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On limiting embeddings of Besov spaces

by

V. I. Kolyada (Karlstad) and A. K. Lerner (Ramat Gan)

Abstract. We investigate the classical embedding B
s
p,θ ⊂ B

s−n(1/p−1/q)
q,θ . The sharp

asymptotic behaviour as s → 1 of the operator norm of this embedding is found. In
particular, our result yields a refinement of the Bourgain, Brezis and Mironescu theorem
concerning an analogous problem for the Sobolev-type embedding. We also give a different,
elementary proof of the latter theorem.

1. Introduction. For 0 < s < 1 and 1 ≤ p, θ < ∞ the Besov space
Bs

p,θ(R
n) consists of all functions f ∈ Lp(Rn) such that

‖f‖bs
p,θ

≡

(∞\
0

(t−sωp(f, t))θ dt

t

)1/θ

< ∞,

where ωp(f, t) is the Lp-modulus of continuity of f . Set also Bs
p ≡ Bs

p,p.
One of the basic inequalities of embedding theory, which goes back to

the classical Hardy–Littlewood theorem on Lipschitz classes, says that if
γ ≡ n(1/p − 1/q) < s, then (see [11, §6.3])

(1) ‖f‖bs−γ
q,θ

≤ c‖f‖bs
p,θ

(1 ≤ p < q < ∞, 1 ≤ θ < ∞).

Note that a simple argument shows that ‖f‖bs
p,θ

→ ∞ as s → 1, whenever

f 6∼ 0. The aim of this paper is to study the asymptotic behaviour of the
optimal constant c in (1) as s → 1 − 0. Our main result is the following.

Theorem 1.1. Let 0 < s < 1 and p < q < ∞. Let also γ ≡ n(1/p−1/q).
Assume that γ < s and 1 ≤ θ < ∞. If either p > 1, n ≥ 1 or p ≥ 1, n ≥ 2,
then for any f ∈ Bs

p,θ(R
n) we have

(2) ‖f‖bs−γ
q,θ

≤ A
(1 − s)1/θ∗

(s − γ)1/θ
‖f‖bs

p,θ
,

where θ∗ = max(p, θ) and the constant A does not depend on s and f .
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This theorem fails for p = n = 1. We will also show that the exponent
1/θ∗ is sharp in a sense.

We should mention that this work was inspired by recent results of Bour-
gain, Brezis, and Mironescu [1, 2] and Maz’ya and Shaposhnikova [10]. Let
W 1

p (Rn) be the Sobolev space of all f ∈ Lp(Rn) for which every first-order
weak derivative exists and belongs to Lp(Rn). First, it was observed in [1]
that there exists a limiting relation between Sobolev and Besov norms, that
is, for any f ∈ W 1

p (Rn),

(3) lim
s→1−0

(1 − s)‖f‖p
bs
p
≍ ‖∇f‖p

Lp.

The main result of [2] concerns the well known Sobolev-type embedding
Bs

p ⊂ Lq∗ , q∗ = np/(n − sp), proved in the late sixties independently by
several authors (for the references, see [3, §18], [7, Sect. 10], [8, p. 56]).
In [2], the sharp asymptotics of the best constant as s → 1 in a related
inequality was found, namely, if 1/2 ≤ s < 1 and 1 ≤ p < n/s, then for any
f ∈ Bs

p(R
n),

(4) ‖f‖p

Lq∗ ≤ cn
1 − s

(n − sp)p−1
‖f‖p

bs
p

(

q∗ =
np

n − sp

)

,

where the constant cn depends only on n. In view of (3), the classical Sobolev
inequality

‖f‖Lnp/(n−p) ≤ c‖∇f‖p, 1 ≤ p < n,

can be considered as a limiting case of (4).
Similarly, Theorem 1.1 allows us to find a relation between (1) and the

following result: if either p > 1, n ≥ 1 or p ≥ 1, n ≥ 2, and γ ≡ n(1/p −
1/q) < 1, then for any f ∈ W 1

p (Rn),

(5) ‖f‖b1−γ
q,p

≤ c‖∇f‖p (p < q < ∞).

For p > 1 this estimate was proved by Il’in [3, Theorem 18.12]. In the case
p ≥ 1, n ≥ 2 the proof was given in [6]. By (3), Theorem 1.1 shows that
inequality (5) is a limiting case of (2).

