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Multiplying balls in the spae of ontinuous funtions on [0, 1]by
Marek Balcerzak, Artur Wachowicz and

Władysław Wilczyński (�ód¹)Abstrat. Let C denote the Banah spae of real-valued ontinuous funtions on
[0, 1]. Let Φ : C × C → C. If Φ ∈ {+, min, max} then Φ is an open mapping but themultipliation Φ = · is not open. For an open ball B(f, r) in C let B2(f, r) = B(f, r) ·
B(f, r). Then f2 ∈ Int B2(f, r) for all r > 0 if and only if either f ≥ 0 on [0, 1] or f ≤ 0on [0, 1]. Another result states that Int(B1 · B2) 6= ∅ for any two balls B1 and B2 in C.We also prove that if Φ ∈ {+, ·, min, max}, then the set Φ−1(E) is residual whenever E isresidual in C.1. Openness of some operations. Let B(x, r) denote the (open) ballwith entre f and radius r in a metri spae. By Int we denote the inte-rior. Let C = C[0, 1] stand for the Banah algebra of real-valued ontinu-ous funtions on [0, 1] with the norm ‖f‖ = supx∈[0,1] |f(x)|, f ∈ C. Let
Φ : C × C → C be one of the four operations: addition (+), multipliation
(·), minimum (min), and maximum (max). For two balls B1 = B(F, r) and
B2 = B(G, r) in C, it is natural to ask what is the image Φ(B1 ×B2). Now,let us simplify some notation. If Φ ∈ {+, ·,min,max} and E1, E2 ⊂ C, wedenote the respetive images by E1 +E2, E1 ·E2, min(E1, E2), max(E1, E2).The answer to our question for addition, minimum and maximum is simple.The ase of multipliation is nontrivial and more interesting.First we study the behaviour of the sum of two balls in an arbitrarynormed spae:Proposition 1. For an arbitrary normed spae X we have

B(x1, r1) +B(x2, r2) = B(x1 + x2, r1 + r2)where x1, x2 ∈ X and r1, r2 > 0.Proof. The inlusion �⊂� is lear. For the reverse inlusion, onsider z ∈
B(x1 + x2, r1 + r2) and put2000 Mathematis Subjet Classi�ation: 46J10, 46B25, 26A15, 54E52.Key words and phrases: Banah algebra, multipliation, ontinuous funtion, polygo-nal funtion, residual set. [203℄
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zi = xi +

ri
r1 + r2

(z − (x1 + x2)) for i = 1, 2.Then zi ∈ B(xi, ri) for i = 1, 2 and z = z1 + z2.Proposition 2. For every F,G ∈ C and r > 0 we have
min(B(F, r), B(G, r)) = B(min(F,G), r),

max(B(F, r), B(G, r)) = B(max(F,G), r).Proof. For instane, let us show the �rst equality. To demonstrate �⊂�,let h = min(f, g) where f ∈ B(F, r) and g ∈ B(G, r). Hene
F (x) − r < f(x) < F (x) + r and G(x) − r < g(x) < G(x) + rfor all x ∈ [0, 1]. Consequently, for all x ∈ [0, 1] we have

min(F,G)(x) − r < h(x) < min(F,G)(x) + r.Sine the above funtions are ontinuous on [0, 1], we have
sup

x∈[0,1]
|h(x) − min(F,G)(x)| < rand so, h ∈ B(min(F,G), r) as desired.For the reverse inlusion, let h ∈ B(min(F,G), r). For eah x ∈ [0, 1] put

α(x) = h(x)−min(F,G)(x), f(x) = F (x) +α(x), g(x) = G(x) +α(x).Then ‖α‖ < r and onsequently, f ∈ B(F, r) and g ∈ B(G, r). Sine also
h = min(f, g), we have h ∈ min(B(F, r), B(G, r)).
Remark. Consider F (x) = x, G(x) = 1 − x for x ∈ [0, 1] and r1 =

1/4, r2 = 1/2. It is easy to hek that neither min(B(F, r1), B(G, r2)) nor
max(B(F, r1), B(G, r2)) is a ball. Nevertheless, from Propositions 1 and 2 itfollows that every mapping Φ ∈ {+,min,max} is open. We will see that formultipliation, this is not true.For f ∈ C and r > 0 we write B2(f, r) = B(f, r) · B(f, r). In January2004, D. H. Fremlin (oral ommuniation) observed that for f(x) = x− 1/2,
x ∈ [0, 1], one has

f2 ∈ B2(f, 1/2) \ IntB2(f, 1/2).Hene multipliation is not an open mapping from C × C into C.We have the following haraterization.Theorem 3. Let f ∈ C. Then f2 ∈ IntB2(f, r) for all r > 0 if and onlyif either f ≥ 0 on [0, 1] or f ≤ 0 on [0, 1].Proof. �⇒� (This part is inspired by Fremlin's example.) Suppose to theontrary that there are a, b ∈ [0, 1] suh that f(a) < 0 and f(b) > 0. De�ne
r = min{|f(a)|, |f(b)|}. Let g ∈ B(f, r). Thus g(a) < 0 and g(b) > 0, and bythe Darboux property, g has a zero between a and b. Hene every funtion



