STUDIA MATHEMATICA 170 (3) (2005)

Potential spaces on fractals
by

JIAxiN Hu (Beijing) and MARTINA ZAHLE (JENA)

Abstract. We introduce potential spaces on fractal metric spaces, investigate their
embedding theorems, and derive various Besov spaces. Our starting point is that there
exists a local, stochastically complete heat kernel satisfying a two-sided estimate on the
fractal considered.

1. Introduction. The classical Besov spaces By (R") with s > 0 and
1 < p,q < o are closely related to the Gauss—Weierstrass and the Cauchy—
Poisson semigroups. This goes back to Taibleson [25] and Flett [10]. Si-
milarly, the fractional Sobolev spaces H;(R"),s € R,1 < p < oo, may
be expressed in terms of these semigroups. In particular, for s > 0 they
can be interpreted as potential spaces (see for example [22, Chapter V]).
The corresponding Gauss—Weierstrass and Cauchy—Poisson heat kernels are
explicitly given on R".

For several fractal sets, local Dirichlet forms and sub-Gaussian heat ker-
nel estimates of the corresponding semigroups have been obtained. A new
and interesting phenomenon has been discovered that the walk dimensions
of the heat kernels on these fractal sets are strictly greater than 2. The
importance of the walk dimension w is that the number w/2 measures the
smoothness degree of functions defined on the underlying space. As to the
sub-Gaussian estimates of the heat kernels, the reader may refer to the pio-
neering paper [4] for the Sierpinski gaskets, to [3] for the Sierpinski carpets,
[9] for nested fractals, and to [13, 18] for a certain class of post-critically
finite fractals. The associated Markov processes are Brownian motions on
the fractal sets.

In the present paper the setting is a complete metric space (X, o) ad-
mitting a heat kernel with respect to a Radon measure p supported on X.
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Our main assumption is that the heat kernel is local and satisfies two-sided
decay estimates (see (G6) and (G7) below). By means of the associated semi-
group {G¢}i>0 we introduce function spaces on X which agree with those
mentioned above for X = R". As in the Euclidean case we obtain some char-
acterizations and embedding theorems. (This may be applied for nonlinear
PDE’s on X.) The opposite way is to introduce function spaces on fractals
in a more direct way (see for example [17, 26, 27, 23|) and to find heat kernel
estimates related to associated p-energy forms. First steps in this direction
are |7] for some non-local structure and [29] for the local version on d-sets,
when p = 2 and the walk dimension is equal to 2.

The paper is organized as follows: in Section 2 we first introduce potential
operators of a general strongly continuous contractive semigroup {G¢}+>o in
the same way as for the Gauss—Weierstrass semigroup. They coincide with
the positive fractional powers of the operators (I — A,)~1 and (—A4,)~! (pro-
vided they exist), respectively, where A, denotes the p-generator of {G¢}i>o.
Then we obtain a formula for the positive fractional powers of I — A, as
inverse operators. (The proof is similar to the case of Gauss-Weierstrass
semigroups [20].) If {G¢}+>0 has a local heat kernel satisfying some two-sided
decay estimates, the generator A, may be interpreted as a p-Laplacian. Un-
der an integrability condition for the upper bound, the reference measure p
is shown to be a d-measure. Moreover, the potential operators of order « in
this case have integral kernels (locally) equivalent to o(z,y)* **/2, which
corresponds to the classical case if d = n and w = 2. Thus we may interpret
these operators as the p-Bessel and p-Riesz potential operators.

In Section 3 fractional Sobolev spaces on X are introduced as the Bessel
potential spaces for local heat kernels satisfying the decay condition. For the
special case p = 2 and 0 < o < 1, we obtain characterizations which lead, for
d-subsets in R™, to the well known Besov spaces introduced in [17] with the
method of traces for w = 2, 0 < a < 1, and to the Lipschitz spaces initiated
in [16] for w > 2, a = 1.

In Section 4 embeddings of Sobolev spaces in Ly(1) spaces or in Hélder
spaces are discussed. The classical cases are again included.

Finally, Section 5 complements these contributions by the definition of
Besov spaces By, (u) related to the semigroup {Gi}i>0. For p = ¢ = 2,
they coincide with the corresponding Sobolev spaces, which generalizes the
Euclidean case.

2. Bessel and Riesz potentials

2.1. Assumptions. Let (X, 0) be a separable, complete metric space that
is generally interpreted as a bounded or unbounded fractal. Let y be a locally
finite Borel measure with supp 4 = X. Assume that (X, g) is connected in
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the sense that (X, o) satisfies the chain condition, that is, there exists a
constant C' > 0 such that, for any two points x,y € X and for any positive
integer n, there is a sequence {z;}?_, of points in X with z9 = z, z, = v,
and
o(mi, wip1) < Cnlo(w,y), 0<i<n-—1.
Let G(t,x,y) be a stochastically complete heat kernel or transition density
on (X, o, ), that is, G(t,z,y) is a real-valued function on (0,00) x X x X
satisfying the following conditions: for all 0 <t < oo and z,y € X,
(G1) (non-negativity): G(t,z,y) > 0;
(G2) (symmetry): G(t,x,y) = G(t,y,x);
(G3) (semigroup property):
G(s+t,x,y) = S G(s,z,2)G(t,z,y)du(z) (s> 0);
X
(G4) (identity approzimation): limy_o4 ||G¢f — f||, = 0 for any f € L,(p)
where 1 < p < oo, and limy_o4 Gif(z) = f(z) for p-almost all
rxe Xif f e Loo(p);
(G5) (stochastic completeness): §y G(t,x,y) du(y) = 1.

