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On bases in Bana
h spa
esby
Tomek Bartoszyński (Arlington, VA), Mirna Džamonja (Norwi
h),

Lorenz Halbeisen (Bern), Eva Murtinová (Praha)and Anatolij Plichko (Kraków)Abstra
t. We investigate various kinds of bases in in�nite-dimensional Bana
hspa
es. In parti
ular, we 
onsider the 
omplexity of Hamel bases in separable and non-separable Bana
h spa
es and show that in a separable Bana
h spa
e a Hamel basis 
annotbe analyti
, whereas there are non-separable Hilbert spa
es whi
h have a dis
rete and
losed Hamel basis. Further we investigate the existen
e of 
ertain 
omplete minimal sys-tems in ℓ∞ as well as in separable Bana
h spa
es.Outline. The paper is 
on
erned with bases in in�nite-dimensional Ba-na
h spa
es. The �rst se
tion 
ontains the de�nitions of the various kinds ofbases and biorthogonal systems and also summarizes some set-theoreti
 ter-minology and notation whi
h will be used throughout the paper. The se
ondse
tion provides a survey of known or elementary results. The third se
tiondeals with Hamel bases and 
ontains some 
onsisten
y results proved usingthe for
ing te
hnique. The fourth se
tion is devoted to 
omplete minimal sys-tems (in
luding Φ-bases and Auerba
h bases) and the last se
tion 
ontainsopen problems.1. Basi
s about bases. In what follows, all Bana
h spa
es are assumedto be in�nite-dimensional. Ex
ept one, all Bana
h spa
es we 
onsider areBana
h spa
es over the real �eld R, and the only ex
eption is the in�nite-dimensional Bana
h spa
e R over the �eld Q.
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148 T. Bartoszy«ski et al.Hamel bases. Let X be a Bana
h spa
e and let {xi : i ∈ I} ⊆ X bean arbitrary set of ve
tors of X. Let 〈xi : i ∈ I〉 denote the linear spanof {xi : i ∈ I}. A set {xi : i ∈ I} ⊆ X is 
alled a Hamel basis of X if
〈xi : i ∈ I〉 = X and for every j ∈ I we have xj /∈ 〈xi : i ∈ I \ {j}〉.Hamel bases were �rst introdu
ed by Georg Hamel in [Ham05℄ to de�nea dis
ontinuous linear fun
tional on the real line. In fa
t, he 
onstru
ted bytrans�nite indu
tion an algebrai
 basis in the Bana
h spa
e R over Q.Complete minimal systems. Let X be a Bana
h spa
e and let {xi : i ∈ I}
⊆ X be an arbitrary set of ve
tors of X. Let [xi : i ∈ I] denote the 
losureof the linear span of {xi : i ∈ I}. A set {xi : i ∈ I} ⊆ X is 
alled a 
ompletesystem if [xi : i ∈ I] = X, and it is 
alled a minimal system if for every
j ∈ I, xj /∈ [xi : i ∈ I \ {j}]. A 
omplete minimal system, abbreviated 
.m.s.,is a 
omplete system whi
h is also minimal.Using fun
tionals we 
an 
hara
terize minimal systems (and 
onsequently
omplete minimal systems) in the following way (
f. [LT77, 1.f℄):Let X be a Bana
h spa
e. A pair of sequen
es {xi : i ∈ I} ⊆ X and
{fi : i ∈ I} ⊆ X∗ is 
alled a biorthogonal system if fj(xi) = δi

j . Now, asequen
e {xi : i ∈ I} ⊆ X is minimal if and only if there is a sequen
e
{fi : i ∈ I} ⊆ X∗ su
h that the pair ({xi : i ∈ I}, {fi : i ∈ I}) is abiorthogonal system.

Φ-bases. In [KPP88℄ Vladimir Kadets, Anatolij Pli
hko and Mikhail Po-pov introdu
ed and investigated the notion of �nitary bases of Bana
h spa
es,
alled Φ-bases, whi
h are 
omplete minimal systems of a 
ertain type. Φ-basesare weaker than the so-
alled En�o�Rosenthal bases, whi
h are 
ompleteminimal systems su
h that every 
ountable subsystem is a basi
 sequen
e(i.e., a S
hauder basis in the 
losure of its linear span) with respe
t to someenumeration of its elements.If {xi : 0 ≤ i ≤ n} ⊆ X is any �nite set of ve
tors of X, the basis 
onstant
µ{xi : 0 ≤ i ≤ n} is the least number M ≤ ∞ for whi
h

∥∥∥
k∑

i=0

aixi

∥∥∥ ≤ M ·
∥∥∥

n∑

i=0

aixi

∥∥∥

holds for any s
alars ai and any integer k with 0 ≤ k ≤ n. A 
ompletesystem {xi : i ∈ I} ⊆ X is 
alled a �nitary basis of X, brie�y a Φ-basis,if there exists a 
onstant M < ∞ su
h that for any �nite set I0 ⊆ I thereis an ordering I0 = {ij : 0 ≤ j ≤ n} su
h that µ{xij : 0 ≤ j ≤ n} ≤ M .The least su
h 
onstant M is 
alled the Φ-basis 
onstant of the Φ-basis
{xi : i ∈ I}.

Φ-bases are in fa
t just a spe
ial kind of 
omplete minimal systems. Tosee this let us re
all the following result (
f. [KPP88, Proposition 1℄):
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h spa
es 149Proposition 1.1. If {xi : i ∈ I} ⊆ X is a Φ-basis of some Bana
h spa
e
X with a Φ-basis 
onstant M , then the distan
e between any xj ∈ {xi : i ∈ I}and [xi : i ∈ I \ {j}] is greater than or equal to 1

2M
· ‖xj‖.Proof. By the de�nition of M it is straightforward to see that for any

xj ∈ {xi : i ∈ I0}, where I0 ⊆ I is a �nite subset of I, for any set of s
alars
ai we have

‖ajxj‖ ≤ 2M ·
∥∥∥

∑

i∈I0

aixi

∥∥∥,

and hen
e,
2M ·

∥∥∥xj −
∑

i∈I0\{j}

aixi

∥∥∥ ≥ ‖xj‖.

Thus, the distan
e between any xj and [xi : i ∈ I \ {j}] is greater than orequal to 1
2M

· ‖xj‖.Now, assume that {xi : i ∈ I} ⊆ X is a normalized Φ-basis of someBana
h spa
e X. By the previous fa
t and the Hahn�Bana
h Theorem, forevery i ∈ I we �nd an fi ∈ X∗ su
h that fi(xj) = δi
j , and moreover we 
anhave ‖fi‖ ≤ 2M (for all i ∈ I). In parti
ular {xi : i ∈ I} ⊆ X is a normalized
omplete minimal system.Auerba
h bases. In a �nite-dimensional Hilbert spa
e one may easily
he
k that the ve
tor x is orthogonal to a ve
tor y, denoted x ⊥ y, if andonly if inf{‖x − ry‖ : r ∈ R} = ‖x‖. This 
an be used as a de�nition oforthogonality in any Bana
h spa
e. In general this gives some surprising re-sults, su
h as that the relation �⊥� is not ne
essarily symmetri
. Neverthelessone may still ask if every Bana
h spa
e has a basis 
onsisting of orthogonalve
tors, more pre
isely an Auerba
h basis as de�ned below.Let X be a Bana
h spa
e and let {xi : i ∈ I} ⊆ X. Then {xi : i ∈ I} isan Auerba
h basis of X if [xi : i ∈ I] = X, and if for every j ∈ I,

‖xj‖ = inf{‖xj − y‖ : y ∈ [xi : i ∈ I \ {j}]}.This notion was introdu
ed by Herman Auerba
h in his Ph.D. thesis[Au29℄ where he proved that every �nite-dimensional normed spa
e has anAuerba
h basis, as mentioned in Stefan Bana
h's book [Ba32, p. 238℄. Thethesis and the proof were lost in World War II and Auerba
h himself waskilled by the Gestapo at Lwów in the summer of 1943. In 1947 Auerba
h'stheorem was reproved by Malon Day in [Da47℄ and Angus Taylor in [Ta47℄and a very elegant proof 
an also be found in [LT77, p. 16℄.Using biorthogonal systems we 
an 
hara
terize Auerba
h bases as aspe
ial kind of 
omplete minimal systems:



