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Approximate and L
p Peano derivatives

of nonintegral order

by

J. Marshall Ash (Chicago, IL) and
Hajrudin Fejzić (San Bernardino, CA)

Abstract. Let n be a nonnegative integer and let u ∈ (n, n + 1]. We say that f is
u-times Peano bounded in the approximate (resp. Lp, 1 ≤ p ≤ ∞) sense at x ∈ R

m if
there are numbers {fα(x)}, |α| ≤ n, such that f(x + h) −

∑

|α|≤n
fα(x)hα/α! is O(hu)

in the approximate (resp. Lp) sense as h → 0. Suppose f is u-times Peano bounded in
either the approximate or Lp sense at each point of a bounded measurable set E. Then for
every ε > 0 there is a perfect set Π ⊂ E and a smooth function g such that the Lebesgue
measure of E \ Π is less than ε and f = g on Π. The function g may be chosen to be in
Cu when u is integral, and, in any case, to have for every j of order ≤ n a bounded jth
partial derivative that is Lipschitz of order u − |j|.

Pointwise boundedness of order u in the Lp sense does not imply pointwise bounded-
ness of the same order in the approximate sense. A classical extension theorem of Calderón
and Zygmund is confirmed.

1. Introduction. Throughout this paper n denotes a fixed nonnegative
integer, and u a real number in (n, n + 1]. All functions will be defined on
subsets of m-dimensional Euclidean space and will be real-valued.

Definition 1. We say that f is u-times approximately Peano bounded

at x if f is Lebesgue measurable and for each multi-index α = (α1, . . . , αm),
all αi being nonnegative integers, of order |α| =

∑n
i=1 αi ≤ n there is a

number fα(x) such that

f(x + h) =
∑

|α|≤n

hα

α!
fα(x) + Mx(x + h)‖h‖u

where ‖h‖ denotes Euclidean norm in R
m, hα = hα1

1 · · ·hαm
m , α! = α1! · · ·αm!,

f0(x) = f(x) and Mx(x + h) remains bounded as h → 0 through a set of
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density 1 at h = 0. The set A has density 1 at x (equivalently, x is a point

of density of A) if A is Lebesgue measurable and

lim
r→0

λ(A ∩ B(x, r))

λ(B(x, r))
= 1,

where B(x, r) denotes the closed ball of radius r centered at x and λ denotes
Lebesgue measure.

Definition 2. A function g : R
m → R is in the class Bu if for every

multi-index j with 0 ≤ |j| ≤ n, the derivative gj(x) is a bounded function of
Lipschitz class u − |j|. The functions gj are the ordinary partial derivatives
of g, i.e.,

gj(x) =
∂j1

∂xj1
1

· · ·
∂jm

∂xjm
m

g(x).

The main result is this.

Theorem 1. Suppose f is u-times approximately Peano bounded on a

bounded measurable set E. Then for every ε > 0 there is a perfect set Π ⊂ E
and a Bu function g such that λ(E \ Π) < ε and f = g on Π. Furthermore

if u = n + 1, then g can be chosen to belong to Cn+1.

A weaker version of this theorem specialized to dimension m = 1 and
u = n + 1 ∈ Z was established by Marcinkiewicz [3], [7, Vol. II, p. 73].
Marcinkiewicz’s result has had many applications. In the hope that our
theorems will also prove useful, we try to increase visibility by giving an
equivalent statement of Theorem 1 using the language of decomposition:
Suppose f is u-times approximately Peano bounded at all x ∈ E, where E
is a bounded measurable set. Then for every ε > 0 there are functions g and
h such that

f(x) = g(x) + h(x), g ∈ Bu,

and
λ(supph ∩ E) < ε.

The same result holds in Lp norm. Explicitly, for each p ∈ [1,∞], we
have the following definition.

Definition 3. We say that f is u-times Peano bounded in the Lp sense

at x if f is Lp in a neighborhood of x and there are numbers fs(x) such that

(1.1)

(

1

hm

\
‖t‖≤h

∣

∣

∣

∣

f(x + t) −
∑

|s|≤n

ts

s!
fs(x)

∣

∣

∣

∣

p

dt

)1/p

= Lx(h)‖h‖u,

where Lx(h) remains bounded as h tends to zero. When p = ∞, the left side
of (1.1) means, as usual,

ess sup
‖t‖≤h

∣

∣

∣

∣

f(x + t) −
∑

|s|≤n

ts

s!
fs(x)

∣

∣

∣

∣

.
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If, further, f ∈ Lp(Rm) and Lx(h) is uniformly bounded for all h, in
reference [1] the function f is then said to belong to T p

u (x).

Theorem 2. Suppose f is u-times Peano bounded in the Lp sense on

a bounded measurable set E. Then for every ε > 0, there is a perfect set

Π ⊂ E and a Bu function g such that λ(E \ Π) < ε and f = g on Π.
Furthermore if u = n + 1, then g can be chosen to belong to Cn+1.

One might think that this theorem is an immediate consequence of the
“folklore fact” that for p ∈ [1,∞), if

lim sup
h→0

(

h−m
\

‖t‖≤h

|g(t)|p dt
)1/p

h−u ≤ M,

then the approximate lim sup of |g(h)| ‖h‖−u is also less than or equal to M .
Actually, this is not true, as we will point out in the first part of the next
section wherein the relation between Lp and approximate differential behav-
ior is discussed. The failure of this “fact” requires us to adjoin an additional
final section for the Lp case.