Here L,(p) := Ly(X, 0, 1) is the usual space of real-valued p-integrable
functions with norm

17l = (J 1 @Pdu) " @ <p<oo).  [fll = esssup|f(z)].
zeX

X
Furthermore {G4}+>0 is the semigroup associated with G(t, z,y):
(2.1) Guf(z) = Glt,z.9)f(y)duly) (t>0, 2 € X).
X

(As usual we set Gy = I, the identity operator on L,(1).)
REMARK. Condition (G5) is important in this paper, and it cannot be
replaced by a weaker version
|Gtz ) du(y) <1 (t>0,z € X).
X
EXAMPLE 2.1 (Classical case). Let X = R"™ with p the Euclidean metric

and u be the Lebesgue measure. It is easy to see that the Gauss—Weierstrass
heat kernel

(2.2) GRn(t,x,y):< 1 )nmexp<_\w—y\2>

drt At
satisfies (G1)—(Gb). The Cauchy—Poisson heat kernel
Pan(t,2,y) = Cpt (14t 2|z—y|?) D2 (C = 7~ TD2D((n41)/2))
also satisfies (G1)—(G5).
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ExAMPLE 2.2 (Fractal case).

1 (Brownian motion on the Sierpiriski carpet). Let X be a Sierpinski
carpet in R™ with the Euclidean metric, and let p be the d-dimensional
Hausdorff measure on X. Barlow and Bass [3] showed that there exists a
heat kernel on X satisfying

(2.3)  art™ V" exp(—by(t7"|z — y|)")
< G(t,x,y) < agt™ ™ exp(=by (t7|x - y|))
for all z,y € X and all 0 < ¢t < diam(X), where w > 2 and 7 = w/(w — 1),
ai,b; >0 (i =1,2). The Barlow-Bass heat kernel satisfies (G1)—-(G5).
2 (Stable-like processes). For each 0 < o < 1, there is a function
p(9)(t,z,y) on a Sierpinski carpet in R" satisfying (G1)-(G5) and
(2'4) altfd/crw(l + tfl/ow’x _ y|)7(d+ow)
<P (tay) < ast™ V(A 1T —y)) ()

for all ,y € X and all 0 < ¢ < diam(X), where aj,as > 0 (see for exam-
ple [5] or [15]).

NoOTATION. Throughout this paper we denote by C' a general constant
and let rg = diam(X) € (0,00]. Two non-negative functions f and g are
equivalent, denoted by f = g, if O~ f(z) < g(x) < Cf(x) for all z € X and
some C' > 0. By the “classical case" we mean X = R", o(z,y) = |x — y| and
 is the Lebesgue measure on R"™ (see Example 2.1).

By (G3) and (G4), we see that {G¢}i>0 is strongly continuous on Ly(p)
(1 <p<o0):

thl% 1Gef = G fllp =0 (f € Lp(n), to = 0),
and by (G5), {Gt}i>0 is contractive:
1Gefllp < I fllp (820, f € Lp(p), 1 <p < o0).

Therefore, there exists an infinitesimal generator A, of {Gi}i>0 on L,(u)
(1<p<oo):

2. Apf = 1i
(25) »f 0%
with domain D(A,), the space of all functions f such that the limit in (2.5)
exists. Note that D(A,) is dense in L,(u) (see for example [28, p. 237]).

In the following we will repeatedly specify to La(u). For simplicity we
write A := Ay and D(A) := D(Az). By (G2), we see that A is self-adjoint:

(Af,9) = (f,Ag)  (f,g € D(A)),

% strongly in L (u)
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where (, ) is the inner product in Lo(p),
(f,9) =\ f(2)g(x) dp().

X
Moreover, the linear operator A is non-positive definite:

(2.6) (Af,f) <0 (f€D(A))
since, by (G5) and (G1),

where

28) &(f.9) =5 | {(F) ~ F@) o) - 9()Glt, 2. y) duly) dp(a).

X X
Thus — A admits a unique spectral resolution:

(2.9) —Af =\ XdE\f (f € D(4))
0
(see for example [28, p. 313|). Note that

o0

(2.10) Gif =\ e MdE\f  (f € La(p), t > 0).
0
For a € R, we define

D((=A)") = {f € Lo(u) : | N*d(Exf, ) < o],
(2.11) 0

(—A)*f = VA dENf  (f € D((—A)%)).

—

8

—~ Ot

The unique Dirichlet form (£, F) associated with A is determined by
F =D((-4)"?),
E(f,9) = (=A)*f,(=A)"%g)  (f,g€F)

(see for example [11]). We may characterize (£, F) in terms of G(t,z,y) as
follows:

(2.12)

F={f € Lo(w) : lim &(f.f) < oo},

Note that (G5) plays an important part in obtaining (2.13).

(2.13)

2.2. Potentials associated with semigroups. In what follows we will study
two distinct kinds of potentials associated with semigroups as above. We first
consider the general case of a strongly continuous contractive semigroup
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{G¢}+>0 on the Banach space L,(n), p > 1 (where the kernel assumption in
Subsection 2.1 is not needed).

