B is bounded with Im(B) ⊆
D(A[(n+1)/2]), then
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(iv) N generates an (n+1)-times integrated semigroup {S̃(t)}t≥0 satis-
fying

lim
h→0+

1

h
‖S̃(t+ h)− S̃(t)‖ ≤M2e

(ω0+‖B‖)t.

In (iii) and (iv), M1,M2 > 0 are also constants.

Our Theorem 4.3 and its corollaries improve [10, Theorems 4.1 and 4.7].

If closed linear operators A and B are both unbounded then we reduce
(1.1) to (see [10])

(4.9)

w′(t) =Mw(t), M =

(
B I
A 0

)
, t ∈ [0, τ);

w(0) =

(
x

y −Bx

)
, x, y ∈ X.

The operatorM with domain (D(A) ∩D(B))×X is closed on X ×X.

Theorem 4.6. Assume B ∈ L([D(A)]) and Im(B) ⊆ D(A[(n+1)/2]).
Then the conditions (i), (ii) and (iii) in Theorem 4.3 are equivalent to the
following :

(iv′)M generates an (n+ 1)-times integrated semigroup.

If (iv′) holds, then

(v′) (1.1) has a unique strong solution for all (x, y) ∈ D(A1+[(n+1)/2])×
D(A1+[n/2]).

Proof. (iii) of Theorem 4.3 ⇔ (iv′). Recall that A =
(
0 I

A 0

)
and B =( 0 0

0 B

)
. Then B ∈ L([D(A)]) and ‖B‖[D(A)] ≤ ‖B‖[D(A)]. From the equiv-

alence of (iii) and (iv) in Theorem 4.3 under the condition on B, we have
Im(B) ⊆ D(An+1). Thus (iii) and (iv′) are equivalent by Theorem 3.2 and
the remark following it.

(v′) can be proved in the same way as (vi) of Theorem 4.3.

There are also two corollaries of Theorem 4.6 similar to Corollaries 4.4
and 4.5. We leave the details to the reader.

To end this section, we consider two examples.

Following [8, Chapter VIII], let X = l2 be the space of all sequences
x = {ξ1, ξ2, . . .} satisfying ‖x‖2 =

∑∞
k=0 |ξk|

2 < ∞ and let A,B be the
operators

(4.10) A{ξk} := {akξk}, B{ξk} = {bkξk},

where {ak}, {bk} are sequences of complex numbers. It is easy to see that A
and B are closed and densely defined.
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Example 4.7. From [8, Section VIII.2, Example 2.1], for any function
Ω(·) on [0,∞), bounded on every compact subset, there exist A,B as in
(4.10) such that (1.1) has a unique strong solution u(·, x, y) satisfying
u(0, x, y) = x, u′(0, x, y) = y for (x, y) in a dense subset of X ×X and

‖u(t)‖ ≥ Ω(t)‖x‖, ‖u′(t)‖ ≥ Ω(t)‖y‖.

This implies that (1.1) has solutions which are not exponentially bounded.

In the following example, we assume that X = c0, the space of all se-
quences x = {ξk} satisfying limk→∞ ξk = 0. Endowed with the sup norm,
X is a Banach space.

Example 4.8. Assume 0 < τ < ∞ and A = 0 in (1.1). Then there
exists B as in (4.10) such that equation (1.1) has a unique strong solution
u(0) = 0, u′(0) = y for y in a dense subset of X, but (1.1) with the given
initial data has no strong solution on the interval [0, τ ′) for any τ ′ > τ .

Proof. From the given initial data, equation (1.1) is equivalent to

(4.11) u′′k(t) = bku
′
k(t), t ∈ [0, τ); uk(0) = 0, u

′
k(0) = ηk ∀k ∈ N,

where bk is the kth entry of B in (4.10) and y := {ηk} ∈ X. Without loss
of generality we may assume 0 6= |ηk| < 1 for all k ∈ N. The roots of the
characteristic equation of (4.11) are λ0 = 0, λk = bk and the solution of
(4.11) is

uk(t) =
ηk
λk
(eλkt − 1) ∀k ∈ N.

Hence u(·) := {uk(t)} is the unique strong solution of (1.1) with A = 0 and
the initial data u(0) = 0, u′(0) = y.

We now show that u(·) cannot be extended to [0, τ ′) for any τ ′ > τ .
Define ζk := 1/|ηk|; then ζk > 1 and limk→∞ ζk =∞. Choose

λk :=
1

τ
log ζk +

i

τ
[ζ
2/
√
ζk

k − (log ζk)
2]1/2 ∀k ∈ N.

This implies

|uk(t)| ≥
|eλkt| − 1

ζk|λk|
=
e(t/τ) log ζk

ζk|λk|
−
1

ζk|λk|
(4.12)

= (τζ
t/τ
k )/(ζ

1+1/
√
log ζk

k )− τ/(ζ
1+1/

√
log ζk

k )

= τζ
t/τ−1−1/√log ζk
k − τ/(ζ

1+1/
√
log ζk

k ).

If we note that
√
log ζk →∞ and ζ

1+1/
√
log ζk

k →∞
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then, for fixed t > τ , (4.12) implies that uk(t) → ∞ as k → ∞. Hence
{uk(t)} is not in X whenever t > τ , that is, as an X-valued function of t,
it cannot be extended to the interval [0, τ ′) for any τ ′ > τ , or equivalently,
(1.1) has no strong solution with [0, τ) replaced by [0, τ ′).

Acknowledgments. The authors highly appreciate the referee’s indi-
cating reference [1] and indicating that our Theorem 4.3 is in connection
with Theorem 3.14.7 of [1].

References

[1] W. Arendt, Ch. J. K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace
Transforms and Cauchy Problems, Birkhäuser, 2001.
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