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The Lizorkin–Freitag formula for several weighted Lp spaces

and vector-valued interpolation

by

Irina Asekritova (Växjö), Natan Krugljak (Lule̊a) and
Ludmila Nikolova (Sofia)

Abstract. A complete description of the real interpolation space

L = (Lp0
(ω0), . . . , Lpn

(ωn))~θ,q

is given. An interesting feature of the result is that the whole measure space (Ω, µ) can be
divided into disjoint pieces Ωi (i ∈ I) such that L is an lq sum of the restrictions of L to
Ωi, and L on each Ωi is a result of interpolation of just two weighted Lp spaces. The proof
is based on a generalization of some recent results of the first two authors concerning real
interpolation of vector-valued spaces.

1. Introduction. One of the most important results in real interpola-
tion is the description of the so-called (θ, q) spaces. However, there are not
many cases for which a complete and explicit description of these spaces is
known. One of them is a couple of weighted Lp spaces which was treated by
J. Peetre, J. E. Gilbert, P. L. Lizorkin and D. Freitag. The corresponding
description of (θ, q) spaces is usually called the Lizorkin–Freitag formula.
This formula seems to be quite fundamental; for example from it and the
fact that Besov spaces in wavelet bases are just weighted Lp spaces follows
a complete description of (θ, q) spaces for a couple of Besov spaces.

In this paper we will obtain an analog of the Lizorkin–Freitag formula
for the case of several weighted Lp spaces. Our interest in this question
is connected with the interpolation of several smooth function spaces (see
[AKNMP]). The main tool is interpolation of vector-valued spaces for the
case of more than two spaces.

In a recent paper (see [AK1]) it was shown that if we have several se-
quences of spaces Ai = {Ak

i }k∈Z, i = 0, 1, . . . , n, then

(1.1) (lp0({A
(k)
0 }k∈Z), . . . , lpn({A(k)

n }k∈Z))~θ,q
= lq({(A

(k)
0 , . . . , A(k)

n )~θ,q
}k∈Z)

2000 Mathematics Subject Classification: Primary 46B70; Secondary 46E30.
Key words and phrases: vector-valued interpolation, weighted Lp spaces, Lizorkin–

Freitag formula.
The third author was partially supported by the Wenner-Gren Foundation.

[227]



228 I. Asekritova et al.

under the condition that

A(k)
n = ckA

(k)
n−1 for all k ∈ Z and some fixed positive c 6= 1.

Moreover, if for each k ∈ Z the spaces A
(k)
0 , . . . , A

(k)
n−1 are Banach function

lattices on the same measure space (Ωk, µk), then (1.1) holds even when

(1.2) A(k)
n = ck(A

(k)
0 , . . . , A

(k)
n−1)~λ,r

for all k ∈ Z and some fixed ~λ, r and c 6= 1.
In this paper we will generalize these results and use them to obtain a

complete description of the space

L = (Lp0(ω0), . . . , Lpn(ωn))~θ,q
.

In the diagonal case, i.e. when 1/q = θ0/p0 + θ1/p1 + · · ·+ θn/pn, the result
is known and we have a nice and quite useful formula

(1.3) (Lp0(ω0), . . . , Lpn(ωn))~θ,q
= Lq(ω

θ0
0 · · ·ωθn

n ),

which was obtained for the case of two spaces in 1958 by Stein–Weiss (see
[SW]) and for n > 1 by G. Sparr (see [S]).

Therefore, the problem is interesting only in the non-diagonal case. In
the case of two spaces and p0 6= p1 this description is known as the Lizorkin–

Freitag formula (see [L] and [F]):

(1.4) (Lp0(ω0), Lp1(ω1))θ,q = Lpθ ,q(ω, dµ̃),
1

pθ
=

1 − θ

p0
+

θ

p1
,

where Lpθ,q(ω, dµ̃) is a weighted Lorentz space with weight ω and measure
dµ̃ given by the expressions

(1.5) ω =
ω1−θ

0 ωθ
1

(
ω0
ω1

) 1/pθ
1/p0−1/p1

, dµ̃ =

(
ω0

ω1

) 1
1/p0−1/p1

dµ.