Multiplying balls 205in B2(f, r) has a zero in [0, 1]. By assumption, f2 ∈ IntB2(f, r). Hene
f2 + ε ∈ B2(f, r) for a su�iently small ε > 0. But f2 + ε > 0 on [0, 1],whih ontradits our previous observation.�⇐� We may assume that f ≥ 0 on [0, 1] sine, if f ≤ 0 on [0, 1], we use
−f and notie that B2(f, r) = B2(−f, r). Fix r > 0 and put ε = r2/9. Wewill show that B(f2, ε) ⊂ B2(f, r). Let g ∈ B(f2, ε). Then(1) f2(x) − ε < g(x) < f2(x) + εfor eah x ∈ [0, 1]. We have g = g1g2 on [0, 1] where g1 =

√

|g|, g2 =
√

|g| sgn g. Obviously g1, g2 ∈ C. From (1) it follows that |g(x)| < f2(x) + εfor eah x ∈ [0, 1] and onsequently,(2) √

|g(x)| <
√

f2(x) + ε ≤ f(x) +
√
ε.On the other hand, using again (1), for all x ∈ [0, 1] we have |g(x)| +

2
√

|g(x)|ε+ ε ≥ g(x) + ε > f2(x). Hene (
√

|g(x)|+√
ε)2 > f2(x) and thus

√

|g(x)| > f(x) − √
ε. This together with (2) shows that g1 ∈ B(f,

√
ε) ⊂

B(f, r).To show that g2 ∈ B(f, r) it is enough to onsider the ase when g(x) < 0for a �xed x ∈ [0, 1]. Then by (1) we have f2(x)−ε < g(x) < 0. So f(x) <
√
εand 2f(x) < 2

√
ε = 2r/3 = r−√

ε. Hene −f(x)−√
ε > f(x)− r and from(2) we get

−
√

|g(x)| > −f(x) −√
ε > f(x) − r.Also obviously, −√

|g(x)| < f(x) + r. Thus g2 ∈ B(f, r).Corollary 4. The set {f ∈ C : (∀r > 0) f2 ∈ IntB2(f, r)} is losed.2. Weak openness of multipliation. Although multipliation from
C × C into C is not an open mapping, it always transforms eah opennonempty set onto a set with nonempty interior. Let us all this propertyweak openness. Namely, we have the following general result:Theorem 5. Int(B(F,R) ·B(G,R)) 6= ∅ for all F,G ∈ C and R > 0.Of ourse, it su�es to assume that the entres F,G ome from a �xeddense set in C. It is onvenient to take a dense set of all polygonal funtionsin C. More preisely, we onsider the set P of all polygonal funtions f in Csuh that f(0) 6= 0, f(1) 6= 0 and f−1({0}) does not ontain interior points.It is easy to hek that P is also dense in C.Lemma 6. Let F,G ∈ P and r > 0. There are a partition 0 = x0 < x1 <
· · · < x2n = 1 of [0, 1] and funtions f, g ∈ P suh that :

• ‖f − F‖ < r and ‖g −G‖ < r;
• f and g are a�ne on every interval Ii = [xi−1, xi] for i = 1, . . . , 2n;
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• f |Ik

= const = ak 6= 0 for eah odd k ∈ {1, . . . , 2n},
g|Ik

= const = ak 6= 0 for eah even k ∈ {1, . . . , 2n}.Proof. By the uniform ontinuity of F and G we hoose δ > 0 suhthat |F (x) − F (x′)| < r and |G(x) − G(x′)| < r for any x, x′ ∈ [0, 1] with
|x− x′| < δ. Sine F,G ∈ P , we an pik a partition 0 = x0 < x1 < · · · <
x2n = 1 with diameter < δ/2 suh that F (xi) 6= 0 and G(xi) 6= 0 for
i = 1, . . . , 2n. Put f(1) = F (1), g(0) = G(0), and f |Ik

