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Quotient groups of non-nuclear spaces
for which the Bochner theorem fails completely

by

ROBERT STEGLINSKI (L6d7)

Abstract. It is proved that every real metrizable locally convex space which is not nu-
clear contains a closed additive subgroup K such that the quotient group G = (span K)/K
admits a non-trivial continuous positive definite function, but no non-trivial continuous
character. Consequently, G cannot satisfy any form of the Bochner theorem.

Let G be a (Hausdorff) abelian topological group. By a character of G
we mean a homomorphism of G into the multiplicative group of complex
numbers with modulus 1. The family of all continuous characters of G, with
pointwise multiplication and the compact-open topology, is an abelian topo-
logical group again. We call it the dual group and denote by G.

A complex-valued function ¢ on G is said to be positive definite if, for
all n € N,

n
> NiXje(gi —gj) = 0
i,j=1
for all A\j,..., A\, € C and g1,...,9, € G. A finite Borel measure p on a
topological space X is called a Radon measure if, for each Borel subset A
and each £ > 0, there exists a compact subset @ of A with u(A\ Q) < e.
Let i be a Radon probability measure on G”*. The characteristic functional
of u, given by
i(g) = | x(9)du(x), g€@q,
G/\
is a positive definite function on G with p(0) = 1. We say that G is a
B-group if it satisfies the Bochner theorem in the following form: for each
continuous positive definite function ¢ on G with ¢(0) = 1 there is a Radon
probability measure p on G” with i = ¢. The measure p is uniquely
determined provided that continuous characters separate the points of G
(see Theorem 2 in [13]).
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The Bochner theorem says that every locally compact abelian group is a
B-group. The Minlos theorem says that every nuclear locally convex space
(treated as an additive abelian group) is a B-group. The same is true for the
so-called nuclear groups, a variety of abelian topological groups containing
locally compact abelian groups and nuclear locally convex spaces, introduced
in [3] (see Theorem 12.1 in [3] or Theorem 22.16 in [1]; the result obtained
there is in fact slightly stronger). On the other hand, if a metrizable locally
convex space G is a B-group, then G must be a nuclear space (see Theorem 5,
p. 75 in [8]).

There is, however, a certain version of the Bochner theorem which re-
mains valid in all locally convex spaces. Namely, every continuous positive
definite function ¢ on a locally convex space G with ¢(0) = 1 is the char-
acteristic functional of a (unique) cylindrical probability measure on G*, so
that it can be in some way synthesized of continuous characters (see Theo-
rem 1, p. 348 in [5] or Proposition A, p. 21 in [9]). The situation becomes
completely different if we consider quotient groups.

Let K be a closed subgroup of a topological vector space E. Continuous
characters separate the points of E/K if and only if K is weakly closed in
E, and (E/K)" = {1} if and only if K is weakly dense in E (|3, Proposi-
tion 2.5]). Every closed subgroup of a nuclear locally convex space is weakly
closed (|2, Theorem A]). On the other hand, if a real metrizable locally
convex space is not nuclear, then it contains a discrete subgroup K such
that the quotient group (span K)/K has no non-trivial continuous posi-
tive definite functions, i.e. no non-trivial continuous unitary representations
(see [3, Theorem 6.1]).

We say that an abelian topological group G is NBT (no Bochner theo-
rem) if it admits a non-trivial continuous positive definite function ¢, but
G = {1}. Then ¢ cannot be synthesized of continuous characters (since the
latter do not exist), and one cannot speak of any version of the Bochner
theorem in this case.

Throughout the paper, we assume that all vector spaces are over the
real field R, unless explicitly stated otherwise. Consider the Banach space
L?(0,1), 1 < p < oo, and let L% (0, 1) be the closed subgroup of LP(0,1) con-
sisting of integer-valued functions. Then L% (0,1) is weakly dense in L?(0,1)
and the quotient group L?(0,1)/L%(0,1) is NBT (cf. Lemma 5 below). Sim-
ple examples of NBT quotient groups of [P, 1 < p < 2, are given by Theorem
5.1(c) and (e) in [3]. It has been proved in [12] that every infinite-dimensional
real normed space contains a discrete subgroup K such that the quotient
group (span K)/K is NBT. It was conjectured in [3, p. 111] that NBT quo-
tient groups can be constructed in every non-nuclear locally convex metriz-
able space. The aim of the present paper is to prove that conjecture.
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THEOREM 1. FEwvery real metrizable locally convex space which is not nu-
clear contains a closed additive subgroup K such that the quotient group
G = (span K)/K is NBT.