DEFINITION 2.3. For a > 0 and 1 < p < oo, the potential operators of
order a of f € Ly(p) are defined by

1
r (a/ 2)

(2.14) To f(w) =

ta/2 1Gf(x (z € X).

(2.15) I f(x) =

REMARKS. 1. Note that I}y f may not be well defined for some « and f, if
X is bounded. For example, if f =1 then I}y f = oo for any a > 0. However,
Ji f is well defined for any o > 0 and any f € L,(n),1 < p < oo, because
Jif € Ly(p) for f € Ly(p) due to the fact that || f|, < [/ f],- For this
reason we will mostly work with the potential operators Jj.

2. For the classical case, if G(t, z,y) is the Gaussteierstrass heat kernel,
then Jj and I defined in Definition 2.3 are the Bessel and Riesz potential
operators respectively (see for example [22] or [20, 21]). For the Sierpiriski
carpet X, in order that J; and I}; be Bessel and Riesz potential operators,
we take for G(t, z,y) the Barlow-Bass heat kernel (see Subsection 2.3 below).

The operator Jj; or I} in Definition 2.3 may be interpreted as the frac-
tional power of order «/2 of the resolvent (I — A,)~! or of (—A,)~! (should
it exist) by the following arguments. We first consider the case p = 2 with
symmetric operators (G, where such powers are introduced by means of the
spectral resolution.

PROPOSITION 2.4. Let J} be defined as in (2.14), and let A be the gen-
erator of a symmetric strongly continuous contractive semigroup {Gy}i>0 on

Lo(p). Then the following holds on La(u):

(2.16) JE=(I—-A)"% (a>0).
Proof. Let a > 0. By (2.10) and Fubini’s theorem, we have
1 o0 1 oo o
a/2—1 _—t — a/2—1 -t —At
T3 §)t Gl dt = Fos §)t e ((S)e dEAf)dt
1 oo o0
_ ta/?—l —(1+)\)t dt) dE
I'(a/2) é (§ ° ) A
= (N2 AEf = (1= A)*2f,  f€La(p),
0

which combines with (2.14) to yield (2.16). m
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For general 1 < p < 0o, we may use the notation
(- Ap)_a/Q =Jy,
since (I — A,)71 = Ji, and
Jater = JM o J2? (a1, 02 > 0).

The last equality follows from (2.14) and the semigroup property of {G¢}+>0.
One can also use the notation

(~A) =18

by similar arguments for suitable « and f.
Note that (2.16) may formally be obtained as follows. Since

ey 1
(2.17) (14 u) /Q_W(S)

o0

ta/Qflef(lJru)t dt (a > O),

we replace u by —A and then use G; = e* to obtain

1T 17
(I o A)—a/2 _ ta/2_16_t6‘4t _ ta/Q_le_th dt = J*.
a/2) ) a2 ) G
Similarly, we replace 1 + u by u in (2.17), and then let u = —A to obtain
1 o0 o0
(_A)fa/Q — a/2—1 At g4 ta/271Gt dt = 1°.
Fa/2) ) a2 ) G

We will see that there exists an explicit formula for the inversion of J
for any v > 0 and 1 < p < o0, as in the classical case (cf. [20, 21]). For this,
define

o0

o 1 —o/2— —t
(2.18) De _mgt =N — e tG) dt (e > 0)

for a > 0, where | = [a/2] + 1 ([a/2] is the integer part of «/2) and
[e.9]
(2.19) X(e/2,) = | s 1 —e)ds <o (0<a/2<l).
0
THEOREM 2.5. Let {Gt}i>0 be a strongly continuous contractive semi-

group on Ly(p) and a > 0. If 1 < p < oo, the left inverse of Jy, exists in
the following sense:

(2.20) tim D2 f — = 0

for any f € Ly(p). Moreover, if p= oo then

(2.21) lim D2 J f(x) = f(z)
e—0

for p-almost all x € X and f € Loo(p).
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Proof. The proof is similar to the classical case (see for example
[20, Theorem 20.4, pp. 260-261] or [1, Theorem 1]). For the reader’s con-
venience, we sketch the proof. Let f € L,(u) (1 < p < 00). By (2.18), we see
that

(2.22) nggf— /21 Ogot a/21{26(—1)’“(2)@ktth(Jﬁf)}dt.

€ k=0

By (2.14) and the semigroup property,

—kt apy a/2—1 _—(s+kt)
e MG = F D) §)s e Goppif ds
1 [e.e]
_ - a/2—1_—s
Ta/2) g((s kt)+) e °Gsfds,

where

a, a>0,
a4 =

0, otherwise.

Thus, it follows from (2.22) that

o TP 1 Ooe_s l —1)k : S S
(2.23) DEJ“f_X(a/Q,l)F(aﬂ)(S) GSf{kZ:O( 1) (k)%,a( )}d

where

o0

Yre(s) o= | 727 (s — kt) )21 dt.

£

It is not hard to calculate that
2

== ((s—k)p)*? k> 0).