In the first part of [1, Theorem 9] the authors prove that if f ∈ T p
u (x)

uniformly for all x in a closed set, then it is a restriction of a Bu function. In
this paper we will show that if f is Lp u-times Peano bounded not necessarily
uniformly on a compact set E, then E is the union of a sequence of nested
closed sets Ak so that on each Ak, f is a restriction of a Bu function. The
result from [1] is a special case of our results because under the hypotheses
of the corresponding Theorem 9 in [1], we have E = Ak for some integer k.

The second part of Theorem 9 of [1] asserts that under additional as-
sumptions Bu can be replaced by bu in the conclusion. (See Subsection 2.2,
Definition 6 below for the definition of bu.) Actually this is not true as we
will point out in Subsection 2.2. Our results below show that this was not
a very serious defect in the overall program developed in the paper [1]. For
example, both [1, Theorem 13] and its given proof are fine if, in the proof,
one uses our Theorems 5 and 1 in place of [1, Theorem 9, second part].

Let h ∈ [0, 1]. The condition lim suphց0 |f(h)| < ∞ is equivalent to the
condition that limhց0 f(h)ε(h) = 0 for every nondecreasing function ε(h)
satisfying limhց0 ε(h) = 0. In Subsection 2.1 we show that this equivalence
fails for approximate limits and that this failure is responsible for the break-
down of the “folklore fact” mentioned above.

2. Two “big oh” and “little oh” comparisons

2.1. Connections between Lp and approximate behavior. There has been
an idea in the folklore of analysis that approximate behavior is always more
general than L1 behavior. An example on which this notion is based is the
fact that if a function is differentiable at a point in the L1 sense, then it is
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differentiable in the approximate sense at that point. This section contains
three theorems: the first supports the folklore, the second contradicts it,
while the third supports it again. The first says that if a function’s rate
of growth near a point is o(‖h‖u) in the Lp sense, then its rate of growth
must also be o(‖h‖u) in the approximate sense; the second says that if a
function’s rate of growth near a point is O(‖h‖u) in the Lp sense, then its
rate of growth is not necessarily O(‖h‖u) in the approximate sense; the third
says that if a function’s rate of growth near every point of a set is O(‖h‖u)
in the Lp sense, then at almost every point of that set its rate of growth
must also be O(‖h‖u) in the approximate sense.

Abbreviate {x ∈ R
m : P (x)} to {P (x)}.

Definition 4. We say that lim ap‖x‖→0 f(x) = M if there is a set E ⊂

R
m so that zero is a point of density of E and lim‖x‖→0, x∈E f(x) = M . Zero

is a point of dispersion of a set E if

lim
h→0

λ∗(E ∩ B(0, h))

λ(B(0, h))
= 0,

where λ∗ denotes outer Lebesgue measure. We say that lim sup ap‖x‖→0 f(x)

= M if for every N > M , zero is a point of dispersion of {f(x) > N} and M
is the infimum of all N with this property. We say that lim inf ap‖x‖→0 f(x) =

M if for every N < M , 0 is a point of dispersion of {f(x) < N} and M is
the supremum of all N with this property.

The definitions of lim sup ap and lim inf ap can be found on page 218 of [4]
and the definition of lim ap can be found on page 323 of [7]. For measurable
functions we have lim inf ap‖x‖→0 f(x) = lim sup ap‖x‖→0 f(x) = M if and

only if lim ap‖x‖→0 f(x) = M .

Theorem 3. Let g have an nth Lp Peano derivative at x ∈ R
m so that

f(t) = |g(x + t) −
∑

|j|≤n gj(x)tj| satisfies

1

hm

\
B(0,h)

fp = o(hnp)

as h ց 0. Then g also has an nth approximate derivative at x, in other

words, lim ap‖t‖→0 f(t)/‖t‖n = 0.

Proof. We have εN → 0, where εN is defined by

1

2−Nm

\
‖x‖≤2−N

fp = ε2
N2−npN .

Let IN = B(0, 2−N) \ B(0, 2−N−1), and let EN be defined by

EN = {x ∈ IN : fp(x) ≥ εN2−npN}.
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From

ε2
N2−(np+m)N ≥

\
IN

fp ≥
\

EN

εN2−npN = εN2−npNλ(EN ),

it follows that

εN ≥
λ(EN )

2−Nm
= cm

λ(EN )

λ(IN )
,

so 0 is a point of density of
⋃

(EN )c = G and

lim
‖t‖→0, t∈G

f(t)

‖t‖n
= 0.

The above proof is a routine adaptation of a p = 2 one-dimensional
argument given on page 324 of [7] and is only worth mentioning because of
the following example. For the example we specialize to m = 1, p = 1, and
f supported in [0, 1].

Theorem 4. There is a function f satisfying

1

h

h\
0

f = O(h)

as h goes to 0 such that for every finite number M , lim sup apx→0 f(x)/x
> M .

Proof. We give an example of a nonnegative function f satisfying

(2.1)
1

h

h\
0

f = O(h)

such that lim sup aph→0 f(h)/h is infinite. It is sufficient to prove that for
every positive integer j, {f(x) ≥ jx} does not have 0 as a point of dispersion.
Let ek

j , j = 1, . . . , k, be disjoint subintervals of [2−k−1, 2−k] such that λ(ek
j )

= 2−k−j−1. Let

f(x) =
∞
∑

k=0

k
∑

j=1

j2−kχek
j
(x).