Usually the formula for ω is written in a different way, but for our purpose
it is better to rewrite it in the form (1.5). In the case p0 = p1 the result is
different. The first result was obtained by J. Peetre ([P]) in connection with
the problem of identification of Beurling’s spaces and a general result was
obtained by J. E. Gilbert (see [G]), who showed that

(1.6)

‖f‖(Lp(ω0),Lp(ω1))θ,q
=

(∑

k∈Z

(‖fχΩk
‖Lp(ω1−θ

0 ωθ
1))

q
)1/q

,

Ωk =

{
x : 2k <

ω1(x)

ω0(x)
≤ 2k+1

}
.

In this paper we will show that when we have more than two spaces then
the whole set Ω can be divided into some subsets Ωi (i ∈ I) such that the
space L = (Lp0(ω0), . . . , Lpn(ωn))~θ,q

on Ωi can be obtained by interpolation
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of just two weighted Lp spaces and the norm of the function f in L is the lq
norm of the sequence of the norms of the restrictions of f to Ωi:

(1.7) ‖f‖L =
( ∑

i

(‖fχΩi‖L)q
)1/q

.

In the particular case of triples (i.e. when n = 2 and all weights are pow-
ers of one function) this result was obtained in [AKNMP] and it was used
for interpolation of several “smooth” function spaces. The proof of (1.7) in
[AKNMP] was rather complicated and it was a combination of some cal-
culations, known results and the reiteration theorem for finite collections
of Banach function lattices (see [AK2]). In this paper using a completely
different proof we will obtain the general result without any restrictions on
n and the weights.

To explain the construction of the sets Ωi in (1.7) and the idea of the
proof let us consider the particular case p0 < p1 < · · · < pn. In this case
each intermediate pi (i = 1, . . . , n − 1) can be obtained from the “ends” p0

and pn in the following way:

1

pi
=

1 − αi

p0
+

αi

pn
.

If we consider the set

Ωk
i =

{
x : 2k <

ωi

ω1−αi
0 ωαi

n

≤ 2k+1

}
,

then for the restrictions of spaces to this set we will have

(1.8) Lpi(ωi; Ω
k
i ) = 2k(Lp0(ω0; Ω

k
i ), Lpn(ωn; Ωk

i ))αi,pi .

Moreover, if we intersect the sets Ωk
i which correspond to different i and

k then we will obtain disjoint sets Ω(k1,...,kn−1) = Ωk1
1 ∩ · · · ∩ Ω

kn−1

n−1 such
that their union gives the whole measure space Ω and on each of them all
spaces Lpi(ωi) for intermediate pi could be obtained by interpolation from
the end spaces Lp0(ω0), Lpn(ωn) (we also have to multiply the norm in the

result by 2ki).

If we denote the restriction of the space Lpi(ωi) to Ω(k1,...,kn−1) by A
(~k)
i ,

~k = (k1, . . . , kn−1), then Lpi(ωi) = lpi({A
(~k)
i }~k∈Zn−1). Thus instead of de-

scribing the space L = (Lp0(ω0), . . . , Lpn(ωn))~θ,q
it is sufficient to describe

(1.9) L = (lp0({A
(~k)
0 }~k∈Zn−1), . . . , lpn({A(~k)

n }~k∈Zn−1)~θ,q
.

Moreover, (1.8) shows that

(1.10) A
(~k)
i = 2ki(A

(~k)
0 , A(~k)

n )αi,pi , i = 1, . . . , n − 1,

similarly to (1.2). The main difference is that the parameter ~k in (1.9) be-
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longs to Z
n−1 and not to Z as in (1.2), and instead of one condition (1.2) we

have n − 1 conditions (1.10). Nevertheless, as we will show below (see The-
orem 4) a formula analogous to (1.1) holds in this situation also. Therefore
we will have

L = (lp0({A
(~k)
0 }~k∈Zn−1), . . . , lpn({A(~k)

n }~k∈Zn−1))~θ,q

= lq({(A
(~k)
0 , . . . , A(~k)

n )~θ,q
}~k∈Zn−1)

and we need to calculate the space (A
(~k)
0 , . . . , A

(~k)
n )~θ,q

. But this is not difficult

because A
(~k)
i is just Lpi(ωi) restricted to Ω(k1,...,kn−1), and on this set the

spaces Lpi(ωi) (i = 1, . . . , n − 1) can be obtained by interpolation of the
“end” spaces Lp0(ω0), Lpn(ωn) restricted to this set (see (1.8)). Moreover,
we will do some extra work to give the answer in a symmetrical way closest
to the remarkable formula (1.3). This is the content and the idea of the
paper.