Ueles) = —— (s = F))™? (5,52 0)

Therefore, we see from (2.23) that
(2.24) DI f =\ Kajoi(s) e = Gesf ds,
0
where
1 l l
Kpg(s) = —1k< >51 s—k)y)?

for any 5 > 0 with [ = [$]+1. The function K3, has the following properties:
Kpg, € L1(0,00), and

S Kg’l(s) ds=1
0
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(see for example [20, Lemma 10.47, p. 158]). Hence, we see from (2.24) that,
using the strong continuity and the dominated convergence theorem,

D2 I f = Fllp < § [ Kayoa(s)] - e Geef = fllpds — 0
0
as € — 0, for any f € Ly(p) and 1 < p < oo.
Now let p = 00 and f € Loo(p). Since [[e **Gesflloo < || f]|oo for s > 0,
and by continuity,

lim e Goof (2) = f(x) (5> 0)

for p-almost all z € X, we see from (2.24) that lim.o D¢ J5 f(z) = f(z)
for u-almost all z € X by using again the dominated convergence theorem,
which proves (2.21).

REMARKS. 1. Note that for p = 2, Theorem 2.5 can simply be obtained
by using the spectral resolution, since

o0

(225) () T'=(I-A)= m Ve N (I —e7'Gy) dt,
7770

The Riesz potential operator I also has an inverse for & > 0 and 1 <
p < oo (see for example [21, (5.85), p. 121]); in particular, for p = 2 we have

a1 _ WU T e
(2.26) (I9)7' = (-A) /Q_WQt 11— Gy dt

(I =la/2] 4+ 1).

2. For 0 < a < 2, the formulas (2.25) and (2.26) are called the Balakrish-
nan formulas (see for example [28, p. 260]). Note that (2.25) or (2.26) can
also be formally obtained by using the fact that
1 oo
14w =—— (722711 -0t 0<a/2<,

( g ) ) /
and replacing u by —A or 1 +u by —A.

For a > 0, let D be as defined in (2.18) with | = [a/2] + 1. Define the

linear operator D% by

(2.27) lim [|D2 — D* f[}, = 0

for suitable f € L,(u) where 1 < p < co. Then D* can be interpreted as
(I - 42

2.3. Local heat kernels with decay conditions. We now turn back to the
assumptions (G1)-(G5). In order to study the Bessel potentials .Jj in more
detail, we need more conditions on the heat kernel G(¢, z,y). We say that a
heat kernel G(t, x, y) is local, and satisfies a two-sided estimate respectively, if
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(G6) (locality): }in% t71G(t,z,y) = 0 for any x,y € X (z # y),
(G7) (estimate):
B (7 0(,y)) < Gty w,y) < VY P 0(x, y))

for all z,y € X, 0 < t < rp and some d > 0, w > 2, where
ro = diam(X) (ro = oo if X is unbounded), and @; (i = 1,2) are
bounded, decreasing functions on [0, c0).

For X bounded, as a complementary condition to (G7), we assume that

(G8) (large-time behavior): G(t,z,y) < Ct=¥" exp(t/2) for all z,y € X
and all ¢ > rg, where C' > 0.

Condition (G8) is very weak and can be obtained from the Nash inequal-
ity (see [6, Theorem (2.1), p. 251|, by taking § = 1/2) if X is bounded.
Under these conditions the operator A, is local and will be interpreted as
p-Laplacian.

Clearly the Gauss—Weierstrass heat kernel Ggrn(t,z,y) of (2.2) satis-
fies (G6), and (G7) with d = n, w = 2, and

Bi(s) = (4m) " exp(—s2/4)  (i=1,2),
whilst the Cauchy-Poisson heat kernel satisfies (G7) with d = n, w = 1, and
Bi(s) = Cr(1+ %)~ (D2 (55 0,i=1,2),

but it is not local.
The Barlow-Bass heat kernel on the Sierpinski carpet satisfies (G7) with

(2.28) D;(s) = ajexp(—b;is7), 1=1,2.
It is easy to see from (2.28) that (G6) holds, since for z,y € X (z # y),
0<t7'G(ta,y) < 7Yyt o(x, y))

= o(x,y) 0By (s) (s =17V 0(x,y))
.

as t — 0+ (or s — 0).
Condition (G6) may be dropped if the heat kernel G(¢, x,y) satisfies (G7)
with
(2.29) lim s, (s) = 0.
S§—00

For a stable-like process on the Sierpinski carpet in R”, the heat kernel
pl9)(t,xz,y) satisfies (G7) with w replaced by ow, and

(2.30) Bi(s) =a; (1+5) " (s>0,i=1,2)
(see Example 2.2). Clearly p{®) (¢, z,y) is not local.
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Condition (G7), together with
[e.e]
(2.31) S 571y (s) ds < oo,
0

will imply that p is a d-measure, that is,
(2.32) Cr? < p(B(z,r)) < Or?

for all x € G and all 0 < r < ro, where C > 0 and B(z,r) = {y € X :
o(y,z) < r} is the ball in X with center x and radius r. More precisely,

PROPOSITION 2.6. Let (X, p,p) be a connected metric measure space
endowed with a stochastically complete heat kernel G(t,x,y) satisfying (GT7)
with (2.31). Then u is a d-measure.

Proof. This result for ro = oo (that is, X unbounded) was obtained in
[12, Theorem 3.2, p. 2071]. We only consider ry < oo. The proof is essentially
the same. In fact, similar to [12, (3.3), p. 2071], we can show that there is a
C > 0 such that

(2.33) w(B(z,r)) < Cr?

for all z € G and 0 < r < ¢1, where ¢; = min(ro,ré/w). Without loss of

generality we assume ¢; < rg. Noting that u(X) < oo since X is bounded,
we see that (2.33) also holds for all ¢; < r < rg, by changing the constant
C when necessary. Thus (2.33) holds for all 0 < r < rgp and all z € X
(in fact, (2.33) also holds for all 7y < r < oo since p is supported on X).