We now return to inequality (4). Note that the proof given in [2] is quite
complicated. Afterwards, Maz’ya and Shaposhnikova [10] gave a simpler
proof of this result. Also they studied the behaviour of the optimal constant
as s → 0. More precisely, they proved that the constant in (4) can be
replaced by cp,ns(1 − s)(n − sp)1−p. An important point of the method in
[10] is the fact that the spherically symmetric rearrangement is bounded in
Besov spaces. Observe that the proof of this fact (due to Wik [15]) is rather
difficult. However, it was shown in [5, 14] that sharp theorems on embedding
into Orlicz classes can be directly obtained from estimates of rearrangements
via moduli of continuity. The proof of these estimates is much simpler than
that of Wik’s theorem mentioned above.
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In this paper we show that (4) as well as a more general result of [10] can
be immediately derived from the rearrangement estimates obtained in [5].
Moreover, we show that a stronger inequality with the Lorentz Lq∗,p-norm
on the left-hand side of (4) holds: for any 0 < s < 1 and 1 ≤ p < n/s,

(6) ‖f‖p

Lq∗,p(Rn)
≤ cp,n

s(1 − s)

(n − sp)p
‖f‖p

bs
p(Rn).

It is easy to see, by the standard relation between Lebesgue and Lorentz
norms, that (6) implies (4). Note that (6) is contained implicitly in [10].

Observe that estimates of Lorentz norms via Besov norms (without the
sharp asymptotics of the best constant) are also well known [4, 12] (see
Section 2 below). We show that to get (6) for 1/2 < s < 1, it suffices to
use these estimates with some intermediate Besov norm and then apply
Theorem 1.1. Thus, this theorem is a more precise result than (6) in the
cases p 6= 1 or n 6= 1, 1/2 < s < 1.

We also note that the papers [1, 2] deal with a slightly different definition
of the Bs

p-norm. However it is well known that these definitions are equiva-
lent with corresponding constants not depending on s. We recall briefly the
proof of this fact below.

The paper is organized as follows. Section 2 contains necessary informa-
tion and some auxiliary results concerning Hardy-type inequalities, moduli
of continuity, and non-increasing rearrangements. In Section 3 we prove
Theorem 1.1, and in Section 4 we prove (6).

2. Auxiliary results

2.1. Hardy-type inequalities. We will use the following lemma of Hardy
[13, p. 196].

Lemma 2.1. Let α > 0 and 1 ≤ p < ∞. Then for any non-negative

measurable function ϕ on (0,∞),

(7)
(

∞\
0

(

t\
0

ϕ(u) du
)p

t−α−1 dt
)1/p

≤
p

α

(

∞\
0

(tϕ(t))pt−α−1 dt
)1/p

and

(8)
(

∞\
0

(

∞\
t

ϕ(u) du
)p

tα−1 dt
)1/p

≤
p

α

(

∞\
0

(tϕ(t))ptα−1 dt
)1/p

.

We say that a measurable function f on (0,∞) is quasi-decreasing with
constant c > 0 if f(t1) ≤ cf(t2) whenever 0 < t2 < t1 < ∞.

We will need a Hardy-type inequality for quasi-decreasing functions in
the case 0 < p < 1. Though the following statement is apparently known,
we shall prove it for the sake of completeness.
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Proposition 2.2. Let f be a non-negative, quasi-decreasing function on

(0,∞) with constant c. Suppose also that α > 0, β > −1 and 0 < p < 1.
Then

(9)

∞\
0

u−α−1
(

u\
0

f(t)tβdt
)p

du ≤
(c(1 + β))1−pp

α

∞\
0

u−α−1(f(u)uβ+1)p du.

Proof. We can assume that (1 + β)p > α, otherwise the integral on the
right-hand side of (9) diverges. Also, one can suppose that f is bounded
and compactly supported. Define F (u) =

Tu
0 f(t)tβ dt. Note that F (u) ≥

f(u)uβ+1/c(β + 1). Therefore, integrating by parts yields
∞\
0

u−α−1(F (u))p du =
p

α

∞\
0

u−α+βf(u)(F (u))p−1 du

≤
(c(1 + β))1−pp

α

∞\
0

u−α−1(f(u)uβ+1)p du,

as required.