2. Definitions and some results from real interpolation of sev-

eral spaces. Let A0, A1, . . . , An be n + 1 Banach or quasi-Banach spaces.
We will say that they form a compatible collection or simply a collection
~A = (A0, A1, . . . , An) if they are linearly and continuously embedded in
some (common for all) topological linear space with Hausdorff topology.
Then we can, analogously to the case of a couple, define the K-functional
(see [S]) by the formula

(2.1)
K(~t, a; ~A) = inf(‖a0‖A0 + t1‖a1‖A1 + · · · + tn‖an‖An),

~t = (t1, . . . , tn) ∈ R
+
n ,

where the inf is taken over all decompositions a = a0 + a1 + · · · + an.

Let ~θ = (θ0, θ1, . . . , θn) be a parameter vector, i.e. θi > 0 and θ0 + θ1 +

· · · + θn = 1, and let 0 < q ≤ ∞. Then the interpolation space ~A~θ,q
=

(A0, A1, . . . , An)~θ,q
(usually denoted by ~A~θ,q;K

, but we will omit the index

K as we will consider only K-spaces) is defined by the norm (or quasinorm;
for simplicity we always say norm)

(2.2) ‖a‖~θ,q
=

( \
R

n
+

(t−θ1
1 t−θ2

2 · · · t−θn
n K(~t, a; ~A))q dt1

t1

dt2
t2

· · ·
dtn
tn

)1/q

with the usual modification for q = ∞. As the K-functional is a concave
function on R

n
+, the norm (2.2) can be written in an equivalent form

‖a‖~θ,q
≈

( ∑

(i1,...,in)∈Zn

(2−θ1i1 · · · 2−θninK(2i1 , . . . , 2in , a; ~A))q
)1/q

.
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We will call ~θ = (θ0, θ1, . . . , θn) an extended parameter vector if θi ≥ 0 and
θ0 + θ1 + · · · + θn = 1, i.e. some of the coordinates θi may be zero. In this
case in the definition of the K-functional and norms we omit the spaces Ai,
parameters ti and integrate on the set of smaller dimension. In the particular

case when ~θ has one coordinate, say the ith, equal to one, and so all other
coordinates are zero, we will mean by (A0, A1, . . . , An)~θ,q

the space Ai.

We use the so-called “monotonicity” properties of interpolation spaces,
which follow easily from the definitions. Namely:

A) if q0 ≤ q1 then

(2.3) (A0, A1, . . . , An)~θ,q0
⊂ (A0, A1, . . . , An)~θ,q1

;

B) if we have embeddings Ai ⊂ Bi (i = 0, . . . , n) then

(2.4) (A0, A1, . . . , An)~θ,q
⊂ (B0, B1, . . . , Bn)~θ,q

.

The following theorem will be of importance; it was proved in [AK2] in
the Banach case (the proof can be extended after some modification to the
quasi-Banach case).

Theorem 1 (Reiteration Theorem). Suppose that A0, A1, . . . , An are

Banach or quasi-Banach function lattices on the same measure space (Ω, µ)

and the parameter vectors ~θk (k = 1, . . . , m) span R
n+1. Then

(2.5) ( ~A~θ0,q0
, ~A~θ1,q1

, . . . , ~A~θm,qm
)~λ,q

= ~A~θ,q
, ~θ = λ0

~θ 0+λ1
~θ 1+· · ·+λm

~θm,

where ~λ = (λ0, . . . , λm) is a parameter vector. The formula is also true when
~θk (k = 1, . . . , m) are extended parameter vectors.

The proofs in the next section will be based on the results from [AK1].
For convenience of the reader we will formulate the needed results.