Then

2−n\
0

f(x) dx =
∞

∑

k=n

k
∑

j=1

j2−kλ(ek
j ) =

∞
∑

k=n

k
∑

j=1

j2−k2−k−j−1

≤
∞

∑

k=n

2−2k
∞

∑

j=1

j2−j−1 ≤
(

4
∞

∑

j=1

j2−j−1
)

(2−n)2.
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Now, let j ≥ 1 be fixed. For any k ≥ j, if x ∈ ek
j then

f(x)

x
≥

2−kj

2−k
= j.

Thus,
ek
j ⊂ {x : f(x) ≥ jx} ∩ [0, 2−k].

Hence
λ({x : f(x) ≥ jx} ∩ [0, 2−k]) ≥ λ(ek

j ) = 2−k−j−1.

Thus, for any positive integer j and for any k ≥ j,

λ({x : f(x) ≥ jx} ∩ [0, 2−k])

λ([0, 2−k])
≥ 2−j−1.

Hence, for any positive integer j, zero is not a point of dispersion for the set
{f(x) ≥ jx}.

Let h ∈ [0, 1]. The condition lim suphց0 |f(h)| < ∞ is equivalent to the
condition that limhց0 f(h)ε(h) = 0 for every nondecreasing function ε(h)
satisfying limhց0 ε(h) = 0. We use the example from the previous theorem
to show that this equivalence fails for approximate limits:

Proposition 1. Assume that for any nondecreasing function ε(x) on

(0, 1] such that limh→0 ε(h) = 0, we have

(2.2) lim ap
x→0

f(x)ε(x) = 0.

Then it does not follow that there must exist a constant M so that 0 is a

point of dispersion of {x : f(x) ≥ M}. Consequently , f need not have a

finite lim sup ap at x = 0.

Proof. Let f be the example function just above and let g(x) := f(x)/x.
We have already shown that there does not exist a constant M so that
{x : g(x) ≥ M} has 0 as a point of dispersion. Let ε(x) be a nondecreasing
function on (0, 1] such that limh→0 ε(h) = 0. Let ζ, η > 0. Pick k so large

that
∑k

i=1 2−i > 1− ζ. Then pick N so large that ε(2−N ) < η/2k. For every
M ≥ N ,

{x ∈ [2−M−1, 2−M ] : g(x)ε(x) > η} ⊂
M
⋃

i=k+1

eM
i

so that the relative density of {g > η} in [2−M−1, 2−M ] is less than ζ. Hence
the relative density of {gε > η} in [0, 2−N ] is less than ζ. Since ζ and η
were arbitrary, relation (2.2) holds for g and ε(x). Since ε(x) was arbitrary,
relation (2.2) holds for g and every such ε(x).

As Theorem 4 shows we cannot prove a pointwise analogue of Theorem 3
in the “big oh” case. The following corollary of Theorem 8 of the final section
is a substitute.
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Theorem 5. Suppose that λ(E) > 0 and at each x ∈ E we have

(2.3)

(

1

|B(0, h)

\
B(0,h)

∣

∣

∣g(x + t) −
∑

|j|≤n

gj(x)tj
∣

∣

∣

p
dt

)1/p

= O(hu).

Then at a.e. x ∈ E,

lim sup ap
‖h‖→0

|g(x + h) −
∑

|j|≤n gj(x)hj|

‖h‖u
< ∞.

2.2. A T p
u extension theorem without a tpu analogue. Roughly speaking,

Theorem 9 of [1] asserts that a uniformly T p
u function can be extended

to a Bu function and that “similarly” a tpu function can be extended to a
bu function. The proof of the former statement appearing in [1] is correct.
The latter statement is false when u is an integer. To make this assertion
precise, we first give Calderón and Zygmund’s definitions of tpu(x0), Bu(Q)
and bu(Q), where x0 is a point of R

m and Q is a closed set in R
m.

Definition 5. Let f be a function in T p
u (x0). We say that f ∈ tpu(x0) if

there exists a polynomial P (x − x0) of degree ≤ u such that
(

̺−m
\

|x−x0|≤̺

|f(x) − P (x − x0)|
p dx

)1/p
= o(̺u) as ̺ → 0.

Here 1 ≤ p < ∞.

Definition 6. Let Q be a closed set. For a bounded function f we say
that f ∈ Bu(Q), u > 0, if there exist bounded functions fα, |α| < u, such
that

fα(x + h) =
∑

|β|<u−|α|

fα+β(x)
hβ

β!
+ Rα(x, h)

for all x and x+h in Q, with |Rα(x, h)| ≤ C‖h‖u−|α|. We say that f ∈ bu(Q),
u ≥ 0, if there exist functions fα, |α| ≤ u, such that

fα(x + h) =
∑

|β|≤u−|α|

fα+β(x)
hβ

β!
+ Rα(x, h)

for all x and x + h in Q, with |Rα(x, h)| ≤ C ‖h‖u−|α| and, in addition,

Rα(x, h) = o(‖h‖u−|α|) as h → 0, uniformly in x ∈ Q. The connection
between Bu(Q) and the previously defined Bu is that f ∈ Bu if f ∈ Bu(Rm)
and additionally for all j with |j| ≤ n the Peano derivative fj is equal to
f j , the ordinary partial derivative of f . Similarly we define f ∈ bu to mean
f ∈ bu (Rm) and f j = fj whenever |j| ≤ u.

Now the second part of Theorem 9 of [1] asserts that if f ∈ Bu(Q) and
in addition f ∈ tpu(x0) for all x0 in the closed set Q, then f can be chosen
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to be in bu(Rm) in such a way that (∂/∂x)βf(x0) = fβ(x0) for |β| ≤ u, and
all x0 ∈ Q.