In order to show the opposite inequality, we note that there is a small
number &g € (0,75") such that

| Gtz yduly) <
X\B(z,r)
for all x € X and all 0 < r < g, if 0 <t < gor", by using (2.31) and (2.33)
(cf. |12, (3.6), p. 2072]), and so

N

1
| G(t,z,y) duly) = 5.
B(z,r)
Therefore
(231 p(B(,r) > 3 ( sup Gt ,y) ™

yEB(z,r)
forall z € X, 0 <r <rgandall 0 <t < gyr”. In particular, we take
t = eor* and then use (G7) to obtain

sup  G(t,z,y) < Bo(0)t~ Y = Or ¢
yEB(z,r)
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for all x € X and 0 < r < rg. Thus, it follows from (2.34) that
w(Ba,r)) = O
forallz€e X and0<r <rp. m
From now on we assume that

(Main Assumption): There exists a local, stochastically complete heat
kernel G(t,z,y) on (X, o,u), that is, there is a function G(t,x,y) on
(0,00) x X x X satisfying (G1)—(G6).

Condition (G7) with (2.31) guarantees the existence of integral kernels

of J and I}y, with two-sided estimates.

PROPOSITION 2.7. Assume that G(t,x,y) additionally satisfies (G7)-(G8)
with the integral condition (2.31), and that 0 < o < (2/w)d. Then the po-

3

tential operator Jj} has an integral kernel, that is,

(2.35) Taf(x) =\ Bi(z,y)f(y) duly) (v € X),
X
for f e Ly(pn) and 1 < p < oo, where
S t2 et Gt y)dt (zy e X, x £ y).
0

1
I(a/2)

(2.36) Bj(z,y) =

Moreover, there exists some C' > 0 such that
(2.37) B (z,y) < Co(z,y)~ 4o/
for all z,y € X, and
a -1 —(d—aw/2
(2.38) B (z,y) > C ' p(x,y)~ 4w/
for all x,y € X with 0 < o(x,y) < min(Moy, o), where My € (0,00) is any
fixed number.

Proof. First let X be bounded. For any z,y € X (z # y), we see from
(GT7) that

0 7o
[ /2t G (k2 y) dt < | 921Gt 2, ) dt
0 0
To
< Sta/2—l—d/w¢2(t—l/wg(x,y)) dt
0

(e}

= wo(x,y)~ /D | sTew2lpy(s) ds
o(ay)rg
< Cola,y)~dow/?
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since, by using the monotonicity of @9,

S Sd—aw/2—1¢2(8) ds < S Sd—aw/2—1¢2(8) ds
o@y)rg " 0

1
Ssd—aw/2—1@2(8) ds +
0

Sd—aw/2—1@2(8) ds

1
By(0) | s47/2 s +
0

IN

5T Py (s5) ds < .

— e g =g

On the other hand, by (G8),
| 22 e Gt ,y) dt < C | /2717 we 2 e < C
T0o To
Therefore,
00 o 0o
S 2 e G @ y) dE = S 2 e G (L, @, y) dit + S 2 e Gt @, y) di
0 0 0

< C(1+ o(x,y) /D) < Co(x, y)~dow/?)

for all z,y € X (z # y) since X is bounded and d > aw/2. Thus (2.37)
follows. On the other hand, by (G7) and noting the fact that o(z,y) < o,
we have

o
S 12 et Gt 2, y) dE > e
0

t271G () di

> 7o (021w, (110 oz, ) dt

Ot 3 O3

_ we_mg(:v, y)—(d—aw/Q) S Sd—ozw/?—l@l (S) ds

o(m,y)ro—1/w
o

> we—rog(xvy)—(d—aw/m S Sd—aw/2—1¢1(8) ds

1-1/w
To

> CLo(z,y)~(dmow/),

Therefore (2.38) follows if X is bounded. In a similar way, we can obtain
(2.37) and (2.38) if X is unbounded. The remaining statement follows
from (2.14) and (2.1). =

Assume additionally that G(t,z,y) satisfies (G7) with (2.31). It is not
hard to see from (2.36) and (G1)-(G5) that, for z,y € X (z # y) and
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0<a<(2/w)d,
e Bi(z,y) >0, By(x,y) = By (y,z).
b Bg1+a2(xay) = SX Bgl(xvz)BﬁZ(Zvy) dlu’(z) (a17a2 > 0,01 + a2 <
(2/w)d).
o dim 1725~ flly =0 (f € Ly, 1< p< o0, [y Byl y) duly) = 1

PROPOSITION 2.8. Let X be unbounded. Assume that G(t,z,y) addi-
tionally satisfies (G7) with the integral condition (2.31), and that 0 < «
< (2/w)d. Then the potential operator I} has an integral kernel, that is,

(2.39) I f(z) = | By, 9)f (y) duly),

with i

(2.40)  RS(x,y) = F<;/2) (S)Oto‘/Q_lG(t,x,y) dt  (v,y€ X,z #vy).
Moreover,

(2.41) R(z,y) = o(x,y) /D) (z,y € X,z #£y).