Let {A(k)}k∈Z be a sequence of Banach or quasi-Banach spaces. In the
quasi-Banach case we assume that the constants in the triangle inequalities
are uniformly bounded. We will denote by lp({A

(k)}) the vector-valued space

of all sequences a = {a(k)}k∈Z , a(k) ∈ A(k), with the norm

‖a‖lp({A(k)}) =
( ∑

k∈Z

(‖a(k)‖A(k))p
)1/p

,

with the usual modification for p = ∞.

Let {A
(k)
i }k∈Z, i = 0, . . . , n, be a family of n + 1 sequences of Banach

or quasi-Banach spaces such that for each k ∈ Z the spaces A
(k)
0 , . . . , A

(k)
n

form a compatible collection and therefore we can define the spaces ~A
(k)
~θ,q

=

(A
(k)
0 , . . . , A

(k)
n )~θ,q

. Then we have (see [AK1])
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Theorem 2. The formula

(2.6) (lp0({A
(k)
0 }k∈Z), . . . , lpn({A(k)

n }k∈Z))~θ,q
= lq({(A

(k)
0 , . . . , A(k)

n )~θ,q
}k∈Z)

holds if for some fixed i 6= n, fixed positive number c 6= 1 and all k ∈ Z we

have (1)

(2.7) A(k)
n = ckA

(k)
i .

Formula (2.6) also holds when the space A
(k)
n is obtained from an extended

parameter vector ~λ:

(2.8) A(k)
n = ck(A

(k)
0 , . . . , A

(k)
n−1)~λ,p

, k ∈ Z, c 6= 1,

under the additional condition that A
(k)
0 , . . . , A

(k)
n−1 are Banach or quasi-

Banach function lattices on (Ωk, µk).

3. Multiparameter vector-valued interpolation. Let

A = {A(~k)}~k∈Zm

be an “m-dimensional” sequence of spaces. The space lp(A) is defined by
the norm (quasinorm if p < 1)

‖{a(~k)}~k∈Zm‖lp(A) =
( ∑

~k∈Zm

(‖a(~k)‖
A(~k))

p
)1/p

,

with the usual modification for p = ∞.

Let {A
(~k)
i }~k∈Zm , i = 0, . . . , n, be a collection of n + 1 sequences of Ba-

nach or quasi-Banach spaces. In the quasi-Banach case we assume that the
constants in the triangle inequalities are uniformly bounded (do not de-

pend on ~k). We also assume that for each ~k ∈ Z
m the spaces A

(~k)
0 , . . . , A

(~k)
n

form a compatible collection and therefore we can define the spaces ~A
(~k)
~θ,q

=

(A
(~k)
0 , . . . , A

(~k)
n )~θ,q

.

Then we can consider the collection

(lp0({A
(~k)
0 }~k∈Zm), . . . , lpn({A(~k)

n }~k∈Zm))

and look for conditions under which

(3.1) (lp0({A
(~k)
0 }~k∈Zm), . . . , lpn({A(~k)

n }~k∈Zm))~θ,q

= lq({(A
(~k)
0 , . . . , A(~k)

n )~θ,q
}~k∈Zm).

We will prove the following theorem:

(1) The equality Ai = Bi (i ∈ I) of sequences of Banach or quasi-Banach spaces here
and below means that the spaces Ai, Bi coincide as sets, their norms are equivalent for
each i and the constants of equivalence do not depend on i.
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Theorem 3. Suppose that m ≤ n and for i = 1, . . . , m,

(3.2) A
(~k)
n−m+i = (ci)

kiA
(~k)
s(i), ci 6= 1, 0 ≤ s(i) ≤ n − m,

for all ~k = (k1, . . . , km) ∈ Z
m. Then the formula (3.1) is valid.

Proof. The right-hand side in (3.1) does not depend on pi (i = 0, . . . , n).
Therefore, from monotonicity properties (see (2.3)–(2.4)) it follows that it
is enough to prove (3.1) for the case when pi = p for all i.