To see what the problem is, let u = m = p = 1. Then let Q = R
1 be

the entire space, so that the original function f and the extension function
f coincide. Suppose that f is compactly supported and has a uniformly
bounded derivative which is not continuous. Then f ∈ t11(x0) for every
real x0, but f /∈ b1(R

1) since f ′ is not continuous.

3. Proofs: the approximate case. Recall that n is the fixed nonneg-
ative integer ⌈u⌉ − 1 so that n < u ≤ n + 1.

Some additional notation and simple facts about multi-indices will be
needed. If α and β are two multi-indices, then α+β = (α1+β1, . . . , αm+βm).
Moreover β ≤ α means βi ≤ αi for each i = 1, . . . , m. For β ≤ α we set
α − β = (α1 − β1, . . . , αm − βm) and

(

α
β

)

= α!
β!(α−β)! . With this notation

the following version of the Binomial Theorem holds. If x, y ∈ R
m, then

(x + y)α =
∑

β≤α

(

α
β

)

xβyα−β. Recall that gj means the ordinary jth partial

derivative.
The first part of Theorem 1 is immediate from the following result which

may be worthwhile on its own.

Theorem 6. Suppose f is u-times approximately Peano bounded on a

compact set E. Then there is a decomposition of E into a nested sequence

{Ak} of closed sets such that on Ak the function f is a restriction of a Bu

function.

In order to define the sets Ak of Theorem 6 we need some additional
notation and the following lemma. For the rest of this paper we will set

S =

n
∑

s=0

(

s + m − 1

s

)

=

(

n + m

n

)

;

S denotes the number of multi-indices less than or equal to n.

Lemma 1. Let Pi : R
m → R, i = 1, . . . , S′, be polynomials that are

independent vectors over R. For any S′ points h1, . . . , hS′ of R
m, set

M =









P1(h1) P2(h1) · · · PS′(h1)
...

... · · ·
...

P1(hS′) P2(hS′) · · · PS′(hS′)









.

Then one can choose the hi such that detM 6= 0.

Proof. Independence means that if a1, . . . , aS′ are real numbers such that

a1P1(h) + · · · + aS′PS′(h) = 0 for all h ∈ R
m,

then a1 = · · · = aS′ = 0.
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If S′ = 1, i.e. M = [P1(h)], then detM = 1 · P1(h), so there is an h for
which P1(h) 6= 0 by definition of independence.

Assume the lemma has been proved for S′ − 1 and let M be as above.
Expanding along the first row, we have

(3.1) detM = P1(h1)C11(h2, . . . , hS′) + P2(h1)C12(h2, . . . , hS′) + · · · .

By induction there are points h2, . . . , hS′ such that C11(h2, . . . , hS′) 6= 0.
Now fixing such a choice h2, . . . , hS′ and thinking of h1 as a variable, if detM
were identically 0, then equation (3.1) would contradict independence.

We will apply this lemma with S′ = S and Pi(h) = hi for 0 ≤ |i| ≤ n
(the monomials hi are independent over R) to obtain S points {hi} such
that the determinant of the corresponding M is not zero. Since scaling a
column scales the value of the determinant, there is no loss of generality
in assuming that ‖hi‖ < 1 for each multi-index 0 ≤ |i| ≤ n. Continuity
of detM allows us to find a positive number δ < 1 such that for every i,
B(hi, δ) ⊂ B(0, 1) and such that |detM | ≥ δ for any S points qi ∈ B(hi, δ).
For the rest of this section δ and B(hi, δ) denote the number and the balls
respectively that were just introduced.

Let Mx(y) be the real number defined by

(3.2) f(y) −
∑

|α|≤n

(y − x)α

α!
fα(x) = Mx(y)‖y − x‖u.

For a positive integer k let Nk(x, r) = {y ∈ B(x, r) : |Mx(y)| ≤ k}. Since f
is a measurable function, Nk(x, r) is a measurable set. We define

Ak =

{

x ∈ E : λ(Nk(x, r)) ≥

(

1 −
1

3

δm

2m

)

λ(B(x, r)) for all r <
1

k

}

.

Clearly the sets Ak are nested and since f is u-times approximately Peano
bounded on E, we have E =

⋃∞
k=1 Ak. The proof of Theorem 6 follows from

the theorem below and the Extension Theorem 4 from [5, p. 177].

Theorem 7. The sets Ak are closed and there is a constant M such

that for all x and y from Ak we have
∣

∣

∣

∣

fs(y) −
n

∑

i=s

(y − x)i−s

(i − s)!
fi(x)

∣

∣

∣

∣

≤ M‖y − x‖u−|s| for 0 ≤ |s| ≤ n.

Before we prove this theorem we will need several lemmas, the first of
which is a several variables version of Lemma 5 in [2].

Lemma 2. Let x, y, h ∈ R
m. Suppose that f is u-times approximately

Peano bounded at x and y. Then
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(3.3)
∑

|α|≤n

hα

α!

(

fα(y) −
∑

|α+β|≤n

(y − x)β

β!
fα+β(x)

)

= ‖y − x + h‖uMx(y + h) − ‖h‖uMy(y + h).

Proof. This identity is obtained by writing f(y + h) in two ways as
follows. First we have

f(y + h) =
∑

0≤|α|≤n

hα

α!
fα(y) + My(y + h)‖h‖u

by expanding about the point y. Then write y + h as x + (y − x + h) and
expand about x to get

f(y + h) = f(x + y − x + h)

=
∑

|β|≤n

(y − x + h)β

β!
fβ(x) + Mx(y + h)‖y − x + h‖u

=
∑

|β|≤n

∑

α≤β

(y − x)β−αhα

α!(β − α)!
fβ(x) + ‖y − x + h‖uMx(y + h).