Proof. The proof is similar to that of Proposition 2.7. We omit the de-
tails. =

DEFINITION 2.9. Assume that G(t,z,y) satisfies (G1)-(G7) on a mea-
sure metric space (X, o, #) with the chain condition. For a > 0 and 1 <p<o0,
the J3 and I} defined as in (2.14) and (2.15) are termed the p-Bessel and
p-Riesz potential operators respectively.

The operators D® = (I—A)*/? and (—A)*/2 may be interpreted as Bessel
and Riesz fractional derivatives, respectively.

3. Sobolev spaces. Assume that G(t, z,y) satisfies (G1)—(GT). For each
a > 0, let Ji be the Bessel potential operator defined in (2.14). In this section
we introduce (fractional) Sobolev-type spaces on (X, o, ). For 0 < o <1
and p = 2, these spaces are shown to coincide with Lipschitz spaces initiated
by Jonsson and Wallin [16, 17]. If X is an open subset of R with “nice"
boundary, they are equivalent to the usual classical Sobolev spaces. These
function spaces arise as the domains of (I — Ap)o‘/ 2 and play an important
role in studying nonlinear (fractional) PDE’s on (X, g, 1t). Their embedding
theorems will be given in the next section. Note that Theorem 2.5 is crucial
to our argument.

For any a > 0 and 1 < p < oo, we see from (2.20) and (2.21) that the
Bessel potential operator J3 : L,(p) — Ly(t) is one-to-one.
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DEFINITION 3.1. Let @ > 0 and 1 < p < oo. The Sobolev space (or
Bessel potential space) Hy(u) := H (X, 0, 1, G) on (X, o, 1) is the image of
Ly(p) under J. The norm of f = J3p € H¥(u) is

(3.1) 1 ez ) = Nl

Strichartz [23] introduced the Sobolev-type spaces LE(X) for s > 0 and
1 < p < oo. It is easy to see that
(3.2) LP(X) = H2/"(u)  (s>0,1<p<o0).

We may characterize H;?(H) in an alternative way. Let « > 0 and 1 < p < oc.
Define the space Ly (1) by

(3-3) Lpp(p) ={f € Ly(p) : D*f € Lp(p)},
where D®f is defined in (2.27). The norm of f € L7 (u) is

1z = 11l + 1D -

PROPOSITION 3.2. Let a > 0 and 1 < p < co. Then Hy () = Ly, (1)
with equivalent norms:
1 Teg ey < 1 lzg o) < 20 11 g -
Proof. Assume that f € HJ(u). Write f = Jip for some ¢ € Ly(u). It
follows from (2.20) and (2.27) that
Def =lim D2 f = lim DS Jjo = ¢
e—0 e—0
in the Ly-norm since 1 < p < oo. Thus,

LAl + 1D fllp = 172 lls + lellp < 2lellp = 20171 g
proving that HJ'(u) is embedded in Lg (u). Conversely, assume that f €
L;p(,u?. Let ¢ = Df € Ly(n). Then f = JZp; this is because, for any
g € LP (p) (p' is the conjugate of p) we have

(Jip:9) = (. Jiig) = lim (D2 f, Jig) = lim (f, D2 J3ig) = (. 9)-

(Note that the last equality still holds if p = 1 by using (2.21) and the
dominated convergence theorem.) Therefore, we see that f = Jiy € Hy(n),
and

1l o = Illp = 1%l < £z
showing that Ly () is embedded in H' (). m

In what follows we consider the case p = 2, and investigate H$' () in
more detail. Let o > 1 and f € H§ (). We claim that (—A)Y2f € HS ™ (u).
In fact, writing f = J¢ for some p € La(u), we see from Proposition 2.4
that

(~A)2f = (1 - A0,
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where § = (I — A)~'/2(=A)'/2p, by using the operational calculus (cf.
[28, pp. 343-345]). Note that @ € Ly(u) for ¢ € Lo(p). Thus (—A)/2f =
Jr g e HS Y (). Conversely, if (—A)Y2f € HS (u) (o > 1) then f €
H$(p) in a similar way. The Riesz fractional derivative (—A)!/2 behaves
like a pseudo-differential operator of order 1, exactly the same as the clas-
sical case. On the other hand, if we instead consider LY(X) introduced by
Strichartz as above, then we see that (—A)Y/2f € inw/Q(X) (s > w/2)
if and only if f € L?(X), and (—A)'/? behaves like a pseudo-differential
operator of order w/2.

Using the spectral resolution (cf. Proposition 2.4), we see that for any
a >0,

(34)  HS()={f € La(): [+ N d(EAS, ) < o0}
0

For 0 < a < 1, we give a simple characterization of H$(x). To do this, we
introduce a function j, : X x X — R for a > 0 by jo(z,y) =0 if z = y, and

- 1 T —a—1_-—t
(3.5) Jalz,y) = ) [S) = et Q(t, x,y) dt
if x # y. Define a functional W, by
(3.6) Walf) = | V(@) = f(0)%dol2,y) duly) dp(z)
X X

for f e La(p).
THEOREM 3.3. Let H$'(u) be defined as above. Then

(3.7) HS (1) = {f € La(p) : Wa(f) < o0}
with || fll g = (1F13 + Wal )2 if 0 < a <1, while
(3.8) Hy () = {f € La(n) : E(f, f) < o0}

with || fll gy ) = (1113 + ECf, Y2, where & is defined in (2.13).