Everywhere below for any ~k = (k1, . . . , km) we denote by ~k(m−1) the
vector (k1, . . . , km−1). The proof is by induction on m. For m = 1 the as-
sertion was proved in [AK1]. For the induction step, consider the spaces

B
(r)
i = lp({A

(k1,...,km−1,r)
i }~k(m−1)∈Zm−1) (r ∈ Z is fixed and the space lp is

constructed over Z
m−1). Then we can write

lp({A
(~k)
i }~k∈Zm) = lp({B

(r)
i }r∈Z), i = 0, . . . , n.

Moreover,

B(r)
n = (cm)rB

(r)
s(m) for all r ∈ Z.

Indeed, for a fixed r we have A
(k1,...,km−1,r)
n = (cm)rA

(k1,...,km−1,r)

s(m) and so

B(r)
n = lp({A

(k1,...,km−1,r)
n }~k(m−1)∈Zm−1)

= (cm)rlp({A
(k1,...,km−1,r)

s(m) }~k(m−1)∈Zm−1) = (cm)rB
(r)
s(m).

Therefore from Theorem 2 for the spaces B
(r)
i we get

(3.3) (lp({A
(~k)
0 }~k∈Zm), lp({A

(~k)
1 }~k∈Zm), . . . , lp({A

(~k)
n }~k∈Zm))~θ,q

= (lp({B
(r)
0 }r∈Z), lp({B

(r)
1 }r∈Z), . . . , lp({B

(r)
n }r∈Z))~θ,q

= lq({(B
(r)
0 , . . . , B(r)

n )~θ,q
}r∈Z).

From (3.2) with i = 1, . . . , m − 1, fixed r and the induction hypothesis, it
follows that

(B
(r)
0 , . . . , B(r)

n )~θ,q

= (lp({A
(~k(m−1),r)
0 }~k(m−1)∈Zm−1 , . . . , lp({A

(~k(m−1),r)
n }~k(m−1)∈Zm−1)~θ,q

= lq({(A
(~k(m−1),r)
0 , . . . , A(~k(m−1),r)

n )~θ,q
}~k(m−1)∈Zm−1).

Therefore the assertion follows from (3.3) and the property lq(lq) = lq.

Now we will consider the “intermediate” result.

Theorem 4. Suppose that for each ~k ∈ Z
m the collection A

(~k)
0 , A

(~k)
1 , . . . ,

A
(~k)
n−m consists of Banach or quasi-Banach function lattices on some measure
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space (Ω~k
, µ~k

) and the last m (m ≤ n) spaces have the form

(3.4) A
(~k)
n−m+i = (ci)

ki(A
(~k)
0 , A

(~k)
1 , . . . , A

(~k)
n−m)~λi,qi

,

where ~λi are extended parameter vectors and ci 6= 1, i = 1, . . . , m. Then

(3.5) (lp0({A
(~k)
0 }~k∈Zm), lp1({A

(~k)
1 }~k∈Zm), . . . , lpn({A(~k)

n }~k∈Zm))~θ,q

= lq({(A
(~k)
0 , A

(~k)
1 , . . . , A(~k)

n )~θ,q
}~k∈Zm).

Remark 1. In the theorem, for simplicity, we required that the “last m
spaces” can be obtained by interpolation from the “first n + 1−m” spaces,
but the same proof shows that the assertion is valid if we require that some
m spaces can be obtained by interpolation from the others.

Proof. The proof is analogous to the proof of the previous theorem,
except some details which we will explain below. As in the previous theorem,
from the monotonicity property and reiteration theorem it follows that it is
enough to prove the theorem under the additional condition that all pi and
qj (see (3.4)) are equal to some p. Now we argue by induction. For m = 1
the theorem was proved in [AK1]. The induction step can be done in the

following way. Consider the spaces B
(r)
i = lp({A

(k1,...,km−1,r)
i }~k(m−1)∈Zm−1)

(r ∈ Z is fixed and lp is constructed over Z
m−1). Then we can write

lp({A
(~k)
i }~k∈Zm) = lp({B

(r)
i }r∈Z), i = 0, . . . , n.

To use Theorem 2 we need the property

B(r)
n = (cm)r(B

(r)
0 , . . . , B

(r)
n−m)~λm,p

for all r ∈ Z.