Change the order of summation to obtain

f(y + h) =
∑

|α|≤n

∑

β≥α
|β|≤n

(y − x)β−αhα

α!(β − α)!
fβ(x) + ‖y − x + h‖uMx(y + h).

Substitute for β − α a new positive multi-index β to obtain

f(y + h) =
∑

|α|≤n

∑

|α+β|≤n

(y − x)βhα

α!β!
fα+β(x) + ‖y − x + h‖uMx(y + h)

=
∑

|α|≤n

hα

α!

(

∑

|α+β|≤n

(y − x)β

β!
fα+β(x)

)

+ ‖y − x + h‖uMx(y + h).

Equating these two expansions gives the desired result.

Lemma 3. Let y, b, c ∈ R
m. Suppose that f is u-times approximately

Peano bounded at b and c. Then

fα(y) −
∑

|α+β|≤n

(y − b)β

β!
fα+β(b)

= fα(y) −
∑

|α+β|≤n

(y − c)β

β!
fα+β(c)

+
∑

|α+β|≤n

(y − c)β

β!

(

fα+β(c) −
∑

|α+β+η|≤n

(c − b)η

η!
fα+β+η(b)

)

.
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Proof. It is enough to check that
∑

|α+β|≤n

∑

|α+β+η|≤n

(y − c)β

β!

(c − b)η

η!
fα+β+η(b) =

∑

|α+β|≤n

(y − b)β

β!
fα+β(b).

Indeed, if we introduce a new positive multi-index κ = β + η, then the left
side is

∑

|α+β|≤n

∑

β≤κ
|α+κ|≤n

(y − c)β

β!

(c − b)κ−β

(κ − β)!
fα+κ(b)

=
∑

|α+κ|≤n

(

∑

β≤κ

(y − c)β

β!

(c − b)κ−β

(κ − β)!

)

fα+κ(b) =
∑

|α+κ|≤n

(y − b)κ

κ!
fα+κ(b).

Lemma 4. Let x ∈ Ak and r < 1/k. If I is a ball inside B(x, r) and

such that λ(I) ≥ δm2−mλ(B), then λ(Nk(x, r) ∩ I) ≥ 2
3λ(I).

Proof. Indeed, λ(B(x, r))−λ(I)+λ(Nk(x, r)∩I) ≥ λ(Nk(x, r)∩B(x, r))
≥ (1− 1

3δm2−m)λ(B(x, r)). Hence λ(Nk(x, r)∩I) ≥ λ(I)− 1
3δm2−mλ(B(x, r))

≥ λ(I) − 1
3λ(I) = 2

3λ(I).

Proof of Theorem 7. Let x ∈ Ak, and let K ≥ k be such that x ∈ AK .
Now let y ∈ Ak be such that ‖y−x‖ < 1/2K. For a multi-index i, 0 ≤ |i| ≤ n,
let Ii = y+‖y−x‖B(hi, δ). Then Ii is inside B(y, ‖y−x‖) ⊂ B(x, 2‖y−x‖),
and λ(Ii) = δmλ(B(y, ‖y−x‖) = δm2−mλ(B(x, 2‖y−x‖)). By Lemma 4 we
have λ(Nk(y, ‖y − x‖) ∩ Ii) ≥

2
3λ(Ii) and λ(NK(x, 2‖y − x‖) ∩ Ii) ≥

2
3λ(Ii).

Therefore for each i ∈ {α : |α| ≤ n} there are points yi ∈ Nk(y, ‖y − x‖) ∩
NK(x, 2‖y − x‖) ∩ Ii. Notice that qi = (yi − y)/‖y − x‖ ∈ B(hi, δ) so that
|detM | ≥ δ where detM was evaluated at {qi}0≤|i|≤n.

By replacing h in (3.3) with yj − y for j ∈ {α : |α| ≤ n}, we obtain a
system of S linear equations in the S unknowns X00...0, . . . , X0...0n,

(3.4)
∑

0≤|s|≤n

(yj − y)sXs = bj , j ∈ {α : |α| ≤ n},

where

Xs =
1

s!

(

fs(y) −
∑

|s+i|≤n

(y − x)i

i!
fs+i(x)

)

and
bj = ‖yj − x‖uMx(yj) − ‖yj − y‖uMy(yj).

(In order to apply standard matrix methods such as Cramer’s rule, we
assume that the set {α : |α| ≤ n} of S elements is linearly ordered.)
The main determinant det∆ of the system (3.4) is ‖y − x‖T detM , where
T =

∑

|α|≤n |α|. Hence |det∆| ≥ ‖y − x‖T δ. On the other hand, if det∆s is

the determinant obtained by replacing the sth column of ∆ with the values
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b1, . . . , bS , then in the expansion of ∆s about the sth column, each minor
is the sum of (S − 1)! terms of the form ±

∏

j 6=j0, |α|≤n, α 6=s(yj − y)α. Since

‖yj − y‖ ≤ ‖y − x‖, ‖yj − x‖ ≤ 2‖y − x‖ and |Mx(yj)| ≤ K, |My(yj)| ≤ k
we have |bj| ≤ ‖y − x‖u(k + 2uK). Hence

|∆s| ≤
∑

j∈{k : |k|≤n}

|bj|(S − 1)! ‖y − x‖T−|s| ≤ S! ‖y − x‖T+u−|s|(k + 2uK).