Proof. Let 0 < a < 1. Let f € Hg(u), and write f = Jj for some
¢ € La(p). Then

o =D"f = (I—A)f.
Therefore,
1 Frg ) = llspll3 = (T = A2 f, (1 = A)*2f) = (f, (I = A)*[)

1
x(a, 1)

= (f,.D*f) = [t f—e7'Gup) dt
0
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= X(al ) Ve @ — e )IIFI3 +e7(f, f — Gef)) dt
0

1 T —a—1_-—t
=1+ gy Ve [}S”S((f(y)—f(ar))QG(t,x,y)du(y)du(x) dt

= 1713+ 5 § §(F@) — F@) il 9) duty) du(z),

XX
proving (3.7). Moreover,
11y = I3 = (I = A)V2F,(1 = A)2f)

o0

= A+ N (B, £) = 1713+ (7, £),
and so (3.8) holds. m "

COROLLARY 3.4. Suppose that (X, o, ) is a connected metric measure
space, endowed with a local, stochastically complete heat kernel G(t,z,y)
satisfying (G7) with

(o9}
(3.9) S s 1P, (5) ds < oo.
0
Then HS (1) = HS(d, w) with equivalent norms, where

(3.10)  HS(d,w) = {f € Lo(p) :

_ T 2
| %du(y)du(ﬂﬁkm}

X o(y,x)<1
if 0 <a <1, whilst

(3811)  H(d,w) = {f € La(n)
sup =) [ §(f(y) — S () duly) du(x) < oo}
0<r<1 X B(zr)

The norm of f € H§(d,w) is defined in an obvious way for o > 0.

REMARK. Note that under the conditions of Corollary 3.4, the space
H$(d, w) defined in (3.10) contains only constant functions if & > 1 (see [19]).

Proof. Assume 0 < o < 1. Since G(t,z,y) satisfies (G7) with (3.9), we
can obtain ju(z,y) < Co(x,y)~ 4T for z,y € X (x # y), and

(3.12) ja(z,y) > CLo(x, y)~(@Hew)

if 0 < o(x,y) <1, in a similar way to (2.37), whether X is bounded or not,
where C' is independent of z,y. Thus (3.10) follows from (3.7). For o = 1,
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we have

E(f, £) = sup v NN (f(y) - f(2)® duly) dp(x)

o<r<1 X B(a,r)

by virtue of (G7) and (3.9) (see the details in [12, Theorem 4.2, p. 2076];
note that p is a d-measure if (G7) holds with (3.9), see Proposition 2.6).
Thus (3.11) follows from (3.8). =

REMARK. If X is a subset of R™ supporting a d-measure, the spaces
H$(d,w) for 0 < o < 1 and w = 2 were introduced by Jonsson and
Wallin in [16, 17]; in particular, they are the traces of the Sobolev spaces

H;Hn_d)/Q(R”) on X for0<a<1.

4. Embedding theorems. Assume that G(¢,x,y) satisfies (G1)-(G7)
with (3.9). In this section we discuss the embedding theorems for H(u) for
a>0and 1< p< oo.

THEOREM 4.1. Let Hy(u) be defined as in Definition 3.1 for a > 0 and
1 <p<oo. Then

(1) if d> apw/2, then Hy (1) embeds in LI(p) for q¢ = #;111/2;

(2) if d=apw/2, then Hy (1) embeds in LI(p) for any 1 < q < oo.

Proof. (1) Assume d > apw/2. Let f € Hy(p), and write f = JZo,

@ € Ly(p). Since 0 < o < 2d/pw < (2/w)d, we see from (2.37) that there
exists some C' > 0 independent of x and f such that

(4.1) f(@)] < C oz, y) P p(y)| duly),
X

which implies that f € L9(u) if d > apw/2. The proof for this is standard
(see for example [14, pp. 20-21]). For the reader’s convenience, we sketch the
arguments. Write

42) | ola, )" Po(y)| du(y)

X
= | oy T Plom)duy) + | ola,y)" T ()| du(y)
o(y,x)>0 o(y,)<é

=: g5(x) + bs ().
Using Hélder’s inequality, we have
' (d—aw 1/pl
(43) @ <lelo( [ el y) D du(y))

o(z,y)>6
< C|p|po—\/pem/2),
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where C' is independent of ¢, § and x, and p’ = p/(p — 1). Here we have used
the fact that

o0

S Q(xjy)*p/(d—awﬂ) du(y) = Z S Q(%y)fp'(d—aw/z) du(y)
o(,y)>0 k=12k5< g(x,y) <2k +16

(2%6) P (B (a, 25))

IN

M T

< Y (2kg) P dmaw/2) ok tlgyd by (2.33))
k=1
_ C(Sd—p’(d—aw/Z) Z 2k(d—p’(d—aw/2))
k=1

< ¢pd=Pld=aw/2)  (gince d — p(d — aw/2) < 0).
On the other hand,

(44)  bs(x)= | o(z,y) D o(y)| duly)
Yy

= | oz, )~/ (y)| du(y)
k=

0 2*(k+1)5<g(x,y)§2_k5

< (2 Wy mdmew/2) f o (y) du(y)
k=0 o(z,y)<2-k§
< (27 gy~ dmaw/2) (B2, 2786)) My () (x)