= F (xk−1) if k ∈
{1, . . . , 2n} is odd, g|Ik

= G(xk−1) if k ∈ {1, . . . , 2n} is even. Then we extend
f and g to be ontinuous on [0, 1] and a�ne on every interval Ii. Finally, wede�ne

ak =

{

F (xk−1) if k ∈ {1, . . . , 2n} is odd,
G(xk−1) if k ∈ {1, . . . , 2n} is even.Lemma 7. Let f, g ∈ P and xi (i = 0, . . . , 2n) be as in Lemma 6. De�ne

µ = min{|f(xi)g(xi)| : i = 0, . . . , 2n},
γ = max{|f(xi)g(xi)| : i = 0, . . . , 2n}.Then for all ε ∈ (0, µ/2], ϕ ∈ B(fg, ε) and i ∈ {0, . . . , 2n} we have

µ/2 < |ϕ(xi)| < γ + µ/2.Proof. We have
|ϕ(xi)| ≥ |f(xi)g(xi)| − ‖ϕ− fg‖ > µ− ε ≥ µ/2,

|ϕ(xi)| ≤ |f(xi)g(xi)| + ‖ϕ− fg‖ < γ + ε ≤ γ + µ/2.From now on, for h ∈ C we write ‖h‖i = supx∈Ii
|h(x)|, i = 1, . . . , 2n.Lemma 8. Keeping all notations from Lemmas 6 and 7, one an �ndnumbers βi > 0 (i = 1, . . . , 2n) suh that for eah ε ∈ (0, µ/2] and for every

ϕ ∈ B(fg, ε) there are funtions ζ, ψ ∈ C with ϕ = ζψ and ‖f − ζ‖i < βiε,
‖g − ψ‖i < βiε for i = 1, . . . , 2n.Proof. We will use indution with respet to i ∈ {1, . . . , 2n}. Step bystep, we will de�ne βi and (for given ε and ϕ) we will de�ne ζ|Ii

and ψ|Ii
insuh a way that ζ|Ii

= const = di if i is odd, and ψ|Ii
= const = di if i iseven.Let d1 = a1. De�ne ζ and ψ on I1 by ζ = const = d1 and ψ = (1/d1)ϕ.Thus ζψ = ϕ on I1. Additionally ‖f − ζ‖1 = 0 and

‖g − ψ‖1 =

∥

∥

∥

∥

g − 1

d1
ϕ

∥

∥

∥

∥

1

=
1

|d1|
‖d1g − ϕ‖1

=
1

|d1|
‖fg − ϕ‖1 ≤ 1

|d1|
‖fg − ϕ‖ < 1

|d1|
ε.Put β1 = 1/|d1| = 1/|a1|.



Multiplying balls 207We de�ne ζ and ψ on I2. We want ψ to be onstant on I2. Sine ψ shouldbe ontinuous at x1, we put
ψ(x) = ψ(x1) =

1

d1
ϕ(x1) for x ∈ I2.Thus d2 = (1/d1)ϕ(x1) = (1/a1)ϕ(x1). We will estimate |d2|. Pik a positiveinteger N suh that 1/N ≤ µ/2 and N ≥ γ + µ/2. By Lemma 7 we have(3) 1

N |a1|
≤ |d2| ≤

N

|a1|
.To obtain ϕ = ζψ on I2, we must put ζ = (1/d2)ϕ on I2. We thus have

‖g − ψ‖2 = |a2 − d2| = |g(x1) − ψ(x1)| ≤ ‖g − ψ‖1 < β1εand
‖f − ζ‖2 =

1

|d2|
‖d2f − d2ζ‖2 =

1

|d2|
‖d2f − ϕ‖2

≤ 1

|d2|
(|d2 − a2| ‖f‖2 + ‖a2f − ϕ‖2)

≤ 1

|d2|
(|d2 − a2| ‖f‖2 + ‖gf − ϕ‖)

<
1

|d2|
(β1ε‖f‖ + ε) =

ε

|d2|
(β1‖f‖ + 1).Hene by (3) we obtain

‖f − ζ‖2 ≤ εN |a1|(β1‖f‖ + 1).It is enough to put β2 = max{β1, N |a1|(β1‖f‖ + 1)}.Now, we de�ne ζ and ψ on I3. We want ζ to be onstant on I3. Sine ζshould be ontinuous at x2, we put ζ(x) = ζ(x2) = (1/d2)ϕ(x2) for x ∈ I3.Thus d3 = (1/d2)ϕ(x2). By (3) and Lemma 7 we have(4) |a1|/N2 ≤ |d3| ≤ N2|a1|.To obtain ϕ = ζψ on I3, we must put ψ = (1/d3)ϕ on I3. We thus have
‖f − ζ‖3 = |a3 − d3| = |f(x2) − ζ(x2)| ≤ ‖f − ζ‖2 < β2εand

‖g − ψ‖3 =
1

|d3|
‖d3g − d3ψ‖3 =

1

|d3|
‖d3g − ϕ‖3

≤ 1

|d3|
(|d3 − a3| ‖g‖3 + ‖a3g − ϕ‖3)

≤ 1

|d3|
(|d3 − a3| ‖g‖ + ‖fg − ϕ‖)

<
1

|d3|
(β2ε‖g‖ + ε) =

ε

|d3|
(β2‖g‖ + 1).