By Cramer’s rule

(3.5) |Xs| =

∣

∣

∣

∣

det∆s

det∆

∣

∣

∣

∣

≤ S! ‖y − x‖u−|s| k + 2uK

δ
.

In particular, for 0 ≤ |s| ≤ n, limy→x, y∈Ak
fs(y) = fs(x).

Next let xj ∈ Ak be a sequence converging to x. Fix r < 1/k. Let
y ∈

⋂∞
j=1

⋃∞
s=j Nk(xs, r). Then y is in Nk(xj , r) for infinitely many j and

thus continuity of fs establishes
∣

∣

∣

∣

f(y) −
∑

|i|≤n

(y − x)i

i!
fi(x)

∣

∣

∣

∣

≤ k‖y − x‖u.

Therefore y ∈ Nk(x, r) and thus
⋂∞

j=1

⋃∞
s=j Nk(xs, r) ⊂ Nk(x, r). Since

λ
(

∞
⋃

s=j

Nk(xs, r)
)

≥

(

1 −
1

3

δm

2m

)

λ(B(x, r))

we have

λ(Nk(x, r)) ≥

(

1 −
1

3

δm

2m

)

λ(B(x, r)).

Thus x ∈ Ak and Ak is closed. Hence in the proof of the theorem we could
take K = k to obtain

(3.6)

∣

∣

∣

∣

fs(y) −
∑

|i+s|≤n

(y − x)i

i!
fi+s(x)

∣

∣

∣

∣

≤ M‖y − x‖u−|s|

for 0 ≤ |s| ≤ n, where M = max|α|≤n{α!}(1 + 2u)k/δ (in (3.5) replace S! by
max|α|≤n{α!} and K by k) whenever x, y are in Ak such that ‖y−x‖ < 1/2k.

We would like to get these inequalities for any x and y from Ak. To that
end let {Ij} be a finite open cover of Ak with centers from Ak and radii
equal to 1/2k. Since J , the set of all centers of the balls {Ij}, is finite, there
is a constant W such that

(3.7) max
b,c∈J

∣

∣

∣

∣

fs(c)−
∑

|r+s|≤n

(c − b)r

r!
fr+s(b)

∣

∣

∣

∣

≤ W‖c− b‖u−|s|, 0 ≤ |s| ≤ n.

We may assume that x and y are in two different balls centered at b and c
respectively, and that ‖y−x‖ > 1/2k. We first show that there is a constant
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M ′ such that

(3.8)

∣

∣

∣

∣

fs(y) −
∑

|i+s|≤n

(y − b)i

i!
fi+s(b)

∣

∣

∣

∣

≤ M ′‖y − b‖u−|s|, 0 ≤ |s| ≤ n.

By Lemma 3,
∣

∣

∣

∣

fs(y) −
∑

|i+s|≤n

(y − b)i

i!
fi+s(b)

∣

∣

∣

∣

=

∣

∣

∣

∣

fs(y) −
∑

|i+s|≤n

(y − c)i

i!
fi+s(c)

+
∑

|i+s|≤n

(y − c)i

i!

[

fi+s(c) −
∑

|i+s+r|≤n

(c − b)r

r!
fi+s+r(b)

]∣

∣

∣

∣

≤ M‖y − c‖u−|s| +
∑

|i+s|≤n

‖y − c‖|i|

i!
W‖c − b‖u−|i+s|.

Since ‖y − c‖ ≤ ‖y − b‖ and ‖c − b‖ ≤ 2‖y − b‖, the last quantity is

≤ M‖y − b‖u−|s| +
∑

|i+s|≤n

‖y − b‖|i|

i!
2u−|s|W‖y − b‖u−|s| = Ms‖y − b‖u−|s|.

Setting M ′ = max|s|≤n{Ms} establishes (3.8).
We use Lemma 3 again but this time applied to y, x, and b:
∣

∣

∣

∣

fs(y) −
∑

|i+s|≤n

(y − x)i

i!
fi+s(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

fs(y) −
∑

|i+s|≤n

(y − b)i

i!
fi+s(b)

+
∑

|i+s|≤n

(y − b)i

i!

[

fi+s(b) −
∑

|i+s+r|≤n

(b − x)r

r!
fi+s+r(x)

]∣

∣

∣

∣

.

Inequalities (3.8) and (3.6) applied to the right hand side yield

≤ M ′‖y − b‖u−|s| +
∑

|i+s|≤n

‖y − b‖|i|

i!
M‖b − x‖u−|i+s|.

Finally since ‖y − b‖ ≤ 2‖y − x‖ and ‖b− x‖ ≤ ‖y − x‖, the last quantity is

≤ 2u−|s|M ′‖y − x‖u−|s| +
∑

|i+s|≤n

2|i|‖y − x‖|i|

i!
M‖y − x‖u−|i+s|
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=

[

2u−|s|M ′ +
∑

|i+s|≤n

2|i|

i!
M

]

‖y − x‖u−|s|

≤

[

2uM ′ +
∑

|i|≤n

2|i|

i!
M

]

‖y − x‖u−|s|.

In the special case u = n + 1, we can improve Theorem 6, as in the
following corollary, which is also the second part of Theorem 1.

Corollary 1. Suppose f is n+1-times approximately Peano bounded on

a bounded measurable set E. Then for every ε > 0 there is a closed set Π with

λ(E − Π) < ε and a Cn+1 function h such that on Π the function f and its

partial derivatives agree with h and the corresponding partial derivatives of h.