But from the condition (3.4) for i = m and vector-valued interpolation in
the diagonal case (see [S]) it follows that

B(r)
n = lp({A

(k1,...,km−1,r)
n }~k(m−1)∈Zm−1)

= lp({(cm)r(A
(k1,...,km−1,r)
0 , . . . , A

(k1,...,km−1,r)
n−m )~λm,p

}~k(m−1)∈Zm−1)

= lp({(cm)r(A
(k1,...,km−1,r)
0 , . . . , A

(k1,...,km−1,r)
n−m )~λm,p

}~k(m−1)∈Zm−1)

= (cm)r

· (lp({A
(k1,...,km−1,r)
0 }~k(m−1)∈Zm−1), . . . , lp({A

(k1,...,km−1,r)
n }~k(m−1)∈Zm−1))~λm,p

= (cm)r(B
(r)
0 , . . . , B

(r)
n−m)~λm,p

.

Now everything is ready to apply Theorem 2. Using it we obtain

(lp({A
(~k)
0 }~k∈Zm), lp({A

(~k)
1 }~k∈Zm), . . . , lp({A

(~k)
n }~k∈Zm))~θ,q

= lq({(B
(r)
0 , . . . , B(r)

n )~θ,q
}r∈Z).
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Now we can calculate the space (B
(r)
0 , . . . , B

(r)
n )~θ,q

by using the induction

hypothesis (see end of proof of Theorem 3) and the theorem follows from
the property lq(lq) = lq.

4. Interpolation of weighted Lp spaces. Let (Ω, µ) be a measure
space with σ-finite measure µ. Let ω0, ω1, . . . , ωn be some positive functions
defined on the set Ω. We will consider the collection

L~p(~ω) = (Lp0(ω0), Lp1(ω1), . . . , Lpn(ωn)),

where 0 < pi ≤ ∞, i = 0, 1, . . . , n, and the norm (quasinorm) in Lpi(ωi) is
defined by the formula

(4.1) ‖f‖Lpi(ωi) =
( \

Ω

|fωi|
pi dµ

)1/pi

with the usual modification when pi = ∞.
Without loss of generality we can restrict ourselves to the case p0 ≤ p1 ≤

· · · ≤ pn. If pn 6= p0, then we can define the numbers αi ∈ [0, 1] such that

1

pi
=

1 − αi

p0
+

αi

pn
, i = 1, . . . , n − 1,

and the sets

(4.2) Ω(~k) =

{
x ∈ Ω : 2ki <

ωi(x)

ω1−αi
0 (x)ωαi

n (x)
≤ 2ki+1, i = 1, . . . , n − 1

}
,

where ~k = (k1, . . . , kn−1) ∈ Z
n−1.

If pn = p0 we take

(4.3) Ω(~k) =

{
x ∈ Ω : 2ki <

ωi(x)

ω0(x)
≤ 2ki+1, i = 1, . . . , n

}
;

notice that here ~k is in Z
n (and not in Z

n−1 as in the case pn 6= p0).

It is clear that in both cases the sets Ω(~k) are disjoint for different ~k and
their union gives all Ω.

Our main result reads:

Theorem 5. (a) If pn 6= p0 then

(4.4) ‖f‖(Lp0(ω0),Lp1 (ω1),...,Lpn(ωn))~θ,q
≈

( ∑

~k

(‖fωχ
Ω(~k)‖L)q

)1/q
,

where L is a Lorentz space Lpθ,q on Ω with measure

dµ̃ =

(
ω0

ωn

) 1
1/p0−1/pn

dµ,
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Ω(~k) is defined by (4.2), and

(4.5) ω =
ωθ0

0 ωθ1
1 · · ·ωθn

n

( ω0
ωn

)
1/pθ

1/p0−1/pn

, where
1

pθ
=

θ0

p0
+

θ1

p1
+ · · · +

θn

pn
.

(b) If pn = p0 then formula (4.4) is also valid , but we have to take

dµ̃ = dµ, ω = ωθ0
0 ωθ1

1 · · ·ωθn
n and Ω(~k) are defined by (4.3).