150 T. Bartoszy«ski et al.Let {xi : i ∈ I} be a normalized 
.m.s. of some Bana
h spa
e X and let
({xi : i ∈ I}, {fi : i ∈ I}) be the 
orresponding biorthogonal system. Then
{xi : i ∈ I} is an Auerba
h basis of X if ‖fi‖ = 1 for every i ∈ I.To �
onstru
t� a Hamel basis in some Bana
h spa
e, we just well-orderthe ve
tors and then 
onstru
t the Hamel basis by trans�nite indu
tion. So,every Bana
h spa
e has a Hamel basis. However, the 
onstru
tion above usesthe Axiom of Choi
e, and hen
e, we do not know how a Hamel basis lookslike: For example, 
an a Hamel basis be 
losed, or non-meagre, or de�nable?We will answer some questions of that type in Se
tion 3.Unlike Hamel bases, not every Bana
h spa
e has a 
.m.s. (see, e.g., [Pl80℄or [GK80℄). Moreover, even though ℓ∞ has a 
.m.s. (see [DJ73℄ and [Go83℄),the spa
e ℓ∞ has a non-separable subspa
e X whi
h has 
omplete minimalsystems, but none of them 
an be extended to a 
.m.s. of ℓ∞ (
f. [Go84,Theorem 3℄). The existen
e of Φ-bases and of Auerba
h bases in 
ertainBana
h spa
es will be dis
ussed in Se
tion 4.Before going to the main part of the paper we need to review some basi
set-theoreti
 notions.Some set theory. For the reader's 
onvenien
e we shall re
all some set-theoreti
 terminology and basi
 fa
ts. Our set-theoreti
 axioms are the ax-ioms of Zermelo and Fraenkel in
luding the Axiom of Choi
e AC, denotedZFC. All our set-theoreti
 notations and de�nitions are standard and 
anbe found in textbooks su
h as [Je03℄, [Ku83℄ or [BJ95℄. In some parts ofthis paper we use the so-
alled for
ing te
hnique to 
onstru
t models of ZFCin whi
h Bana
h spa
es with 
ertain properties exist. For
ing is a sophisti-
ated tool and we do not attempt to explain it here. So, as far as for
ing is
on
erned, the paper is not self-
ontained.A set x is transitive if every element of x is a subset of x. A relation Rwell-orders a set x, or 〈R, x〉 is a well-ordering, if 〈R, x〉 is a total orderingand every non-empty subset of x has an R-least element. The Axiom ofChoi
e is equivalent to the statement that every set 
an be well-ordered. Aset x is an ordinal number if x is transitive and well-ordered by ∈. Ordinalnumbers will usually be denoted by Greek letters like α, β, . . . . In parti
ular,for two ordinal numbers α and β, α < β is the same as saying α ∈ β. TheAxiom of Choi
e is also equivalent to the statement that for every set xthere exists an ordinal number α and a bije
tion f : α → x. The 
lass of allordinal numbers is transitive and well-ordered by ∈. The set of all naturalnumbers is equal to the set of all �nite ordinal numbers and is denoted by ω.In parti
ular, a natural number n is the set of all natural numbers whi
hare smaller than n, e.g., 0 = ∅. An ordinal number α is a 
alled a su

essorordinal if α = β ∪ {β} (for some ordinal β), otherwise, α is 
alled a limitordinal. If α is an in�nite limit ordinal, then the 
o�nality of α, denoted
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cf(α), is the least limit ordinal β su
h that there is an in
reasing β-sequen
e
〈αξ : ξ < β〉 with limξ→β αξ = α (see, e.g., [Je03, p. 31℄).For a set x the 
ardinality of x, denoted by |x|, is the least ordinal number
α for whi
h there exists a bije
tion f : α → x; su
h an ordinal number αis 
alled a 
ardinal number (or just a 
ardinal). For example, |ω| = ω, and�nite 
ardinal numbers 
orrespond to natural numbers. A set x is 
alled�nite if |x| ∈ ω, otherwise it is 
alled in�nite. Further, it is 
alled 
ountableif |x| ≤ ω. For a set x the power set of x is denoted by P(x). There existsa bije
tion between R and P(ω), hen
e |R| = |P(ω)|, and we denote this
ardinality by c. The Continuum Hypothesis CH states that c = ω1, where
ω1 denotes the least ordinal number whi
h is not 
ountable.For any 
ardinals κ and λ, κ · λ denotes the 
ardinality of the produ
t
κ × λ. If at least one of the two 
ardinals is in�nite, then κ · λ is alwaysequal to max{κ, λ}. For any 
ardinals κ and λ let κλ denote the 
ardinalityof the set λκ of all fun
tions from λ to κ. For example 2

λ = |P(λ)| whi
h isalways stri
tly greater than λ. For any 
ardinal κ let κ+ be the least 
ardinalwhi
h is stri
tly greater than κ. The Generalized Continuum HypothesisGCH states that for ea
h in�nite 
ardinal κ we have 2
κ = κ+. An in�nite
ardinal κ is 
alled regular if cf(κ) = κ. Noti
e that cf(κ) is always regular.As a 
onsequen
e of König's Theorem we get the following (see, e.g., [Je03,Corollaries 5.12�14℄):Fa
t 1.2. Let κ and λ be in�nite 
ardinals. Then cf(2κ) > κ, cf(κλ) > λ,and κcf(κ) > κ.For any set x and any 
ardinal κ let

[x]κ := {y ∈ P(x) : |y| = κ} and [x]<κ := {y ∈ P(x) : |y| < κ}.If x is in�nite, then |[x]<ω| = |x|.2. Cardinality issues in Bana
h spa
es. In [HH00℄ (see also [Ma45℄)it is shown that for any in�nite-dimensional Bana
h spa
e X, and for anyHamel basis H of X we have |H| = |X|, whi
h is at least c. (Note that thepoint of this result is when |X| = c.) This implies the followingProposition 2.1. Every Bana
h spa
e X over a 
omplete �eld has 2
|X|di�erent normalized Hamel bases.Proof. Let H ⊆ X be a normalized Hamel basis of X and let h0 ∈ H.For any set I ⊆ H \ {h0}, let BI := {(h0 + h)/‖h0 + h‖ : h ∈ I} and let

HI := BI ∪ (H \ I). Now, HI is a normalized Hamel basis of X and for anytwo di�erent subsets I and I ′ of H \ {h0} we have HI 6= HI′ . Sin
e there are
2
|X| su
h subsets, X has 2

|X| di�erent normalized Hamel bases.Can we ask for more? Obviously, one 
annot aim for more than 2
κ di�er-ent normalized Hamel bases, but one 
ould try to �nd a family of 2

κ di�erent



152 T. Bartoszy«ski et al.normalized Hamel bases su
h that the 
ardinality of the interse
tion of anytwo of them is less than κ (see Question 4 in Se
tion 5).Proposition 2.2. The unit sphere of a real Bana
h spa
e X is not theunion of fewer than c Hamel bases of X.Proof. Let x and y be two di�erent unit ve
tors of X and de�ne S =
{(rx + ty)/‖rx + ty‖ : r, t ∈ R}. Then S is a subset of the unit sphere with
|S| = c and every Hamel basis of X 
ontains at most two ve
tors from S.Thus S, and in parti
ular the unit sphere, 
annot be 
overed by fewer than
c Hamel bases of X.At this point we would like to mention that not even a weakened formof Proposition 2.2 works for the Bana
h spa
e R over Q: In fa
t Paul Erd®sand Shizuo Kakutani showed in [EK43, Theorem 2℄ that CH is equivalentto the statement that R is the union of 
ountably many sets of rationallyindependent numbers.With respe
t to 
omplete minimal systems we get the followingProposition 2.3. The 
ardinality of a 
.m.s. of a Bana
h spa
e X isequal to the density 
hara
ter of X (denoted by d(X)).Proof. On the one hand, the set of all �nite linear 
ombinations of a
.m.s. with rational 
oe�
ients is dense in X, and on the other hand, every
.m.s. of X is dis
rete in X.At this point we would like to introdu
e the notation Bx,r for the openball 
entred at x with radius r, whi
h will be useful throughout the paper.As a matter of fa
t we would like to mention the following simple obser-vations, as we shall use them later:Proposition 2.4. Let X be a Bana
h spa
e.(a) If A ⊆ X and |A| < d(X), then A is nowhere dense in X.(b) We always have |X| ≤ d(X)ω (see also Lemma 2.8).Proof. (a) Suppose otherwise, so let Bx,r be an open ball in whi
h A isdense. (Clearly this implies that A is in�nite.) Then ⋃