208 M. Balerzak et al.Hene by (4) we obtain
‖g − ψ‖3 ≤ εN2

|a1|
(β2‖g‖ + 1).It is enough to put β3 = max

{

β2, (N
2/|a1|)(β2‖g‖ + 1)

}.The next steps are analogous. If k ∈ {2, 3, . . . , 2n} we put dk = (1/dk−1)
· ϕ(xk−1) and thus we have

|a1|
Nk−1

≤ |dk| ≤ Nk−1|a1| if k is odd,
1

Nk−1|a1|
≤ |dk| ≤

Nk−1

|a1|
if k is even.Also we de�ne

βk =











max

{

βk−1,
Nk−1

|a1|
(βk−1‖g‖ + 1)

} if k is odd,
max{βk−1, N

k−1|a1|(βk−1‖f‖ + 1)} if k is even.Proof of Theorem 5. Put r = R/2 in Lemma 6. Thus B(f, r) ⊂ B(F,R)and B(g, r) ⊂ B(G,R). De�ne
ε = min

{

µ

2
,

r

max{β1, . . . , β2n}

}

where the numbers βi are hosen as in Lemma 8. It is enough to show that
B(fg, ε) ⊂ B(f, r) ·B(g, r).Indeed, let ϕ ∈ B(fg, ε). Use Lemma 8 to pik funtions ζ, ψ ∈ C with

ϕ = ζψ and ‖f − ζ‖i < βiε, ‖g − ψ‖i < βiε for i = 1, . . . , 2n. Hene
‖f − ζ‖ < εmax{β1, . . . , β2n} ≤ rand analogously, ‖g − ψ‖ < r.3. Some appliations. Let us �nish our paper with appliations ofPropositions 1, 2 and Theorem 5. Namely, we will show that if Φ ∈ {+, ·,min,

max}, then Φ−1(E) is residual in C ×C whenever E is residual in C. Reallthat a residual set is the omplement of a set of the �rst ategory in atopologial spae. (See [O℄.)Proposition 9. Let X,Z be topologial Baire spaes and let E ⊂ X bea residual set. If Φ : Z → X is a ontinuous mapping suh that Φ(U) is ofthe seond ategory for every nonempty open set U ⊂ Z, then Φ−1(E) is aresidual set.Proof. Pik a dense Gδ set F ⊂ E. Let F =
⋂

∞

n=1En where En areopen and dense for every n. It follows that Φ−1(F ) =
⋂

∞

n=1 Φ
−1(En) and

Φ−1(F ) is of type Gδ. It su�es to show that Φ−1(F ) is dense. Let U ⊂ Z



Multiplying balls 209be nonempty open. By the assumption, Φ(U) ∩ F 6= ∅. So pik z ∈ U with
Φ(z) ∈ F . Hene z ∈ U ∩ Φ−1(F ).Corollary 10. Let X be a omplete metri spae and let Φ : X ×X →
X be a ontinuous mapping suh that Int(Φ(B1 ×B2)) 6= ∅ for any two balls
B1, B2 ⊂ X. Then Φ−1(E) is residual for every residual set E ⊂ X.Corollary 11. Let Φ : C × C → C where Φ ∈ {+, ·,min,max}. Then
Φ−1(E) is residual for every residual set E ⊂ C.If E ⊂ C is residual, a property possessed by all ontinuous funtions in Eis alled typial. Several typial properties of ontinuous funtions have beendesribed in [Br℄. In partiular, the famous Banah�Mazurkiewiz theoremstates that a typial funtion in C is nondi�erentiable at every point. Notethat, for E onsisting of nowhere di�erentiable funtions in C, the assertionof Corollary 11 was obtained in [Wa1℄ by a di�erent argument.The results of this paper, exept for Theorem 3 and Corollary 4, areontained in [Wa2℄. Here we provide a new shorter proof of Theorem 5.Aknowledgements. We would like to thank V. V. Chistyakov, D. H.Fremlin, Sz. Gª¡b and J. Jahymski for their valuable omments.
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