Proof. (a) Denote by L
(~k)
pi (ωi) the restriction of the space Lpi(ωi) to the

set Ω(~k). Then Lpi(ωi) can be written as

Lpi(ωi) = lpi({L
(~k)
pi

(ωi)}~k∈Zn−1).

Therefore

(4.6) (Lp0(ω0), Lp1(ω1), . . . , Lpn(ωn))~θ,q

= (lp0({L
(~k)
p0

(ω0)}~k∈Zn−1), . . . , lpn({L(~k)
pn

(ωn)}~k∈Zn−1))~θ,q
.

Moreover, on Ω(~k) given by (4.2) we have, for αi ∈ (0, 1),

(4.7) L(~k)
pi

(ωi) = 2ki(L(~k)
p0

(ω0), L
(~k)
pn

(ωn))αi,pi

and

L(~k)
pi

(ωi) = 2kiL(~k)
p0

(ω0) when αi = 0,(4.8)

L(~k)
pi

(ωi) = 2kiL(~k)
pn

(ωn) when αi = 1.(4.9)

So the conditions of Theorem 4 are fulfilled with m = n − 1 and A
(~k)
i =

L
(~k)
pi (ωi), i = 0, . . . , n. Applying this theorem in the form of Remark 1 we

obtain

(4.10) (Lp0(ω0), Lp1(ω1), . . . , Lpn(ωn))~θ,q

= lq({(L
(~k)
p0

(ω0), . . . , L
(~k)
pn

(ωn))~θ,q
}~k∈Zn−1)

and we only need to calculate the space (L
(~k)
p0 (ω0), . . . , L

(~k)
pn (ωn))~θ,q

. But from

the relations (4.7)–(4.9) and the theorem of G. Sparr (see [S, Theorem 9.2])
it follows that

(4.11) (L(~k)
p0

(ω0), . . . , L
(~k)
pn

(ωn))~θ,q

= 2k1θ1+···+kn−1θn−1(L(~k)
p0

(ω0), L
(~k)
pn

(ωn))γ,q,

where

(4.12) γ = α1θ1 + · · · + αn−1θn−1 + θn.
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Moreover, from (4.2) we have

(4.13) 2k1θ1+···+kn−1θn−1

≈

(
ω1(x)

ω1−α1
0 (x)ωα1

n (x)

)θ1

· · ·

(
ωn−1(x)

ω
1−αn−1

0 (x)ω
αn−1
n (x)

)θn−1

.

As

1

pθ
=

θ0

p0
+

θ1

p1
+ · · ·+

θn

pn

=
θ0

p0
+ θ1

(
1−α1

p0
+

α1

pn

)
+ · · ·+ θn−1

(
1−αn−1

p0
+

αn−1

pn

)
+

θn

pn

=
θ0 + θ1(1−α1) + · · ·+ θn−1(1−αn−1)

p0
+

θ1α1 + · · ·+ θn−1αn−1 + θn

pn

=
1− γ

p0
+

γ

pn
,

from (4.12) and (4.13) it follows that

2k1θ1+···+kn−1θn−1 ≈
ωθ0

0 ωθ1
1 · · ·ωθn

n

ω
θ0+θ1(1−α1)+···+θn−1(1−αn−1)
0 ω

θ1α1+···+θn−1αn−1+θn
n

=
ωθ0

0 ωθ1
1 · · ·ωθn

n

ω1−γ
0 ωγ

n

.

Now by using the Lizorkin–Freitag formula (see (1.4)–(1.5)) we infer that

(L
(~k)
p0 (ω0), L

(~k)
pn (ωn))γ,q is Lpγ ,q on the set Ω~k

with the measure dµ̃ =

(ω0/ωn)
1

1/p0−1/pn dµ and weight

ω1−γ
0 ωγ

n

( ω0
ωn

)
1/pγ

1/p0−1/pn

so

(L(~k)
p0

(ω0), L
(~k)
pn

(ωn))γ,q = Lpγ ,q

(
ω1−γ

0 ωγ
n

(ω0/ωn)
1/pγ

1/p0−1/pn

,

(
ω0

ωn

) 1
1/p0−1/pn

dµ, Ω~k

)
,

where 1/pγ = (1 − γ)/p0 + γ/pn = 1/pθ.