The proof will be preceded by several lemmas. By ), we denote the
Lebesgue measure on R™. Let U, W be two symmetric convex bodies in an

n-dimensional vector space X. Let % denote the real number defined by

0] _ M(T@)
(W A(T(W))
where T : X — R" is a linear isomorphism.

LEMMA 2. Let U, W be two symmetric convez bodies in an n-dimensional
vector space N with U C W. Let M be an m-dimensional subspace of N
and w: N — M an arbitrary projection. Then

|U N M| m! |U|
(a) T 2 T T
(WM — nl |W|
[=(@)| _ m! U]
[m(W)| —

n! W]

For (a), see |3, Lemma 6.6]. The proof of (b) is similar; we leave it to the
reader.

Let p be a seminorm on a vector space E. The quotient space E/p~1(0)
with the canonical norm will be denoted by E,,. If ¢ < p is another seminorm
on F, then the canonical operator E, — E, will be denoted by T},.

Let T : E — F be a bounded linear operator between normed spaces.
For each n = 1,2,..., we define

(b)

B T(Bp N M)\ /"
vn(T) = sup (rBF mT<M>|>

where B, Br denote the closed unit balls in F, F respectively and the supre-

mum is taken over all linear subspaces M of E with dim M = dimT'(M) = n.
If rank T' < n, then we define v(T') = 0.

LEMMA 3. Let E be a locally convex space. Suppose that there exists an
e > 0 with the following property: for each continuous seminorm q on E
there is another continuous seminorm p > q such that vy (Tpq) = o(n™°).
Then E is nuclear.

This is Lemma 6.5 of [3].

LEMMA 4. Let E, F be normed spaces and let T : E — F be an injective
bounded linear operator such that

lim sup n/°v, (T') = oo.
n—oo
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If X is a subspace of E with codim X < oo, then

lim sup n1/51/n(T‘X) = 00.
n—oo

The proof of this lemma is similar to that of Lemma 6.8 of [3].

LEMMA 5. Let K be a closed subgroup of a topological vector space E
and let 0 : E — E/K be the canonical homomorphism.

(a) Let T : E — L?(0,1) be a non-zero continuous linear operator with
T(K) C L2(0,1). Then the formula
1
p(r) = Sexp {2miTx(t)}dt, z€E,
0
defines a non-trivial continuous positive definite function ¢ on E
with ¢ = 1 on K. Consequently, the formula ¢ (o(z)) = ¢(z), z € E,
defines a non-trivial continuous positive definite function v on E/K.
(b) Let x be a non-trivial continuous character of E/K. Then there
exists a non-zero continuous linear functional f on E with f(K) C Z
such that

(%) x(o(z)) = exp{2mif(x)} for each x € E.
Proof. (a) It is not hard to see that
D f(t) = f(t)-exp {2miTx(t)} (x € E; f € L*(0,1); t € (0,1))

defines a continuous unitary representation @ of the group F in the complex
Hilbert space L2(0,1) (see e.g. the proof of Proposition 4.1 in [3]). Let fo = 1
on (0,1). Then we have ¢(x) = (@, fo, fo) for each x € E, which means that
¢ is a continuous positive definite function on E. Since T" # 0, there is some
z € F with Tz ¢ L2(0,1), and then Rep(z) < 1. The last assertion is
standard (see e.g. |6, (32.6)]).

(b) The composition y o ¢ is a continuous character of E. Therefore
there exists a continuous linear functional f on E satisfying (x) (see e.g.

[11, Lemma 1], or [6, (23.32)], or [3, (2.3)]). It is clear that f(K) C Z. =

By a step function we mean a linear combination of characteristic func-
tions of finite intervals. By S7(0, 1) we denote the set of integer-valued step
functions on (0, 1).

LEMMA 6. Let I be a finite interval and let o« € R. Then there exists a
step function v : I — (—1,1) such that ¢+« is integer-valued and {1 = 0.