q∈Q q(A − x) is a setof the same size as A and is dense in X.(b) If D is a dense subset of X then every element of X is a limit pointof a 
ountable sequen
e from D.The following is a well known fa
t about metri
 spa
es.Fa
t 2.5. For every in�nite- or �nite-dimensional Bana
h spa
e X wehave d(X) = w(X) (where w(X) denotes the weight of the spa
e X).Corollary 2.6. The number of open (and hen
e of 
losed) subsets ofa Bana
h spa
e X is at most 2
d(X). In parti
ular , |X| ≤ 2

d(X) (whi
h alsofollows from Lemma 2.8 below).
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h spa
es 153Proof. Every open set is the union of some family of basi
 open sets andevery point in a Bana
h spa
e is a 
losed set.Using these fa
ts we 
an prove the following:Theorem 2.7. For any Bana
h spa
e X we have cf(|X|) > ω.In order to prove this theorem we need the followingLemma 2.8 (Juhász�Szentmiklóssy). For any Bana
h spa
e X we have
d(X)ω ≤ |X|. Consequently , by Proposition 2.4(b), |X| = d(X)ω.Proof. Let X be an in�nite-dimensional Bana
h spa
e with d(X) = λ,whi
h, by Fa
t 2.5, is the same as w(X). First note that by the Bing Metriza-tion Theorem (
f. [Bi51℄), every metri
 spa
e of weight λ 
ontains λ pairwisedisjoint open sets. Consequently, sin
e every open subset of X has the sameweight as X itself, every open subset of X 
ontains λ pairwise disjoint opensets. Now start with λ pairwise disjoint open balls, inside of ea
h take λpairwise disjoint open balls and so on. The tree we get in this way is a treeof height ω whi
h 
ontains λω di�erent bran
hes, and sin
e the diameters ofthe open sets 
onverge to 0, every bran
h yields a Cau
hy sequen
e. Hen
e,by the 
ompleteness of X we have λω ≤ |X|.Now we are ready to prove the theorem.Proof of Theorem 2.7. Let X be an in�nite-dimensional Bana
h spa
eof 
ardinality κ with d(X) = λ. By Lemma 2.8 and by Proposition 2.4(b),
λω = κ, and hen
e, by Fa
t 1.2, cf(κ) > ω.3. The 
omplexity of Hamel bases3.1. The general 
ase. Many arguments about Bana
h spa
es involvethe Baire Category Theorem the 
ontent of whi
h we re
all brie�y. Let Xbe a Bana
h spa
e. Sin
e X is a 
omplete metri
 spa
e, X is a so-
alledBaire spa
e, i.e., a spa
e in whi
h non-empty open sets are non-meagre.Equivalently, ea
h interse
tion of 
ountably many open dense sets in X isdense in X. A subset A of X has the Baire property if there is an openset O su
h that O △ A is meagre (i.e., of �rst 
ategory), where O △ A =
(O \ A) ∪ (A \ O).The ideal of meagre sets in a spa
e X will be denoted by MX . Its 
o�-nality cof(MX) is the smallest size of a subfamily F of MX su
h that everymeagre set is 
ontained in an element of F . Noti
ing that Fσ meagre sets are
o�nal in MX we may rede�ne cof(MX) as the smallest size of a subfamilyof Fσ meagre sets that is 
o�nal for the Fσ meagre sets.Let us �rst prove the following two results:Proposition 3.1. Suppose that X is any Bana
h spa
e and that H is aHamel basis of X. If H has the Baire property , then H is meagre.



154 T. Bartoszy«ski et al.Proof. Let H be a Hamel basis of X and assume that it has the Baireproperty but is non-meagre. Then there is a non-empty open set O su
hthat O △ H is meagre. Let h ∈ H ∩ O and let xi (i < ω) be a sequen
e ofve
tors 
onverging to h su
h that ea
h xi needs at least four ve
tors from
H to represent it in the basis H. Su
h a sequen
e exists, sin
e we 
an justtake any 
onverging sequen
e and then add some small linear 
ombinationsof H to it. Now, sin
e the xi's 
onverge to h and O is open, there is some
j < ω su
h that (h + O) ∩ (xj + O) 6= ∅, in parti
ular it is open. Further,sin
e h ∈ H ∩O, we have (h+H)∩ (xj +H) 6= ∅, and by the property of xj,this 
ontradi
ts the fa
t that H is a Hamel basis.Proposition 3.2. Every Bana
h spa
e over a 
omplete �eld 
ontains aHamel basis whi
h is nowhere dense and one whi
h is dense and meagre.Proof. Let X be a Bana
h spa
e over some 
omplete �eld, and let {Bα :
α < λ} be its open base, where λ is the weight of X.By trans�nite indu
tion we 
an 
onstru
t a linearly independent set H ′ =
{hα : α < λ} in X su
h that for every α < λ we have hα ∈ Bα and
‖hα‖ ∈ Q. Why? Assume we have already 
onstru
ted a linearly independentset Hβ = {hα : α < β} for some β < λ. Let 〈Hβ〉 denote the linear spanof Hβ . Sin
e β < λ, we have Bβ * 〈Hβ〉, and therefore we 
an �nd a ve
tor
h ∈ Bβ \ 〈Hβ〉. Pi
k q ∈ (‖h‖ − ε, ‖h‖ + ε) ∩ Q, where ε > 0 is su
h that
Bh,ε ⊂ Bβ . Let hβ = q · h/‖h‖; then hβ ∈ Bβ and ‖hβ‖ ∈ Q.Now extend H ′ by unit ve
tors to a Hamel basis H of X. By 
onstru
tion,
H is a Hamel basis of X whi
h is dense in X. Moreover, for every positiverational q the set {h ∈ H : ‖h‖ = q} is nowhere dense be
ause it is 
ontainedin a sphere. This implies that H, as the union of 
ountably many nowheredense sets, is meagre.De�ne H∼ = {h/‖h‖ : h ∈ H}. Then H∼ is a Hamel basis of X whi
h isnowhere dense.By trans�nite indu
tion one 
an show that every separable Bana
h spa
e
ontains a Hamel basis whi
h is non-meagre (see [GMP83℄). In fa
t, we 
anprove a slightly more general result:Theorem 3.3. Let X be a Bana
h spa
e satisfying cof(MX) ≤ |X|.Then X has a non-meagre Hamel basis.Proof. Let X be a Bana
h spa
e satisfying the assumptions and let {Bα :
α < κ} be an enumeration of a 
o�nal family of meagre Fσ sets of the leastpossible 
ardinality. Hen
e |X| ≥ κ by the assumptions. First we 
onstru
t byindu
tion on α a non-meagre set H ′ = {hα : α < κ} of linearly independentve
tors. Assume we have already 
hosen the set H ′

α = {hβ : β < α} for some
α < κ. Now, there is an hα su
h that hα /∈ 〈H ′

α〉 ∪ Bα. Why? Sin
e |X| ≥ κthe set H ′
α 
annot be a Hamel basis of X, and therefore 〈H ′

α〉 is a proper
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h spa
es 155subset of X. We 
hoose a (non-zero) x′ ∈ X \ 〈H ′
α〉. If 〈H ′

α〉 ∪ Bα = X,then the set A = X \ Bα is 
ontained in 〈H ′
α〉 and is hen
e disjoint from

x′ + 〈H ′
α〉 and in parti
ular from x′ + A. However, sin
e Bα is meagre Fσ,both A and x′ + A are 
ountable interse
tions of open dense sets and hen
ethe Baire Category Theorem implies that the interse
tion of A and x′ + Amust be dense, a 
ontradi
tion. Hen
e, 〈H ′