2.2. Moduli of continuity. For any f ∈ Lp(Rn), 1 ≤ p < ∞, and h ∈ R
n,

set

Ip(h) =
( \

Rn

|f(x + h) − f(x)|p dx
)1/p

.

The modulus of continuity of a function f is defined by

ωp(f, δ) = sup
|h|≤δ

Ip(h) (0 < δ < ∞).

Observe that ωp(f, δ) is a non-decreasing and subadditive function. In par-
ticular, this implies that ωp(f, δ)/δ is quasi-decreasing on (0,∞) with con-
stant 2.

We wish to point out that the papers [2, 10] deal with the seminorm

‖f‖ws
p
≡

( \
Rn

\
Rn

|f(x) − f(y)|p

|x − y|n+sp
dx dy

)1/p

in place of ‖f‖bs
p
. It is well known that these seminorms are equivalent. We

outline the proof of this fact just in order to show that the corresponding
constants do not depend on s.

Proposition 2.3. For any f ∈ Bs
p(R

n) and all s ∈ (0, 1),

(nvn)1/p2−n−2‖f‖bs
p
≤ ‖f‖ws

p
≤ ((n + p)vn)1/p‖f‖bs

p
,

where vn is the volume of the unit ball in R
n.

Proof. Define ωp(f, δ) = (δ−n
T
|h|≤δ Ip

p (h) dh)1/p. It is easy to see that

(10) v1/p
n 2−n−2ωp(f, δ) ≤ ωp(f, δ) ≤ v1/p

n ωp(f, δ) (δ > 0).
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Next, by Fubini’s theorem,

‖f‖p
ws

p
= (n + sp)

∞\
0

(t−sωp(f, t))p dt

t
.

Thus, applying (10), we obtain the desired result.

The following proposition is also based on simple and well known argu-
ments.

Proposition 2.4. For any f ∈ W 1
p (Rn),

(11) lim
δ→+0

ωp(f, δ)

δ
= ‖∇f‖p (1 ≤ p < ∞).

Proof. For each h ∈ R
n and almost every x ∈ R

n,

f(x + h) − f(x) =

1\
0

∇f(x + th) · h dt

(see [9, p. 135]). By Minkowski’s inequality we get Ip(h) ≤ |h| ‖∇f‖p, and
hence

(12) ωp(f, δ) ≤ δ‖∇f‖p (δ > 0).

On the other hand, for any ε > 0 there exists an infinitely differentiable
function fε with a compact support such that

(13) ‖∇(f − fε)‖p < ε.

It is easy to see that

µε(δ) = sup
|h|=δ

‖fε(· + h) − fε(·) −∇fε(·) · h‖p/δ → 0 as δ → 0.

Thus, there exists δε > 0 such that µε(δ) < ε for all 0 < δ < δε. Further, by
(12) and (13),

ωp(fε, δ) ≤ ωp(f, δ) + εδ.

Therefore, for all 0 < δ < δε we get

‖∇f‖p ≤ ‖∇fε‖p + ε ≤ µε(δ) + ωp(fε, δ)/δ + ε ≤ ωp(f, δ)/δ + 3ε.

Together with (12), this yields (11).

The last proposition easily implies that the limiting relation (3) still
holds for our choice of the definition of the Besov space. Moreover, we get a
more general result.

Proposition 2.5. For any f ∈ W 1
p (Rn),

(14) lim
s→1−0

(1 − s)1/θ‖f‖bs
p,θ

=

(

1

θ

)1/θ

‖∇f‖Lp (1 ≤ p, θ < ∞).
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Proof. Set A = ‖∇f‖Lp. Fix ε > 0. By (11), there exists δ > 0 such that
|(ωp(f, t)/t)θ − Aθ| < ε for any t ∈ (0, δ). Hence,

|(1 − s)‖f‖θ
bs
p,θ

− Aθ/θ| ≤ (1 − s)

δ\
0

t(1−s)θ−1|(ωp(f, t)/t)θ − Aθ| dt

+
Aθ

θ
|δ(1−s)θ − 1| + (1 − s)

∞\
δ

(t−sωp(f, t))θ dt

t

≤
ε

θ
δ(1−s)θ +

Aθ

θ
|δ(1−s)θ − 1| +

2‖f‖θ
p

sθδsθ
(1 − s).