The constant 2k1θ1+···+kn−1θn−1 on the right-hand side of (4.11) can be
moved to the weight, so the new weight will be

2k1θ1+···+kn−1θn−1 ·
ω1−γ

0 ωγ
n

( ω0
ωn

)
1/pγ

1/p0−1/pn

≈
ωθ0

0 ωθ1
1 · · ·ωθn

n

ω1−γ
0 ωγ

n

·
ω1−γ

0 ωγ
n

(
ω0
ωn

) 1/pθ
1/p0−1/pn

=
ωθ0

0 ωθ1
1 · · ·ωθn

n

(
ω0
ωn

) 1/pθ
1/p0−1/pn

= ω.
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So, from (4.11) it follows that on Ω(~k) we have

(L(~k)
p0

(ω0), . . . , L
(~k)
pn

(ωn))~θ,q
= Lpθ,q

(
ω,

(
ω0

ωn

) 1
1/p0−1/pn

dµ, Ω(~k)

)
,

and from (4.10) we have the desired result.

(b) The proof is analogous and even simpler, because on each set Ω(~k)

(see (4.3), where ~k is in Z
n and not in Z

n−1 as in the case pn 6= p0) we have

L(~k)
pi

(ωi) = 2kiL(~k)
p0

(ω0) for i = 1, . . . , n.

Therefore we can apply Theorem 4 to obtain

(Lp0(ω0), Lp1(ω1), . . . , Lpn(ωn))~θ,q
= lq({(L

(~k)
p0

(ω0), . . . , L
(~k)
pn

(ωn))~θ,q
}~k∈Zn).

Moreover we can calculate the space (L
(~k)
p0 (ω0), . . . , L

(~k)
pn (ωn))~θ,q

directly with-

out using the Lizorkin–Freitag formula. Indeed,

(L(~k)
p0

(ω0), . . . , L
(~k)
pn

(ωn))~θ,q
= (L(~k)

p0
(ω0), 2

k1L(~k)
p0

(ω0), . . . , 2
knL(~k)

p0
(ω0))~θ,q

= 2k1θ1+···+knθnL(~k)
p0

(ω0) = L(~k)
p0

(2k1θ1+···+knθnω0)

and it remains to notice that

2k1θ1+···+knθnω0 ≈

(
ω1(x)

ω0(x)

)θ1

· · ·

(
ωn(x)

ω0(x)

)θn

ω0 = ωθ0
0 ωθ1

1 · · ·ωθn
n .

Remark 2. Formulas for ω and dµ̃ in the theorem in the case when
p0 6= pn depend on the parameters p0, pn, ω0, ωn of the “end” spaces Lp0(ω0),
Lpn(ωn) and therefore it seems that the result is not symmetric with respect
to other spaces. However, it is possible to rewrite the result by using the
parameters of the spaces Lpi(ωi), Lpj(ωj) in the case when pi 6= pj . Indeed,
from the equality

(αj − αi)

(
1

p0
−

1

pn

)
=

1 − αi

p0
+

αi

pn
−

(
1 − αj

p0
+

αj

pn

)
=

1

pi
−

1

pj

it follows that on Ω(~k) we have
(

ωi

ωj

) 1
1/pi−1/pj

≈

(
2ki−kj

ω1−αi
0 (x)ωαi

n (x)

ω
1−αj

0 (x)ω
αj
n (x)

) 1
1/pi−1/pj

= (2ki−kj )
1

1/pi−1/pj

(
ω0

ωn

) αj−αi
1/pi−1/pj

= (2ki−kj )
1

1/pi−1/pj

(
ω0

ωn

) 1
1/p0−1/pn

.
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Therefore, from the well known property of the norm of the Lorentz space
Lp,q:

(4.14) ‖cf‖Lp,q(dµ)
= ‖f‖Lp,q(cpdµ)

it follows that if in the formulas for ω and dµ̃ instead of (ω0/ωn)
1

1/p0−1/pn

we take (ωi/ωj)
1

1/pi−1/pj then the norm ‖fωχ
Ω(~k)‖L will be changed to an

equivalent one, with the constant of equivalence not depending on Ω(~k).
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