α〉 ∪Bα 6= X and we 
an 
hoose a(non-zero) hα ∈ X \ (〈H ′
α〉 ∪ Bα).Finally, let H ′ =

⋃
α<κ H ′

α and let H be a Hamel basis of X 
ontaining
H ′. Then, by 
onstru
tion, the set H is not 
ontained in any meagre set andtherefore 
annot be meagre.Corollary 3.4. If X is a Bana
h spa
e satisfying 2

d(X) ≤ |X|, then X
ontains a non-meagre Hamel basis. In parti
ular , every separable Bana
hspa
e has a non-meagre Hamel basis.Proof. Sin
e every nowhere dense set is 
ontained in some 
losed setwhose 
omplement is open dense, and sin
e d(X) = w(X), there are atmost 2
d(X) di�erent open dense sets in X. This implies that cof(MX) ≤

(2d(X))ω = 2
d(X)·ω = 2

d(X), hen
e, by Theorem 3.3, X 
ontains a non-meagreHamel basis. In parti
ular, for separable spa
es X we have d(X) = ω, whi
himplies cof(MX) ≤ 2
d(X) = c ≤ |X|, and therefore, every separable Bana
hspa
e has a non-meagre Hamel basis.The problem whether every Bana
h spa
e 
ontains a non-meagre Hamelbasis will be dis
ussed again in Se
tion 3.4.The following theorem was proved in [Hal01℄ and we shall use it on severalo

asions. Before we state the theorem let us re
all that a subset S of aBana
h spa
e X is 
alled linearly Baire if for every positive integer n theset of all linear 
ombinations involving exa
tly n ve
tors of S has the Baireproperty.Theorem 3.5. If X is a Bana
h spa
e over any �eld F and H is a Hamelbasis of X, then H is not linearly Baire.To keep the notation short, let us introdu
e the following de�nition. Let

X be a Bana
h spa
e over the �eld F and let H ⊆ X. For a positive integer
n, let [H]n be the set of all n-element subsets of H and let

Hn :=
{ n∑

i=1

αihi : α1, . . . , αn ∈ F \ {0} and {h1, . . . , hn} ∈ [H]n
}
.A reformulation of Theorem 3.5 that we shall use below isCorollary 3.6. Let X be a Bana
h spa
e over the �eld F and let Γ bea family of subsets of X su
h that every set in Γ has the property of Baireand for every natural number n and H ∈ Γ , the set Hn is in Γ . Then no setin Γ is a Hamel basis for X.
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onsequen
e of this result isTheorem 3.7. No Bana
h spa
e X has a Hamel basis that is σ-
ompa
t.Proof. Let X be a Bana
h spa
e. To better illustrate the method ofthe proof let us �rst show that X 
annot have a 
ompa
t Hamel basis. Sosuppose towards a 
ontradi
tion that H were su
h. Hen
e for every a ≤ bin R the set [a, b] · H is 
ompa
t and so is any �nite sum of su
h sets sin
efor any 
ompa
t K the set K + K is 
ompa
t. In this way we dedu
e that
H1 =

⋃∞
n=1[−n, n]·H\{0}, H1∪H2 =

⋃∞
n=1{[−n, n]·H+[−n, n]·H}\{0} et
.are all Borel and so H is linearly Baire, in 
ontradi
tion with Theorem 3.5.The proof for σ-
ompa
tness is the same, noti
ing that if H =

⋃
n<ω Knthen for example H +H =

⋃
n<ω,m<ω(Kn +Km), and the other sets involvedin 
he
king that H is linearly Baire have similar de�nitions.As opposed to 
ompa
t sets, 
losed sets C do not ne
essarily satisfy that

C + C is 
losed and in fa
t in Se
tion 3.2 we shall see an example of aBana
h spa
e that has a 
losed Hamel basis. This spa
e is non-separableand by Theorem 3.10 this assumption is ne
essary.3.2. The non-separable 
aseTheorem 3.8. There are non-separable Bana
h spa
es whi
h have a
losed Hamel basis. Moreover , there are Hilbert spa
es of arbitrarily large
ardinality whi
h have a dis
rete and 
losed Hamel basis.Proof. Let κ be an arbitrarily large 
ardinal satisfying κω = κ (for ex-ample for any λ we may let κ = λω). Further, let ℓ2(κ) be the Hilbert spa
eof all fun
tions f : κ → R with
‖f‖ :=

√∑

β<κ

f(β)2 < ∞.

Noti
e that every f ∈ ℓ2(κ) must have 
ountable (or �nite) support, i.e., theset {β < κ : f(β) 6= 0} is at most 
ountable.We shall see that ℓ2(κ) has a dis
rete and 
losed Hamel basis. Note that
|ℓ2(κ)| = κ sin
e κω = κ.Let X be the dire
t sum of ω1 
opies of ℓ2(κ) with the ℓ2-norm. By thede�nition of κ it is easy to see that |ℓ2(κ)| = |X| = κ and that X and ℓ2(κ)are essentially the same spa
e, so X is a Hilbert spa
e of 
ardinality κ. For
α < ω1, let Yα be the α's 
opy of ℓ2(κ) (with respe
t to the dire
t sum X)and let Eα = {eα

ι : ι < κ} be the 
anoni
al orthonormal ve
tors of Yα, i.e.,
eα
ι (β) = δι

β (for all β < κ). Further, for α < ω1 let
Xα =

⊕

η≤α

Yη,so X =
⋃

α<ω1
Xα.
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h spa
es 157Let H0 = {x0
ι : ι < κ} be a Hamel basis for X0 and let

B1 = {x0
ι + e1

ι : ι < κ} ∪ {e1
ι : ι < κ}.Then B1 is a linearly independent set of ve
tors whi
h is 
losed in X1�sin
eit does not 
ontain any 
onverging sequen
e�and whose linear span 
ontains

Y0 ⊆ X1, as x0
ι = x0

ι + e1
ι − e1

ι . However, B1 is not a Hamel basis for X1. Let
H1 be a Hamel basis of Y1 extending E1 and let {x1

ι : ι < κ} = H1 \ E1.We pro
eed now by trans�nite indu
tion. For su

essor ordinals α + 1
< ω1 we de�ne

• Bα+1 := Bα ∪ {xα
ι + eα+1

ι : ι < κ} ∪ {eα+1
ι : ι < κ},

• Hα+1 is a Hamel basis of Yα+1 extending Eα+1, and
• {xα+1

ι : ι < κ} = Hα+1 \ Eα+1.By indu
tion, Bα+1 is a set of linearly independent ve
tors whose linear span
ontains Xα. Further, for limit ordinals γ < ω1 we de�ne
• Bγ =

⋃
α<γ Bα,

• Hγ is a Hamel basis of Xγ extending Bγ , and
• {xγ

ι : ι < κ} = Hγ \ Bγ .For α < β ≤ γ we have Bα ⊆ Bβ ⊆ Bγ , and sin
e, by indu
tion, Bαand Bβ are sets of linearly independent ve
tors, also Bγ is a set of linearlyindependent ve
tors. Further note that Hγ \ Bγ is non-empty. Moreover,
|Hγ \ Bγ | = κ be
ause taking a 
o�nal sequen
e 〈γn : n < ω〉 in γ, we seethat no ve
tor of the form ∑

n<ω 2−nxγn

ι(n) where ι(n) < κ is in 〈Bγ〉. Finally,let
H =

⋃

α<ω1

Bα;

then, by 
onstru
tion, H is dis
rete and 
losed in X, and sin
e every ve
torin X has 
ountable support, H is a Hamel basis of the Hilbert spa
e X.3.3. The separable 
ase. It may be 
onje
tured from Corollary 3.4 thatseparable Bana
h spa
es behave with respe
t to the Hamel bases similarlyto the spa
e R 
onsidered as a ve
tor spa
e over Q. We shall give somefurther remarks whi
h seem to support this statement. Let us �rst showthat a Hamel basis in a separable Bana
h spa
e over R 
annot be a Borel oran analyti
 set. In order to do so, we have to �rst re
all a basi
 property of
Σ

1
n sets (see also [Ke95, Chapter V℄):For ea
h n ≥ 1 we de�ne the proje
tive 
lasses Σ