Proof. Let Ak and gk be from Theorem 6 such that λ(E−Ak) < ε/3. By

Theorem 6, for each multi-index j with |j| = n, the function gj
k is Lipschitz.

Hence by a theorem of H. Rademacher gj
k is totally differentiable at almost

every x ∈ R
m. Now let P ⊃ Ak be a bounded open set such that λ(P −Ak)

< ε/3. The function gk on P satisfies the conditions of Theorem 4 from [6],
so by that theorem, there is a closed set Q ⊂ P such that λ(P−Q) < ε/3 and
a Cn+1 function h that agrees with gk on Q. Notice that λ(E −Ak ∩Q) < ε
and that h = f on the closed set Π = Ak ∩ Q.

Corollary 1 in the case n = 0 was proved by H. Whitney. (See Theorem 1
in [6].) The proof of this result from [6] uses the fact that approximate partial
derivatives of a measurable function are measurable. (See Theorem 11.2,
page 299 of [4].) The proof of Corollary 1 does not require measurability of
the approximate partial derivatives fs for |s| ≥ 1. However measurability of
the fs is an immediate consequence of this corollary and Luzin’s theorem.

Corollary 2. Let f : R
m → R be a measurable function. Suppose f is

n+1-times approximately Peano differentiable on a measurable set E. Then

for every multi-index |s| = n + 1, the partials fs are measurable.

Proof. By the phrase “f is n-times approximately Peano differentiable at
a point x” we mean that the left hand side of expression (3.2) is o(‖y−x‖n)
as y → x through a set of density 1 at x. If f is n + 1-times approximately
Peano differentiable on a measurable set E, then clearly f is n + 1-times
approximately Peano bounded with

|Mx(y)| ≤
∑

|s|=n+1

1

s!
max

|s|=n+1
|fs(x)| + 1.

For an integer i let Ei = E ∩ B(0, i). Then E is a countable union of
bounded measurable sets Ei. By Corollary 1, for each ε > 0, fs agrees with
a continuous function on a set Fi with λ(Ei − Fi) < ε. Hence by Luzin’s
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theorem fs is measurable on each Ei. Since fs = limi→∞ fsχEi
where χEi

denotes the characteristic function of Ei we see that fs is measurable.

4. Proofs: the Lp case

Definition 7. Let f : R
m → R be a measurable function. We say that

f is locally Lp u-times Peano bounded at x if for each multi-index α with
|α| ≤ n, there is a number fα(x) such that

(4.1)

(

1

̺m

\
‖y−x‖≤̺

∣

∣

∣

∣

f(y) −
∑

0≤|α|≤n

(y − x)α

α!
fα(x)

∣

∣

∣

∣

p

dy

)1/p

= Lx(̺)̺u,

where Lx(̺) remains bounded as ̺ → 0. In this definition we will assume
that f(0,0,...,0)(x) = f(x).

Recall S denotes the number of multi-indices less than or equal to n =
⌈u⌉ − 1.

The main result of this section is this.

Theorem 8. Suppose f is locally Lp u-times Peano bounded on a com-

pact set E. Then there is a decomposition of E into a nested sequence {Ak}
of closed sets such that on Ak the function f is a restriction of a Bu function.

Proof. Let

Mx(y) = f(y) −
∑

0≤|α|≤n

(y − x)α

α!
fα(x).

Then f being locally Lp u-times Peano bounded at x means that there is
δ > 0 and a constant M such that

( \
‖y−x‖≤̺

|Mx(y)|p dy
)1/p

≤ M̺u+m/p for all 0 < ̺ < δ.

For a positive integer k let

Ak =

{

x ∈ E :
\

‖y−x‖≤̺

|Mx(y)|p dy ≤ k̺u+m/p for all 0 < ̺ <
1

k

}

.

Clearly the sets Ak are nested and since f is locally Lp u-times Peano
bounded on E, we have E =

⋃∞
k=1 Ak. The proof of Theorem 8 follows from

Theorem 9 below and the Extension Theorem 4 from [5, p. 177].

Theorem 9. The sets Ak are closed and there is a constant M such

that for all x and y from Ak we have
∣

∣

∣

∣

fs(y) −
∑

|s+i|≤n

(y − x)i

i!
fs+i(x)

∣

∣

∣

∣

≤ M |y − x|u−|s| for 0 ≤ |s| ≤ n.
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In the proof of this theorem we will use the following two lemmas.

Lemma 5. Let x, y, h ∈ R
m. Then

(4.2)
∑

|α|≤n

hα

α!

(

fα(y) −
∑

|α+β|≤n

(y − x)β

β!
fα+β(x)

)

= Mx(y + h) − My(y + h).

The proof of this lemma is implicit in the proof of Lemma 2 of the last sec-
tion. We will also need the following version of Lemma 2.6 from p. 182 of [1].

Lemma 6. Let C denote the vector space of continuous functions defined

on the closed ball B(0, 1) ⊂ R
m. Then the linear map T : C → R

S defined

by T (ϕ) = (
T
‖h‖≤1 ϕ(h)hα dh : |α| ≤ n) is onto.

Proof. Indeed, if T were not onto then there are S numbers {cs} not all
zero such that for every ϕ ∈ C we have

(4.3)
∑

|s|≤n

cs

\
‖h‖≤1

ϕ(h)hs dh = 0.