Proof. Let I = (a,b). If a € Z, we set ¢ = 0. Suppose « ¢ Z. Then
c:=a+ (b—a)(a—|a]) € (a,b)
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and we may define, for instance,

b(t) = {[a]—a+1 for t € (a,c),
[a] — « for t € (c,b). =

Let X, Y be two n-dimensional normed spaces. Their Banach—Mazur
distance will be denoted by d(X,Y’). By Ry we denote the space R" endowed
with the canonical euclidean norm. We will write B3 for the closed unit ball
of RY.

We will need the Milman quotient subspace theorem in the following
form (see Theorem 3.1.1, p. 1171 in [7]):

LEMMA 7. Let 1/2 < a <1 and let X be a normed space of dimension n.
Then there exist subspaces E O F of X with

k=dimE/F>an, d(E/F,RS) <r
for some constant r independent of n.

Let E be a vector space and let A C E. The linear subspace and the
additive subgroup generated by A are denoted by (A) and (A)z, respectively.

Let E be a normed space. The adjoint space of E will be denoted by E*.
We say that a closed subgroup K of E is finite-dimensional if dim(K) < oc.
Then the group K is topologically isomorphic to R* x Z°, where a and b are
non-negative integers (see Theorem (9.11) in [6]).

Let || - |lo, || - |1 be two norms on a vector space E. Write

Eo:=(E,|-llo), Ev:=(E]-l)

and
BO = Ban Bl = BEl-

Let M, N be two finite-dimensional subspaces of E. Let My (resp. (M/N)o)
denote the space M (resp. M /N) endowed with the norm induced by || - ||o.
Let M (resp. (M/N)1) denote the space M (resp. M /N) endowed with the
norm induced by || - [|1. If T : M — L?(0,1) is a linear operator, then ||T|o
denotes the norm of T': My — L?(0,1). If f : M — R (resp. f : M/N — R)
is a linear functional, then | f||; denotes the norm of f : M; — R (resp.

f:(M/N); — R).

LEMMA 8. Let || - |lo, || - |[1 be two norms on a vector space E such that
II-1lo <|-|l1 and let I : By — Ey denote the identity operator. Suppose that
(1) limsup n'/%v,,(I) = co.

n—oo

Let Ky, Ky be finite-dimensional closed subgroups of E with (K1) N (K2)
= {0} and let K = K; + Ka. Let f : (K1) — R be a non-zero linear
functional with f(K;) C Z and let T : (K) — L*(0,1) be a non-zero linear
operator with T'(K) C Sz(0,1).
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Given € € (0,1), one can find a ﬁnite—dimensional closed subgroup Kj
such that (K)N(K3) = {0} and if we define K = K + K3, then the following
conditions are satisfied:

(i) there are no linear functionals f : (K) — R with J?|<K1) = f and

f(K) C Z such that Hf”1<1 B N
(i) there exists a linear operator T : (K) — L2(0,1) with Tiy=T and
T(K) C Sz(0,1) such that | T]|o < (14 ¢)||T]o-

Proof. Fix € € (0,1). Choose § € (0,1) such that
@) a1+
1-96 2

A standard argument shows that there is a linear subspace X C E with
codim X < oo such that

(3) |z +yllo > (1—0)]|zllo forallze (K)andy e X.
Then (K) N X = {0}. Moreover, we have

1-9
(4) |z +yllo > 5 llyllo for all z € (K) and y € X.

Let A = +/2me(5/4)2. Let r be the constant corresponding to a = 4/5 in
Lemma 7. Choose ~ > 0 such that

2—90 r e
(5) 15 7 ° §||THO7
(6) A-v>1.

From (1) and Lemma 4 it follows that
lim sup n1/51/n(I|X) = 0.
n—oo

Therefore we can find some n and an n-dimensional subspace Y of X such
that

7) |BiNY|

=21 A~ —n/5‘

According to our definition of r, we can find a subspace M of Y and a
subspace N of M such that

(8) [ :=dim(M/N) > —
(9) d((M/N)o,R) < r.
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Let m: M — M/N be the canonical projection. Set m = dim M. Applying
Lemma 2 (a) and then (b), we see that

|7(B1 N M)| >l_! |B1 N M| >l_'ﬁ' |B1NY]|
|T(BoNM)| — m! |[BonM| — m! n! |BoNY]|
Hence, by (6)-(8) and Stirling’s formula, we derive
|m(By N M)| S l_' |B1NY| - ﬁ
|m(BonM)| — n! |BonY| ~ n!
Vorl (L) /4
Z m (e)5l . i (A”y)ll_l/4<%>
w/27r%l(2—é) /e
1/2
> (?) > 4\ (BY).