1
n and Π

1
n of sets ina Polish spa
e X as follows: Σ

1
1 is the 
olle
tion of all analyti
 sets (i.e.,proje
tions of 
losed sets in X × ωω) and Π

1
1 is the 
olle
tion of the 
omple-ments of analyti
 sets. Further, Σ

1
n+1 is the 
olle
tion of proje
tions of Π

1
nsets in X × ωω, and Π

1
n+1 is the 
olle
tion of the 
omplements of Σ1

n+1 sets.
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alled a proje
tive set of X if there is a positiveinteger n su
h that S belongs to Σ
1
n.Now, the 
lasses Σ

1
n are 
losed under images and preimages of 
ontinuousfun
tions between Polish spa
es (
f. [Ke95, Proposition 37.1℄).Lemma 3.9. Suppose that X is a separable Bana
h spa
e. Then for every

Σ
1
n set H and every positive integer m, ⋃

i≤m Hi is a Σ
1
n set.Proof. Let H ⊆ X be aΣ

1
n set in X. As R is a Polish spa
e, H × (R \ {0})is a Σ

1
n set in X × R. De�ne the fun
tion f : X × R → X by stipulating

f(x, r) := rx. Then f is 
ontinuous and by the previous fa
ts we dedu
ethat f [H × (R \ {0})] = {rh : r ∈ R \ {0}, h ∈ H} is a Σ
1
n set in X, whi
hshows that H1 is a Σ

1
n set in X. Further, if H ′ and H ′′ are both Σ

1
n sets,then H ′ + H ′′, as the image of the 
ontinuous fun
tion X ×X → X + X, isagain a Σ

1
n set.Sin
e all analyti
 sets have the Baire property, by Lemma 3.9 and theproof of Proposition 3.1 we get the following: If an analyti
 set H is a Hamelbasis of a separable Bana
h spa
e, and if H1 has the Baire property, then

H1 is meagre. However, the next result shows that a Hamel basis of su
h aBana
h spa
e 
an never be an analyti
 set.Theorem 3.10. If X is a separable Bana
h spa
e and H is a Hamelbasis of X, then H is not an analyti
 set.Proof. Suppose H ⊆ X is an analyti
 Hamel basis of X. By Lemma 3.9,for every natural number n the set ⋃
i≤n Hi is analyti
. Now, by Theorem 3.5it follows that there is an n0 for whi
h Hn0

does not have the Baire property.But Hn0
=

⋃
i≤n0

Hi \
⋃

i<n0
Hi, and therefore, as the di�eren
e of two setshaving the Baire property, Hn0

must have the Baire property as well�a
ontradi
tion.It is (relatively) 
onsistent with ZFC that all proje
tive sets in R havethe property of Baire, by a theorem of Saharon Shelah in [Sh84℄. We shalluse this in Se
tion 3.5 to see that it is 
onsistent that no separable Bana
hspa
e over R has a Hamel basis that is a proje
tive set.3.4. Consisten
y results. In modern set theory, one usually gets 
onsis-ten
y results by a for
ing 
onstru
tion. For
ing was invented by Paul Cohenin the early 1960s to show that AC as well as CH are not provable in Zermelo�Fraenkel Set Theory ZF. In fa
t he showed that ¬AC is relatively 
onsistentwith ZF and that ¬CH is relatively 
onsistent with ZFC. (Apart from thisparagraph, we use the 
ommon set-theoreti
 shorthand where �
onsistent�stands for �relatively 
onsistent�). For
ing is a te
hnique to extend modelsof set theory in su
h a way that 
ertain statements be
ome true in the ex-tension, no matter if they were true or false in the ground model. In other
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es 159words, for
ing adds new sets to some ground model and by 
hoosing theright for
ing notion we 
an make sure that the new sets have some desiredproperties. For a short introdu
tion to for
ing we refer the reader to [Je86℄.To get 
onsisten
y results with respe
t to Hamel bases we �rst have to de�nea notion of for
ing, i.e., a partial order, whi
h adds new Hamel bases with
ertain properties to the ground model. So, let us �rst introdu
e a for
ingnotion whi
h does the job:In the following, let X be an arbitrary but �xed real Bana
h spa
e of
ardinality κ and let λ be a 
ardinal less than or equal to κ. With respe
tto the spa
e X, let Bλ = 〈Bλ,≤〉 be the following partially ordered set.A so-
alled 
ondition p ∈ Bλ 
onsists of less than λ linearly independentve
tors of X and for p, q ∈ Bλ let p ≤ q if and only if p ⊆ q.Our goal is to show that, for λ = cf(κ) > ω, for
ing with Bλ adds aHamel basis of X whi
h is non-meagre. For this we have to make sure thatthe Bana
h spa
e X in the extension is very mu
h the same as in the groundmodel, i.e., we would not like to add new ve
tors to X, but how 
an we dothis? We may 
onsider a Bana
h spa
e X as a set of ve
tors belonging tosome universe V. This set is denoted by XV. Now, if we extend V, then theset XV still exists in the extension but may have some other properties thanin the ground model V. For example the norm on XV in the extension mightno longer be 
omplete or the de�nition of XV might have 
hanged in theextension. However, in most of the 
ases the �de�nition� or �
onstru
tion� ofthe Bana
h spa
e X is the same in V as in the extension, so, for
ing with
Bλ does not 
hange the spa
e in some sense and we will 
all su
h spa
es
onservative.Before we 
an give some examples of 
onservative spa
es we have to knowmore about the for
ing notion Bλ.Let λ be an in�nite 
ardinal. A for
ing notion P = 〈P,≤〉 is 
alled λ-
losed if for any in
reasing sequen
e p0 ≤ · · · ≤ pα ≤ · · · in P of length
γ < λ there is a q ∈ P su
h that q ≥ pα for all α < γ. A for
ing notion
P whi
h is λ-
losed does not add new bounded subsets to λ and does not
ollapse any 
ardinals less than or equal to λ. In parti
ular, if λ > ω then a
λ-
losed for
ing notion does not add new reals.Let us turn ba
k to the for
ing notion Bλ: Let X be a Bana
h spa
eand let λ = cf(κ), where κ = |X|. Then λ is a regular un
ountable 
ardinal,whi
h implies that any in
reasing sequen
e p0 ≤ · · · ≤ pα ≤ · · · of 
onditionsof Bλ of length less than λ has an upper bound, and thus Bλ is λ-
losed.This tells us that for
ing with Bλ does not 
ollapse any 
ardinals less thanor equal to λ. Moreover, sin
e λ > ω, for
ing with Bλ does not add any newreals.Let us now give some examples of 
onservative spa
es: For 1 ≤ p ≤ ∞,all ℓp and Lp spa
es, as well as all ℓp(c) spa
es (and for regular λ even all
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ℓp(λ) spa
es) are 
onservative. All these spa
es are present in every universeof ZFC. As an illustration let us demonstrate that ℓ∞(c) is 
onservative: Firstnoti
e that every ve
tor x in ℓ∞(c) is a sequen
e of real numbers of length c,so x is an element of cR, whi
h implies κ = |ℓ∞(c)| = 2

c > c. By Fa
t 1.2 weget cf(κ) = cf(2c) > c > ω. Now, sin
e x ∈ cR = c
c, it 
an be en
oded as asubset of c × c of 
ardinality c, and sin
e |c × c| = c, every x ∈ ℓ∞(c) 
an been
oded as a subset of c (whi
h is a subset of κ) of 
ardinality c, where c isstri
tly less than cf(κ). Sin
e this en
oding is done in an absolute way (i.e.,not depending on the underlying universe of ZFC) the spa
e will not 
hangeunless we add bounded subsets to cf(κ).Now let us prove the followingTheorem 3.11. Let X be a Bana
h spa
e in some universe V of ZFC inwhi
h X has 
ardinality κ and in whi
h θ < cf(κ) implies θω < κ. Then thereexists a cf(κ)-
losed for
ing extension of V in whi
h XV has a non-meagreHamel basis.Proof. Let X be a Bana
h spa
e in V of size κ. We shall show thatthe for
ing extension by Bλ, where λ = cf(κ), adds a non-meagre Hamelbasis to XV, even though it does not add bounded subsets to λ. Note thatby Theorem 2.7 we have cf(κ) > ω, hen
e Bλ does not add new reals tothe ground model. Also, note that for any θ < λ we have θω < κ by ourassumptions, so no subset of X of 
ardinality < λ is dense in X. Let usde�ne