In particular this would be true for ϕ(h) =
∑

|s|≤n csh
s. Substitution in

(4.3) yields
T
‖h‖≤1(

∑

|s|≤n csh
s)2 dh = 0; thus cs = 0 for all s. This is a

contradiction.

Proof of Theorem 9. Let x ∈ Ak, and let K ≥ k be such that x ∈ AK .
Now let y ∈ Ak be such that ‖y−x‖ < 1/2K. By Lemma 6 for every multi-
index |α| ≤ n there is ϕα ∈ C such that T (ϕα) = (0, . . . , 0, α!, 0, . . . , 0),
where in the vector (0, . . . , 0, α!, 0, . . . , 0) ∈ R

S , the only nonzero entry is
the one that corresponds to α. By Lemma 5,

(4.4)
\

‖h‖≤‖y−x‖

ϕα

(

h

‖y − x‖

)

∑

|α|≤n

hα

α!

(

fα(y) −
∑

|α+β|≤n

(y − x)β

β!
fα+β(x)

)

dh

=
\

‖h‖≤‖y−x‖

ϕα

(

h

‖y − x‖

)

(Mx(y + h) − My(y + h)) dh.

The left hand side of (4.4) reduces to
(

fα(y) −
∑

|α+β|≤n

(y − x)β

β!
fα+β(x)

) \
‖h|≤‖y−x‖

ϕα

(

h

‖y − x‖

)

hα

α!
dh.

The change of variable k = h/‖y − x‖ yields

(4.5)

(

fα(y) −
∑

|α+β|≤n

(y − x)β

β!
fα+β(x)

)

‖y − x‖|α|+m
\

‖k‖≤1

ϕα(k)
kα

α!
dk

=

(

fα(y) −
∑

|α+β|≤n

(y − x)β

β!
fα+β(x)

)

‖y − x‖|α|+m
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by the choice of ϕα. On the other hand, if N is a bound for {|ϕα| : |α| ≤ n},
the right hand side of (4.4) is bounded by

N
( \
‖h‖≤‖y−x‖

|Mx(y + h)| dh +
\

‖h‖≤‖y−x‖

|My(y + h)| dh
)

≤ N
( \
‖h‖≤2‖y−x‖

|Mx(x + h)| dh +
\

‖h‖≤‖y−x‖

|My(y + h)| dh
)

.

By Hölder’s inequality this is bounded by

N
( \
‖h‖≤2‖y−x‖

|Mx(x + h)|p dh
)1/p

λ(B(0, 2‖y − x‖))1/q

+ N
( \
‖h‖≤‖y−x‖

|My(y + h)|p dh
)1/p

λ(B(0, ‖y − x‖))1/q

≤ N(K(2‖y − x‖)u+m/p2m/qλ(B(0, ‖y − x‖))1/q

+ k‖y − x‖u+m/pλ(B(0, ‖y − x‖))1/q)

= N(K‖y − x‖u+m/p2u+mλ(B(0, ‖y − x‖))1/q

+ k‖y − x‖u+m/pλ(B(0, ‖y − x‖))1/q)

= N ′‖y − x‖u+m(K2u+m + k),

where N ′ is independent of K and k. Combining this with (4.5) we find that
whenever ‖y − x‖ ≤ 1/2K,

∣

∣

∣

∣

fα(y) −
∑

|α+β|≤n

(y − x)β

β!
fα+β(x)

∣

∣

∣

∣

≤ M‖y − x‖u−|α| for all |α| ≤ n.

In particular, for 0 ≤ |s| ≤ n, limy→x, y∈Ak
fs(y) = fs(x).

Next let xj ∈ Ak be a sequence converging to x. Fix ̺ < 1/k. Then for
infinitely many j’s we can find ̺ ≤ ̺j < 1/k such that B(x, ̺) ⊂ B(xj , ̺j)
and ̺j → ̺ as j → ∞. Then

(4.6)
\

‖y−x‖≤̺

∣

∣

∣

∣

f(y) −
∑

|i|≤n

(y − xj)
i

i!
fi(xj)

∣

∣

∣

∣

p

dy

≤
\

‖y−xj‖≤̺j

∣

∣

∣

∣

f(y) −
∑

|i|≤n

(y − xj)
i

i!
fi(xj)

∣

∣

∣

∣

p

dy ≤ k̺up+m
j .

Letting j → ∞ in (4.6) gives\
‖y−x‖≤̺

∣

∣

∣

∣

f(y) −
∑

|i|≤n

(y − x)i

i!
fi(x)

∣

∣

∣

∣

p

dy ≤ k̺up+m.
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Therefore x ∈ Ak. Hence Ak is closed and we may take K = k to obtain

(4.7)

∣

∣

∣

∣

fs(y) −
∑

|i+s|≤n

(y − x)i

i!
fi+s(x)

∣

∣

∣

∣

≤ M |y − x|u−|s|

for 0 ≤ |s| ≤ n, where M = N ′(k2u+m + k) and whenever x, y are in Ak

such that ‖y − x‖ < 1/2k.
To complete the proof of Theorem 9, these inequalities must be shown

to also hold for any x and y in Ak. The argument for this appears above in
the last part of the proof of Theorem 7.

It is now easy to see that Theorem 5 is a corollary of Theorem 8. In fact
by Theorem 8 there are sets Ak and a Bu function that agrees with f on Ak.
Thus if x is a density point of Ak we have

lim sup ap
y→x

∣

∣

∣

∣

fβ(y) −
∑

β≤|α|≤n

(y − x)α

α!
fα(x)

∣

∣

∣

∣

/‖y − x‖u−|β| < ∞.
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