It follows from (9) that there is a linear isomorphism R : RL — (M/N)g
such that |R|| < 1 and ||R7Y|| < 7. Let R* : (M/N)} — R} be the adjoint
operator (we identify (R5)* with R) in the usual way). Put S = vR*. Then
1S = AR <7, de.

(11) (5*) " (Baywye) 27 By

Since (S*)~! is a linear isomorphism, we have

i7(Bin M) M((S*) " (Baayny,))

[m(BonNM)| — N((5*)~ Y (Baa/ny,))

Let B(y/n): denote the closed unit ball in the adjoint space of (M/N);. The
sets S(B(n/n)r) and (5*)~'(B(ar/n), ) are polar reciprocal to each other with

(10) (A)"nn/®

(12)

respect to the scalar product in RIQ. Therefore, by the Santal6 inequality (see
(4.3.5) in [7] or §4 in [10]), we have

(13) N(SBaaim)) - (S (Bagyn,)) < (B2,
Now, from (10)—(13), we get
(14) N(S(Bayny;)) < 1.
Let ey, ..., e; be the canonical orthonormal basis in ]Rl2 and let Z! = Ze, +

-+ -+Ze; be the integer lattice. From (14) it follows that S(B(M/N)T)—i—Zl # R
So, there is some & = (&1,...,§) € R’ such that
(15) (Z' = &) N S(Byny;) = 0.

The vectors w; = vR(e;), i = 1,...,[, form a basis in M/N. Choose
b; € M such that 7(b;) = w;. Choose v € (K1) with f(v) = 1. Let

(16) K3 =N+ (b1 +&v,....b + §u)z.
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Then K3 is a finite-dimensional closed subgroup of E. It is easy to see that
(K)N(K3) ={0} and (K) + (K3) = (K) + M. Define
K =K + K.
Then K is a finite-dimensional closed subgroup of ' with K C K.
To prove () take an arbitrary f € (K)* with f| k) = f and f(K) c
Since N C K, it follows that f(N) = {0}, and hence there is a linear

functional g € (M/N)* with f‘M =gomand ||g]; = |]}V|M||1 It is easy to

check that
l

S(h) = h(w;)e; forall h e (M/N)*.
Hence
l l
= Zg(wi)ei = Zg(ﬁ(bi))ez‘ = Z Fiar(bi)e;

—Zber& Zf& Je; € 2 — €.

In view of (15), this means that g ¢ Bnynyy, or equivalently, gl > 1,
which gives | fll1 > [|fiallr = llgll > 1.

To prove (ii), we shall construct a sequence @1, . .., ¢, of pairwise orthog-
onal step functions on (0, 1) such that |p;| <1 and
(17) vi +&Tv e Sz(0,1) fori=1,...,1

Since T(K) C Sz(0,1) and v € (K;) C (K), it follows that Tw is a step
function. We may write

m1
Tv = E ajXI;
j=1

where aq,...,am, € Rand Iy,..., I, is a decomposition of (0, 1) into some
smaller intervals. We define

p1(t) = [§104] — &1

for t € I]‘, ] = 1, o, Mmy. Then ’g01| < 1 and ©1 —l—flT’U S Sz(o, 1).
Then we proceed by induction. Suppose we have constructed ¢1,...,©r_1
for a certain k = 2,...,[. The interval (0,1) decomposes into a finite union

of smaller intervals Ij(k), 1 < 5 < my, such that each of the functions

(k

Tv,¢1,...,9E_1 is constant on every Ij

we can find a step function ¢; on Ij(k) with |¢;| < 1 such that XI(’“) ;=0
i

) By Lemma 6, for each j=1,...,my
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and v; + £;T'v is integer-valued. We define

k) .
i (t) = (1) fortGI](- ),]:1,...,mk.
Then ¢y, is a step function on (0,1) with |¢x| < 1 such that ¢y + &Tv €
S7(0,1). It is clear that S(l) prp; =0foreachi=1,... k—1.