H :=
⋃

G, where G is the generi
 of Bλ.Sin
e G is a �lter it follows that H is a set of linearly independent ve
tors.Further, for any x ∈ X, the set Dx = {p ∈ Bλ : x ∈ 〈p〉} is dense in Bλ. Thisimplies that H is a
tually a Hamel basis of XV in the extension.Let us suppose for 
ontradi
tion that H is meagre in the extension. Thus,there exists a 
ondition q, a name C
˜

for a dense Gδ set and names O
˜ n fordense open sets su
h that

q 
 C
˜

=
⋂

n<ω

O
˜ n is dense Gδ and H

˜
∩ C

˜
= ∅.So, there exist x

˜
and a rational r

˜
su
h that q 
 Bx

˜
,r
˜

⊆ O
˜ 0. Sin
e the
ardinality of q is less than λ we 
an �nd q0 ≥ q and x0, r0 su
h that

q0 
 Bx0,r0
⊆ Bx

˜
,r
˜
and Bx0,r0

∩ 〈q〉 = ∅,and by indu
tion we �nd qn, xn, and rn (for n < ω) su
h that qn+1 ≥ qn and
qn+1 
 Bxn,rn ⊆ Bxn−1,rn−1

∩ O
˜ n and Bxn,rn ∩ 〈qn〉 = ∅.At the end let p =

⋃
n<ω qn and let h ∈

⋂
Bxn,rn . Hen
e h /∈ 〈

⋃
n<ω qn〉 =⋃

n<ω〈qn〉. In parti
ular p 
 h ∈ C
˜
, so

p ∪ {h} 
 h ∈ C
˜
∩ H

˜
,whi
h is a 
ontradi
tion with p ∪ {h} ≥ q.
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es 1613.5. An independen
e result. So far we have seen that in the non-separ-able 
ase a Hamel basis 
an be 
losed, and that in the separable 
ase aHamel basis 
annot even be analyti
, but we did not answer the question how
omplex a Hamel basis of a separable Bana
h spa
e might be. For example,
an a Hamel basis be a proje
tive set? (Re
all that a proje
tive set is aset that one gets after su

essively applying the proje
tion-operator and the
omplement-operator to a Borel set.) In the following we shall see that theabove question is not de
idable within ZFC.Theorem 3.12. It is 
onsistent with ZFC that no separable Bana
h spa
e
ontains a Hamel basis whi
h is a proje
tive set.The theorem follows fromLemma 3.13. Suppose that X and Y are Polish spa
es, i.e., 
ompleteseparable metri
 spa
es without isolated points. Then there exists a Borelhomeomorphism f : X → Y su
h that A ⊆ X is meagre if and only if f [A]is meagre.Proof. Let BOREL(X) and BOREL(Y ) denote the sets of Borel sets in
X and Y respe
tively, and let MX and MY denote their respe
tive ideals ofmeagre sets. Sin
e the algebras BOREL(X)/MX and BOREL(Y )/MY are
omplete and have both 
ountable atomless dense subalgebras, both alge-bras are isomorphi
 to the Cohen algebra. In parti
ular, they are isomorphi
via the isomorphism Φ : BOREL(X)/MX → BOREL(Y )/MY . By [Ke95,Theorem 15.10℄, the isomorphism is determined by a Borel homeomorphism
g : Y → X su
h that Φ([A]) = [g−1(A)]. So, if A is a meagre Borel set in X,then g−1(A) is meagre in Y .Proof of Theorem 3.12. Let X and Y be Polish spa
es. Then, by Lemma3.13, all proje
tive sets have the Baire property in Y if and only if the samehappens in X. In [Sh84℄ it is proved that if there is a model for ZFC, thenthere is also one in whi
h all proje
tive sets of reals have the Baire property.Let X be any separable Bana
h spa
e in this model. Then all proje
tivesets of the separable Bana
h spa
e X have the Baire property, hen
e, byLemma 3.9 and Corollary 3.6, no proje
tive set is a Hamel basis of X.As we have seen in Se
tion 3.3, no separable Bana
h spa
e has a Hamelbasis that is an analyti
 set. However, it is a well-known result of ArnoldMiller in [Mi89, Theorem 9.26℄ that in Gödel's 
onstru
tible universe the sep-arable Bana
h spa
e R over Q has a 
o-analyti
 Hamel basis. So althoughHamel bases in separable Bana
h spa
es 
annot be as simple as being ana-lyti
, there still 
an 
onsistently exist a Hamel basis in su
h a spa
e that isalmost as simple, namely 
o-analyti
. Using Miller's te
hnique one 
an provea similar statement for all 
lassi
al Bana
h sequen
e spa
es, but sin
e boththe exa
t statement and the proof of this result are rather te
hni
al in the
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ided not to elaborate on this pointhere.4. On 
omplete minimal systems4.1. Complete minimal systems versus Hamel bases. As mentioned above,not every Bana
h spa
e has a 
.m.s., while every Bana
h spa
e has a Hamelbasis. Thus, not every Hamel basis is a 
.m.s., in fa
t, a Hamel basis is nevera 
.m.s.:Proposition 4.1. No Hamel basis of a Bana
h spa
e is a 
omplete min-imal system.Proof. Let H = {hι : ι < κ} be a Hamel basis of some Bana
h spa
e X.Consider the ve
tor
x =

∑

i<ω

2−i hi

‖hi‖
.Sin
e x ∈ X, there are hι0 , . . . , hιn ∈ H and s
alars a0, . . . , an su
h that

x =
∑n

j=0 ajhιj . Let k < ω be su
h that hk /∈ {hι0 , . . . , hιn}. Then hkbelongs to the 
losure of the linear span of H \ {hk}, and therefore H is nota 
.m.s. of X.We have also seen (
f. Proposition 3.2) that every Bana
h spa
e over a
omplete �eld has a dense Hamel basis. To the 
ontrary a 
.m.s. 
an neverbe dense, in fa
t we get the followingFa
t 4.2. A 
omplete minimal system is always nowhere dense.Proof. Re
all that a 
.m.s. must be dis
rete. Let S ⊆ X be a 
.m.s.of X. For every x ∈ S, let Bx,rx be su
h that Bx,rx ∩ S = {x}. Let O bea non-empty open set in X. If O ∩ Bx,rx = ∅ for all x ∈ S, then 
learly O
ontains a non-empty open set that misses S. Otherwise suppose that x ∈ Sis su
h that O∩Bx,rx 6= ∅. Then the open set Bx,r \ {x}∩O is a non-emptyopen subset of O that misses S.Sin
e a 
.m.s. 
onsists of linearly independent ve
tors, every 
.m.s. 
anbe extended to a Hamel basis of the whole spa
e. However, not every Hamelbasis 
ontains a subset whi
h is a 
.m.s. (sin
e there are Bana
h spa
es whi
hdo not have a 
.m.s.).Thus Hamel bases behave very di�erently than 
omplete minimal sys-tems.4.2. On Φ-bases. Let us �rst 
hara
terize Φ-bases as linearly orderedsets. The following result was proved in [KPP88℄:Theorem 4.3. A 
omplete minimal system {xa : a ∈ A} of a Bana
hspa
e X is a Φ-basis of X if and only if there exists a linear ordering �≺�
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es 163on A, whi
h we will 
all uniform, su
h that
sup{µ{xak