< C5*P M, () (),
where

| le)ldu(y)
B(z,r)

1
M, = -
ple) = S )

is the maximal function of ¢ satisfying
(4.5) IMyellp < Cllgll,  for all o € Ly(p).
Combining (4.1)—(4.5), we see that

[f(@)] < CE~ W=D ||, + 62 Myp(a)).-
Minimizing the right-hand side, we have

’f(x)| < CH@ngZ’/Qd(MMQO(m))(2d—awp)/2d’
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which combines with (4.5) to yield
dp
" d—apw /2
Case (2), d = apw/2, follows from (1) in a standard way. We omit the
details. m

1fllg < Cliellp, a

We give the embedding of Hy' (1) for p =2, ifd < aw and 0 < a < 1.
For 0 < 0 <1, let C?(X) be the Holder space on X, that is,

C”(X):{fEC(X): sup M<oo}.

ryeX,aty 0y, 2)°
The norm of f € C?(X) is

[f(y) — f(=)|
fllcecxy = |I.f + sup
1flleecxy = [1fllecx) S s
THEOREM 4.2. If d < aw and 0 < a < 1, then H§ (u) embeds in C7(X),
where 0 = (aw — d) /2.

Proof. Let d < aw and 0 < a < 1. By Corollary 3.4, it suffices to show
that HS'(d,w) embeds in C?(X) with ¢ = (acw — d)/2. But this is proved in
Theorem 4.1(iii) of [12] if & = 1, and in [15] for 0 < a < 1. (Note that the
chain condition implies that aw < d+ 2 cf. [12], and so 0 < 1.) =

By (3.2) and Theorem 4.2 we infer that L2(X) embeds in C?(X) with
oc=s—d/2if d/2 < s <w/2 (see the same result in [23]).

5. Besov spaces. Let (X, o, ) be a connected metric measure space
endowed with a G(t,x,y) satisfying (G1)-(G7). Let {G¢}+>0 be the semi-
group associated with G(¢,x,y) as in (2.1). In this section we define various
Besov spaces By (1) for « € R and 1 <p,q < oo.

DEFINITION 5.1. Let 1 < p,q < oo, and let @ € R. Define By (1) as

follows:
th 1/q
)5) <
» t

(1) if @ > 0, k = [a/2] + 1, then
B, ={ e ny s ({ (v
B ={ 1 € L : (E(t-aﬂnetfnp)q M <o)

ak
PIC Gif

0
(2) if @ <0, take k = 0:

with the obvious norm (the integrals above are clearly modified if ¢ = c0).
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The Besov spaces as above for the classical case were given in [10] by
using the Gauss—Weierstrass heat kernel. For other approaches to the fractal
case, see [8, 23, 24, 26].

THEOREM 5.2. For a > 0, we have BSy(u) = HS'(n) with equivalent

norms.

Proof. Note that

[e.9]

Hg (1) = {1 € La(w) : {01+ N d(Erf, f) <00} (a2 0).
0
On the other hand, for any integer £ > [a/2] + 1, we have
ak ? T 2k —2Xt
o Cif|| =\ e d(ELS 1),
2 0
and so
0o 2 00 00
S t2k—a—1 thf di = S t2k_a_1( S )\2k6—2)\t d(E)\f, f)) dt
ot 9
0 0 0
_ S N (B f, f)( S 2k—a—1,-2Xt dt)
0 0
=202k — o) | N d(EAf, f),
0

proving the theorem. m

6. Discussions. Starting from the existence of a local, stochastically
complete heat kernel G(¢,z,y) with a two-sided estimate (G7) on a
connected metric measure space (X, o, 1), we have obtained various Besov
spaces; in particular, we have at hand the (fractional) Sobolev spaces
H$(d,w) (0 < a < 1) (see (3.10) and (3.11)). These spaces contain two
parameters, d and w, which are the Hausdorff dimension of X and the walk
dimension of the diffusion on (X, o, 1) respectively. The key point is that
these spaces are dense in Lo(p). There is a natural question: is it possible
to obtain the existence of a heat kernel satisfying a two-sided estimate (G7)
if there exists a function space, say H$ (d,w) (cf. (3.10) or (3.11)) for some
0 < a < 1, that is dense in Lo(u)? This question has been answered for
0 < @ < 1and w = 2. Chen and Kumagai [7] applied the probability ap-
proach to show that, if X is a d-subset of R™ (n > 1) and p is a d-measure,
then there is a heat kernel p{?) (¢, z,y) satisfying

(61) U012 y)) < plO(t 2, y) < CEYBE 2 —y))
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forall 0 <t <1 and all z,y € X, where 0 < a < 1 and
B(s) = (1+5)"2) (53 0).

(Note that the problem of the denseness of HS'(d,w) does not appear if
0 <a<1andw=2) For each 0 < a < 1, the p?)(¢,z,y) is not local,
and the corresponding process is a jump process on X. The limiting case
a =1 is still open. Recently, in [29] a regular local Dirichlet form has been
constructed on any bounded d-set which corresponds to the limiting case
« = 1. All the results mentioned above deal only with w = 2. It would be
interesting to investigate the general case w > 2, and moreover, to show the
equivalence between the existence of a certain class of potential spaces and
the existence of heat kernels with two-sided decay estimates.
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