Consider the linear operator () : RZQ — L?(0,1) given by Q(e;) = ¢; for
i=1,...,1. Since the functions ¢; are pairwise orthogonal and |¢;| < 1, we
have ||Q[| < 1. Let Ty =7y 'Qo R Yom: M — L?(0,1). Then Tyb; = ¢; for
i=1,...,1. Since ||[R7|| < r, we have | Ti|lo < ry~!. Let Py : (K)o — My
and Py : (K)o — (K)o be the projections. By (3) and (4), we have

2—9 1

< — Bl <—.
e N T
Define T = Ty P + TP, : (K) — L*(0,1). Then Tj;xy = T In view of (2),
(5), (18), we have
ITllo < I Txllol| 2ol + [T [lol[ Pl
2—6 1

<~ lr. — Tl < (1 Tllo-

<y 220 Tl < (14 2) Tl

To finish the proof we must show that T(K) C Sz(0,1). Since K =
K+ N+ {(bi+&wv,...,bj+&v)yz, it suffices to make the following observation:
if x € K, then T(x) = T(z) € 5z(0,1); if x € N, then T'(z) = 0; and if
x =0b; + &v for some i =1,...,1[, then

T(bi + &v) = T(&v) + (Qo R om)(bi) = &Tv + i € S7(0,1)
by (17). =

(18) Py

LEMMA 9. Let || - |lo, || - |[1 be two norms on a vector space E such that
II-1lo <|-|l1 and let I : Ey — Ey denote the identity operator. Suppose that
(19) lim sup n'/°v, (1) = cc.

n—oo

Let K be a finite-dimensional closed subgroup of E and let T : (K) —
L?(0,1) be a non-zero linear operator with T(K) C Sz(0,1). Then, given
e € (0,1), one can find a finite-dimensional closed subgroup K with K C K
such that the following conditions are satisfied:

(i) there are nmo linear functionals f: (I?> — R with ]?K[Q #= 0 and
f(K) CZ such that || f1 <1; B

(ii) there exists a linear operator T : (K) — L*(0,1) with Ty =T and
T(K) C Sz(0,1) such that |T]lo < (14 )| Tlo.

Proof. 1t is clear that the set

Q={fe(K)": f(K)CZand |f]1 <1}



292 R. Stegliniski

is finite. Let f1,..., fi, be the non-zero elements of @ (if there are none, we
may just take K = K). Choose &’ € (0,1) such that
(20) 1+ <1+e.

Set Ky = K. Applying the previous lemma, we find inductively an in-
creasing sequence Ky, K1,..., K,, of finite-dimensional closed subgroups of
E and a sequence of linear operators T : (K;) — L?(0,1) fori =0,1,...,m
such that, for each ¢ = 1,...,m, the following conditions are satisfied:

(a;)  Ti(K;) C Sz(0,1);

(bi)  Tyyx,_yy = Ti-1;

(ci) [ Tillo < (L + &) Ti-1llos

(d;)  there are no linear functionals f € (K;)* with fjx) = fi and f(K;) C
Z such that ||f||; < 1.

Define K = K, and T = T
Condition (a,,) says that T'(K) C S7(0,1). Conditions (b;), 71 =1,...,m,
imply that T} gy = T. Conditions (c;) together with (20) yield

ITllo = 1 Tmllo < (1 + €)™ Tollo < (1 + &) To-

To prove (ii), take any f € (K)* with }V\(K> # 0 and f(K) C Z. If

3

-}?KK) ¢ @Q, then ||ﬂ|1 > ||]?|(K>~”1 > 1. So, suppose that f‘<£<> = f; for a
certain ¢ = 1,...,m. Let f = f|<K7,> Then we have f‘<K> = f|<K> = f; and

f(K;) = f(K;) C f(K) C Z. Condition (d;) says that [|f|1 > 1, whence
N> 0flli>1 =

Let (]| - [|i)$2, be a sequence of norms in a vector space E. For each
i=0,1,2,..., let E; denote the normed space (E, || - ||;). Let M be a finite-
dimensional subspace of E. If f : M — R is a linear funcional, then ||f];,
i=0,1,2,..., denotes the norm of f: (M, |- |l;) — R.