: ak ∈ A, 0 ≤ k ≤ n}} < ∞,where the sup is taken over the set of all �nite in
reasing sequen
es a0 ≺
· · · ≺ an in A. In addition the order �≺� on A 
an be assumed to satisfy

sup{µ{xak
: 0 ≤ k ≤ n} : a0 ≺ · · · ≺ an} = M,where M is a Φ-basis 
onstant of the Φ-basis {xa : a ∈ A}.Noti
e that if a linear ordering on A is uniform (with 
onstant M), thenthe inverse ordering is uniform as well (with 
onstant at most 1 + M).As a 
onsequen
e of Theorem 4.3 we get the following (
f. [KPP88, Corol-lary 2℄):Corollary 4.4. If {xn : n < ω} is a Φ-basis in the spa
e X whi
h is nota S
hauder basis for any permutation of the indi
es, then X is representableas the dire
t sum of two in�nite-dimensional subspa
es.Proof. Let A = ω be the uniformly ordered set. It is enough to showthat A 
an be de
omposed into two disjoint in�nite subsets A = A0 ∪ A1su
h that a′ ≺ a′′ for all a′ ∈ A0 and a′′ ∈ A1, for then X = X0 ⊕ X1,where X0 = [xa : a ∈ A0] and X1 = [xa : a ∈ A1]. Indeed, for any r ∈ Alet Dr := {a ∈ A : a ≺ r}. If there is an r ∈ A su
h that both Dr and

A \ Dr are in�nite, then we are done. So, assume that for ea
h r ∈ A, Dris either �nite or 
o-�nite. Without loss of generality we may assume thatthe set I = {r ∈ A : Dr is �nite} is in�nite. Sin
e A is linearly ordered, I islinearly ordered as well and, by de�nition of I, the order type of I is ω. If
I = A, then {xn : n < ω} would be a S
hauder basis of X, whi
h 
ontradi
tsthe premiss of the 
orollary. Further, for any a ∈ A \ I and any r ∈ I, byde�nition of I we have r ≺ a. If A \ I is �nite, then a permutation of theindi
es would give us a S
hauder basis of X, whi
h again 
ontradi
ts thepremiss of the 
orollary; thus, A \ I is in�nite and we 
an just put A0 = Iand A1 = A \ I.The name �Φ-basis� is just an abbreviation for ��nitary basis�, but sin
ethe main feature of Φ-bases is the linear ordering on the index set given byTheorem 4.3, we 
ould 
all Φ-bases also linearly ordered bases.Let us now present some examples of Φ-bases:1. ([KPP88℄) Let X be the spa
e of left 
ontinuous fun
tions, de�nedon [0, 1], whi
h have dis
ontinuities of the �rst kind only at rationalpoints, with the supremum norm. The 
hara
teristi
 fun
tions xq(t)of segments [0, q] (for q ∈ Q ∩ [0, 1]) form a (
ountable) Φ-basis in Xwhi
h is not a Markushevi
h basis, where a Markushevi
h basis is a
.m.s. with the additional property that the dual system is total, i.e.,

fi(x) = 0 for all i implies x = 0.



164 T. Bartoszy«ski et al.The next example is well known in non-separable Bana
h spa
e theory (see,e.g., [Co61, Example 2℄).2. Let X be a (non-separable) Bana
h spa
e whi
h is 
onstru
ted as inExample 1, but any s
alar of [0, 1] 
an be a point of dis
ontinuity.Then the fun
tions xa(t) (for a ∈ [0, 1]) form a Φ-basis in X.3. (
f. [PP90, �7℄) Let Bp (1 < p < ∞) be the spa
e of Besi
ovit
h almostperiodi
 fun
tions. The trigonometri
 fun
tions eiλt (for λ ∈ R) forma Φ-basis in Bp, with the natural order generated by the real line.This system forms a Markushevi
h basis and has good approximationproperties. In addition it forms an (un
ountable) orthogonal basis in
B2. Related to this example are Questions 5 and 6 in Se
tion 5.4. Let us 
onsider the spa
e X = C[0, ω1]. The 
hara
teristi
 fun
tionsof segments [0, α] form a trans�nite (hen
e, a Φ-) basis of X, but Xdoes not have a norming Markushevi
h basis ([AP∞℄). Be
ause everyEn�o�Rosenthal basis is norming ([Pl84℄), X has no En�o�Rosenthalbasis. (A de�nition of trans�nite bases 
an be found in [KPP88℄ or in[Si81℄.)5. The natural unit ve
tors form a S
hauder basis in the well-knownJames spa
e J , but J has no un
onditional basis (
f. [LT77, p. 25℄).The natural unit ve
tors form a trans�nite (hen
e, a Φ-) basis in theLong James spa
e X = Long J (see also Question 7).6. We 
an 
onstru
t the James type spa
es J(Q) and J(R) exa
tly in thesame way as J is 
onstru
ted from N or Long J from [0, ω1]. Obviously,the natural unit ve
tors form again a Φ-basis in these spa
es (but seeQuestion 8).There are Bana
h spa
es having 
omplete minimal systems whi
h are notlinearly ordered, but partially ordered by other sets, for example by trees (see[Ja74℄ or [Hay99℄). So we 
an introdu
e the following de�nition: Let A be apartially ordered set. We say that a 
omplete minimal system {xa : a ∈ A}forms an A-ordered basis in a Bana
h spa
e X if the proje
tions of X onto

[xb : b > a], along [xb : b ≯ a], are uniformly bounded on A.Now we give an answer to the �rst two questions posed in [KPP88℄ anddis
uss the third. The questions are the following:
• Does there exist a Φ-basis in ℓ∞?
• Does ea
h separable Bana
h spa
e have a Φ-basis?
• Is the existen
e of a Φ-basis in a Bana
h spa
e related to its approxi-mation properties?Theorem 4.5. Not every separable Bana
h spa
e has a Φ-basis.Proof. In [AKP99℄ it is shown that there exists a separable Bana
h spa
ewhi
h has neither a S
hauder basis nor a de
omposition into a dire
t sum
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es 165of in�nite-dimensional 
losed subspa
es. This result in 
ombination withCorollary 4.4 gives the proof of the theorem.Before answering the �rst question let us re
all some de�nitions. A se-quen
e of 
losed subspa
es {Xn : n < ω} forms a S
hauder de
omposition of aBana
h spa
e X if [⋃n<ω Xn] = X and the proje
tions Pn : X → [
⋃

m≤n Xm]along [
⋃

m<n Xm] are uniformly bounded, whi
h is equivalent to saying thatthe proje
tions I − Pn are uniformly bounded. Obviously, we 
an enumer-ate the S
hauder de
omposition by 1 ≤ n ≤ ω, moving 0 to ω and shift-ing n + 1 → n. A Bana
h spa
e X is 
alled Grothendie
k if weak∗ andweak 
onvergen
e of sequen
es in X∗ 
oin
ide. A Bana
h spa
e X has theDunford�Pettis property if every weakly 
ompa
t operator T of X into anyBana
h spa
e Y maps weakly 
onvergent sequen
es into norm 
onvergentsequen
es.All spa
es C(K) where K is a 
ompa
t extremely dis
onne
ted spa
e(hen
e also their 
omplemented subspa
es) are Grothendie
k and have theDunford�Pettis property. In parti
ular, ℓ∞ has these properties (
f. [Si81,p. 497℄).Theorem 4.6. Let X be a Grothendie
k spa
e with the Dunford�Pettisproperty. Then X has no Φ-basis.Proof. Suppose towards a 
ontradi
tion that X has a Φ-basis {xa : a∈A}and that A is linearly ordered by �≺�. Obviously, ea
h in�nite subset of A
ontains either an in
reasing or de
reasing in�nite sequen
e. If {xa : a ∈ A}is a Φ-basis with respe
t to the order �≺�, then it is also a Φ-basis with respe
tto the opposite order �≻�. So, without loss of generality let us assume that
{an : n < ω} is su
h that an ≺ an+1 for all n < ω. Put X0 = [xa : a � a0], for
n > 0 let Xn = [xa : an−1 ≺ a � an], and let Xω = [xa : ∀n < ω (an ≺ a)].Obviously, {Xn : n ≤ ω} is a S
hauder de
omposition of X. But X has nosu
h de
omposition (see [De67℄ or [Si81, p. 497℄).Now let us dis
uss the 
onne
tion of Φ-bases with the approximationproperty. A Bana
h spa
e X has the approximation property if for every ε > 0and every 
ompa
t set K ⊆ X there is a bounded linear �nite-dimensionaloperator T : X → X su
h that