Now we can choose σ > 0 such that

ε

θ
δ(1−s)θ +

Aθ

θ
|δ(1−s)θ − 1| +

2‖f‖θ
p

sθδsθ
(1 − s) < 3ε

for any s ∈ (1 − σ, 1), which proves (14).

Finally, the proof of our main result is based on the following theorem [6].

Theorem 2.6. Let 1 ≤ p < q < ∞ and γ ≡ n(1/p − 1/q) < 1. If either

p > 1, n ≥ 1 or p ≥ 1, n ≥ 2, then for any δ > 0,

(15)

(∞\
δ

(tγ−1ωq(f, t))p dt

t

)1/p

≤ cq,p,nδγ−1

( δ\
0

(t−γωp(f, t))q dt

t

)1/q

.

2.3. Rearrangements. The non-increasing rearrangement of a measur-
able function f on R

n is defined by

f∗(t) = sup
|E|=t

inf
x∈E

|f(x)| (0 < t < ∞).

Define also

f∗∗(t) =
1

t

t\
0

f∗(u) du (t > 0).

Let 0 < p, r < ∞. A measurable function f belongs to the Lorentz space

Lp,r(Rn) if

‖f‖p,r ≡

(∞\
0

(t1/pf∗(t))r dt

t

)1/r

< ∞.

It is well known (see, e.g., [13, p. 192]) that

(16) ‖f‖p,ν ≤

(

p

ν

)1/ν(r

p

)1/r

‖f‖p,r (0 < p < ∞, r < ν).

The following theorem was proved in [5]. It plays a key role in our proof
of (6).
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Theorem 2.7. Suppose that f ∈ Lp(Rn), 1 ≤ p < ∞. Then for any

τ, δ > 0,

(17)

τ\
0

(f∗(u) − f∗(τ))p du ≤ 2ωp
p(f, τ1/n)

and

(18)

∞\
δn

t−p/n
t\
0

(f∗(u) − f∗(t))p du
dt

t
≤ cp,nωp

p(f, δ)δ−p.

Using (17) and Hölder’s inequality, we immediately get the estimate

(19) f∗∗(t) − f∗(t) ≤ 21/pt−1/pωp(f, t1/n).

Note that in the one-dimensional case this was first proved by Ul’yanov [14].
We will also use the following result mentioned in the Introduction.

Theorem 2.8. Let 0 < s < 1 and 1 ≤ p < n/s. Suppose also that

1 ≤ θ < ∞. Then for any f ∈ Bs
p,θ(R

n) we have

(20) ‖f‖q∗,θ ≤ c‖f‖bs
p,θ

(

q∗ =
np

n − sp

)

,

where c = 21/pn1/θq∗.

This theorem was proved in [4, 12]. In order to get the explicit value of
the constant c we will give an independent proof. Namely, applying (19), we
obtain

f∗∗(t) =

∞\
t

[f∗∗(u) − f∗(u)]
du

u
≤ 21/p

∞\
t

u−1−1/pωp(f, u1/n) du.

From this and (8) we get

‖f‖θ
q∗,θ ≤ 2θ/p

∞\
0

tθ/q∗−1 (

∞\
t

u−1−1/pωp(f, u1/n) du)θdt

≤ (21/pq∗)θ
∞\
0

tθ(1/q∗−1/p)ωθ
p(f, t1/n)

dt

t

= (21/pq∗)θn

∞\
0

(

t−sωp(f, t)
)θ dt

t
,

which yields (20).

3. Main result

Proof of Theorem 1.1. Set ωp(f, t) = ω(t), ωq(f, t) = η(t), and

I ≡ ‖f‖θ
bs−γ
q,θ

=

∞\
0

(

t−(s−γ)ωq(f, t))θ dt

t
.
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First we suppose that θ ≤ p. Using Fubini’s theorem, we have

I = p(1 − s)

∞\
0

(

∞\
u

(tγ−1−1/pη(t))θt−α dt
)

up(1−s) du

u
,

where α = (1−θ/p)(1+p(1−s)). Next, applying (in the case θ < p) Hölder’s
inequality, we get
∞\
u

(tγ−1−1/pη(t))θt−α dt ≤

(∞\
u

(tγ−1η(t))p dt

t

)θ/p(∞\
u

dt

t1+p(1−s)

)1−θ/p

= [p(1 − s)]θ/p−1u(θ−p)(1−s)

(∞\
u

(tγ−1η(t))p dt

t

)θ/p

.