LEMMA 10. Let E be a metrizable locally convexr space with topology
defined by an increasing sequence of norms (|| - |;)5,. For each i =1,2,...
let I; : E; — Ey be the identity operator. Suppose that

I

(21) lim sup n'/°v, (I;) = oo
n—oo
fori=1,2,.... Then there exists a closed subgroup K of E such that the
quotient group (K)/K is NBT.
Proof. Set

Bi={ze€E:|z|; <1}, i=12,....

Without loss of generality we can assume that {B;}2°, is a neighbourhood
base at zero in F.
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Choose ¢; € (0,1), i =1,2,..., such that

[ee]

H (1 + 6i) < 00.

1=1
Next, choose some u € E with |ul]lo = 1. Define Ky = (u)z and let
Ty : (Ko) — L?(0,1) be the linear operator such that Tou = 1. Then
ITollo = 1. Applying the previous lemma, we construct inductively an in-
creasing sequence (kK;)2°, of finite-dimensional closed subgroups of E and a

sequence of linear operators T; : (K;) — L%(0,1),4 = 0,1,2,..., such that,
for each ¢ = 1,2, ..., the following conditions are satisfied:
(a; T;(K;) C Sz(0,1);

1Tillo < (1 + &) Ti-1llo3
there are no linear functionals f € (K;)* with fyg, y # 0 and
f(K;) C Z such that ||f]; < 1.

)
bi)  Tyiw,yy = Tia;
ci)

)

o
Ke=|JKi, K=FKu
=0

(here the closure is taken in the topology of E).

We proceed to show that the quotient group (K)/K is NBT. We first
show that ((K)/K)" = {1}. In view of Lemma 5(b), it is enough to prove
that there are no non-zero continuous linear functionals f : (K) — R with
f(K) C Z. Suppose that f is such a functional. Then there is n € N such
that f|(x,) #Z 0. Since {B;}{2 is a neighbourhood base at zero in E, there
is m € N such that || f||,, < 1. Let i = max(n +1,m) and f’ = f|(x,)- Then
f"<Ki_1> £0, f/(K;) CZ and ||f'||; <1, which contradicts (d;).

We will now show that the group (K)/K admits a non-trivial continu-
ous positive definite function. In view of Lemma 5(a), it is enough to show
that there is a non-zero continuous linear operator T' : (K) — L?(0,1)
with T(K) C L2(0,1). Conditions (b;) allow us to define a linear opera-
tor Too : (Ko) — L%(0,1) by Tooyr;) = Ti for every i = 1,2,.... Con-
ditions (a;) imply that T (K) C Sz(0,1). Conditions (c;) imply that
ITillo < TIie; (1+ep) for every @ = 1,2,..., so if we denote by ||Tuollo
the norm of the operator T, : ((Koo), || - [l0) — L?(0,1), we have

o
| Toollo = sup [ Tillo < [ (1 + &) < oo
v k=1

Let T': (K) — L?(0,1) be the continuous extension of Ti,. Hence

T(K) =T(Ks) C T(Ks) C Sz(0,1) = 52(0,1). =
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We are now ready to give the proof of Theorem 1:

Proof of Theorem 1. Let E be a metrizable locally convex space which
is not nuclear. According to Lemma 3, there is a continuous seminorm ¢ on
FE such that if p > ¢ is any other continuous seminorm, then
(22) lim sup n1/5yn(Tp ) = 0.

n—oo

Choose a sequence of seminorms ¢ = pg < p1 < po < --- defining the
topology of E. More precisely, we assume that the sets By = {z € E :
pr(z) < 1}, k = 0,1,..., form a neighbourhood base at zero in E. Let
F={z e E:py(x) =0} and let 7 : E — E/F be the canonical projection.
Since the sets 7(By), k = 0,1,..., are convex, symmetric about the origin
and do not contain straight lines, their Minkowski functionals are norms. Let
us denote them by || - ||x. Let Iy : (E/F,|-|lx) — (E/F,| -]lo) be the identity
operator. Then for all n,k =1,2,... we have v, (1) = vp(T},p,), as is easy
to check.

Applying the previous lemma we can find a closed subgroup L of E/F
such that the quotient group (L)/L is NBT. Define K = 7~ 1(L). It is not
difficult to see that the quotient group (K)/K is NBT. =
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