‖Tx − x‖ < ε for every x ∈ K.Haskell Rosenthal has proved in [Ro85℄ that a spa
e with a trans�nite basisalways has the approximation property.The �rst step in Rosenthal's proof is the followingLemma. Suppose that X1, X2, . . . is a S
hauder de
omposition of a Ba-na
h spa
e X and that for every n ∈ ω, Xn has the approximation property.Then X has the approximation property.
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ond step is a remark that in order to prove that a spa
e has theapproximation property it is su�
ient to 
onsider only separable Bana
hspa
es (and hen
e, only 
ountable trans�nite bases).Finally, the third step is just trans�nite indu
tion.This leads to the following:(a) Can we use Rosenthal's proof to show that a spa
e with a Φ-basis hasthe approximation property? How 
an we des
ribe linearly ordered
ountable sets whi
h allow the trans�nite indu
tion? For example,the union of an in
reasing and a de
reasing sequen
es, without �over-lapping�, is good.(b) On the other hand, there exists a (separable) Bana
h spa
e whi
h hasthe approximation property but whi
h does not have the boundedapproximation property (
f. [LT77, p. 42℄), hen
e, does not have a�nite-dimensional S
hauder de
omposition. Is there a Φ-basis in thatspa
e?(
) Let X be a Bana
h spa
e with a 
.m.s. whi
h is tree ordered. Does
X have the approximation property?4.3. On Auerba
h bases in ℓ∞. As mentioned above, every �nite-dimen-sional Bana
h spa
e has an Auerba
h basis. Further it is well known that ev-ery separable Bana
h spa
e has a Markushevi
h basis (hen
e, a 
.m.s.), but itis still unknown whether every separable Bana
h spa
e has an Auerba
h ba-sis (see also Question 12). On the other hand, a non-separable Bana
h spa
eeven with a 
.m.s. may not have an Auerba
h basis (
f. [Go85, Theorem 2℄),and there exists an Auerba
h basis of c0 whi
h is not a Markushevi
h basis(
f. [Go85, p. 223℄). Moreover, every non-separable Bana
h spa
e X with aseparable norming subspa
e in X∗ admits an equivalent norm ||| · ||| su
h that

(X, ||| · |||) does not have an Auerba
h basis (
f. [GLT93℄). Thus Auerba
hbases are mu
h stronger than ordinary 
omplete minimal systems.In the following we always assume that the Auerba
h basis is normalized.For a set A ⊆ R, we say that {xi : i ∈ I} ⊆ ℓ∞ is an A-Auerba
h basis of
ℓ∞ if {xi : i ∈ I} is a normalized Auerba
h basis of ℓ∞ and for all i ∈ I andall n < ω we have xi(n) ∈ A.We 
an prove the followingProposition 4.7. For ε > 0, the spa
e ℓ∞ does not have a [−1 + ε, 1]-Auerba
h basis.Proof. Assume towards a 
ontradi
tion that {xi : i ∈ I} ⊆ ℓ∞ is a
[−1 + ε, 1]-Auerba
h basis of ℓ∞, and let {fi : i ∈ I} be the 
orrespondingbiorthogonal fun
tionals. Let 1 = (1, 1, 1, . . .) and let I1 be a 
ountablesubset of I su
h that 1 ∈ [xi : i ∈ I1]. There is a �nite set I0 ⊆ I1 and ave
tor y ∈ 〈xi : i ∈ I0〉 su
h that ‖(ε/2)1− y‖ < ε/4, whi
h implies that forany j ∈ I \ I1 we have ‖xj − y‖ < 1. Now, sin
e by de�nition fj(xi) = 0 for
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h spa
es 167every i ∈ I0, we get
fj(xj − y) = fj(xj) − fj(y) = 1 − 0 = 1,whi
h 
ontradi
ts ‖fj‖ = 1.5. What we would like to know. While writing this paper we 
amea
ross some problems we 
ould not solve. We think that some of them arequite interesting and working on them 
ould probably give a better un-derstanding of the geometry of Bana
h spa
es, espe
ially of non-separableBana
h spa
es.5.1. Questions on Hamel bases. In Se
tion 3 we have seen that everyBana
h spa
e X in whi
h cof(MX) is less than or equal to |X| 
ontains anon-meagre Hamel basis. In parti
ular, every separable Bana
h 
ontains anon-meagre Hamel basis. This leads to the following questions:Question 1. Does there exist a Bana
h spa
e in whi
h every Hamelbasis is meagre? Or is it at least 
onsistent with ZFC that su
h a Bana
hspa
e exists?A related question is whether there exists a Bana
h spa
e X su
h that

cof(MX) > |X|. Now, if topologi
al spa
es X and Y are homeomorphi
, thenboth |X| = |Y | and cof(MX) = cof(MY ). Moreover, it is well known thatany two Bana
h spa
es of the same weight are homeomorphi
 (
f. [To81℄),and in parti
ular, any Bana
h spa
e of weight λ is homeomorphi
 to ℓ2(λ).Thus, the question above is in fa
t just a question on the existen
e or non-existen
e of a 
ertain 
ardinal:Question 2. Is there a 
ardinal λ su
h that cof(Mℓ2(λ)) > λω? (Noti
ethat λω = |ℓ2(λ)|.) Or is it at least 
onsistent with ZFC that su
h a 
ardinalexists?Remember that every Bana
h spa
e over a 
omplete �eld 
ontains aHamel basis whi
h is nowhere dense and one whi
h is dense and meagre.Further we have seen that for all 
lassi
al Bana
h spa
es it is 
onsistent withZFC that they 
ontain a non-meagre Hamel basis.In Proposition 2.2 we have seen that the unit sphere of a real Bana
hspa
e X is not the union of fewer than c Hamel bases of X. This suggeststhe followingQuestion 3. Let X be a real Bana
h spa
e. Can the unit sphere of Xbe the union of fewer than |X| Hamel bases of X? Or is it at least 
onsistentwith ZFC that there is a Bana
h spa
e in whi
h this happens?The following question was re
ently investigated in [Hal∞℄, where it isshown that the question is not de
idable within ZFC.



168 T. Bartoszy«ski et al.Question 4. Does every real Bana
h spa
e of 
ardinality κ admit afamily of 2
κ di�erent normalized Hamel bases su
h that the 
ardinality ofthe interse
tion of any two of them is less than κ?5.2. Questions on 
omplete minimal systemsQuestion 5. As we have seen, the trigonometri
 fun
tions eiλt (for

λ ∈ R) form a Φ-basis in Bp (where 1 < p < ∞), with the natural ordergenerated by the real line. Does this system also form an En�o�Rosenthalbasis in Bp? In parti
ular, does there exist a linear ordering of Q su
h that
eiλt (for λ ∈ Q) is a basi
 sequen
e?Probably not, and probably it is a purely 
ombinatorial question.The next question is a well known question by En�o and Rosenthal (see,e.g., [Si81, Problem 17.1℄):Question 6. Does a non-separable spa
e L1(µ), where µ is a �nite mea-sure, have an En�o�Rosenthal basis? Or slightly weaker: Does this spa
e havea Φ-basis?This question was one of the reasons to introdu
e and investigate in[KPP88℄ the notion of Φ-bases.Question 7. Let X = Long J . Do the natural unit ve
tors form anEn�o�Rosenthal basis of X? Does X have an En�o�Rosenthal basis?Question 8. What 
an we say about geometri
 properties of the spa
es
J(Q) and J(R)? Are the natural unit ve
tors Markushevi
h bases in thesespa
es?The main question about Auerba
h bases isQuestion 9. Does ℓ∞ have an Auerba
h basis?Probably easier to answer than Question 9 isQuestion 10. Does ℓ∞ have a {−1, 1}-Auerba
h basis, or at least a
{−1, 0, 1}-Auerba
h basis?It is known (
f. [Hal03℄) that ℓ∞ has a quotient whi
h is isomorphi
 to
ℓ2(c) and whi
h has a {−1, 1}-Auerba
h basis. However, it seems that one
annot extend this Auerba
h system to an Auerba
h basis of the whole spa
e.Related to Question 10 isQuestion 11. Does ℓ∞ have a {0, 1}-
.m.s. (whi
h is a 
.m.s. whoseve
tors 
onsist of 0's and 1's), or at least a {−1, 1}-
.m.s. or a {−1, 0, 1}-
.m.s.?Still open is also the following question by Peª
zy«ski:
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es 169Question 12. Does every separable Bana
h spa
e have an Auerba
hbasis?
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