It follows that

I ≤ pθ/p(1 − s)θ/p
∞\
0

uθ(1−s)

(∞\
u

(tγ−1η(t))p dt

t

)θ/p du

u
.(21)

Applying (15), we obtain

∞\
0

uθ(1−s)

(∞\
u

(tγ−1η(t))p dt

t

)θ/p du

u
≤ cθ

∞\
0

u−θ(s−γ)

(u\
0

(t−γω(t))q dt

t

)θ/q du

u
,

where c is a constant depending only on p, q, and n. Now we use the fact that
the function ω(t)/t is quasi-decreasing with constant 2. Therefore, using (9)
with β = q(1 − γ) − 1, we get

∞\
0

u−θ(s−γ)

(u\
0

(t−γω(t))q dt

t

)θ/q du

u

≤
(2qq(1 − γ))1−θ/q

(s − γ)q

∞\
0

(u−sω(u))θ du

u
=

(2qq(1 − γ))1−θ/q

(s − γ)q
‖f‖θ

bs
p,θ

.

From this and from (21) we have

I ≤ A
(1 − s)θ/p

s − γ
‖f‖θ

bs
p,θ

(A depends only on p, q, θ and n).
Assume now that θ > p. First, by Fubini’s theorem,

I = θ(1 − s)

∞\
0

(∞\
u

(tγ−1η(t))θ dt

t

)

uθ(1−s) du

u
.

Further, since η is non-decreasing,

tγ−1η(t) ≤

(

(1 − γ)p

∞\
t

(uγ−1η(u))p du

u

)1/p

(t > 0).
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Applying this inequality, we get
∞\
u

(tγ−1η(t))θ dt

t
=

∞\
u

(tγ−1η(t))θ−p(tγ−1η(t))p dt

t

≤ 2θ−p

(∞\
u

(tγ−1η(t))p dt

t

)θ/p

.

Therefore, from this and (15),

I ≤ c(1 − s)

∞\
0

uθ(1−s)

(∞\
u

(tγ−1η(t))p dt

t

)θ/p du

u

≤ c(1 − s)

∞\
0

uθ(γ−s)

(u\
0

(t−γω(t))q dt

t

)θ/q du

u
.

It remains to use (9) in the case θ < q or (7) if θ ≥ q, to obtain

I ≤ c
1 − s

s − γ
‖f‖θ

bs
p,θ

,

where c depends only on q, p, θ, and n.

Remark 3.1. It is easy to show that the assertion of Theorem 1.1 fails
in the case p = n = 1. Indeed, assume that (2) holds for p = n = 1. Let
f = χ(0,1). A simple computation shows that

ωp(χ(0,1), t) = 21/p min(t1/p, 1).

Hence, ‖χ(0,1)‖bs
1,θ

= 2
(

1
θs(1−s)

)1/θ
and

‖χ(0,1)‖bs−γ
q,θ

= 21/q

(

1 − γ

θ(1 − s)(s − γ)

)1/θ

.

Let, for example, q = 2 and 1/2 < s < 1. Then we get c ≤ 1 − s for some
fixed c > 0, which contradicts (2) as s → 1.

Remark 3.2. The exponent 1/θ∗ in (2) is sharp in a sense. First assume
that θ < p. Let α = 2 − s − n/p. We may suppose that α 6= 0. Set

f(x) =
1

α
(1 − |x|α)χB0(x),

where B0 is the unit ball in R
n. Then a calculation shows that ‖f‖p

p ≤
cp,n, where the constant cp,n does not depend on α. Further, |∇f(x)| =

|x|α−1χB0(x) and ‖∇f‖p = cp,n(1− s)−1/p. Thus, ωp(f, t) ≤ cp,n(1− s)−1/pt
for 0 < t ≤ 1 and ωp(f, t) ≤ 2‖f‖p ≤ cp,n for t ≥ 1. Hence,

(22) ‖f‖bs
p,θ

≤ cp,n(1 − s)−1/p−1/θ.
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On the other hand, if 0 < t < 1, t/8 ≤ |x| ≤ t/4, and |h| = t, then

|f(x)− f(x + h)| ≥ 2−5tα, and thus, ωq(f, t) ≥ ctα+n/q (0 < t < 1), where
c is a positive constant that does not depend on s. From this and (22),

‖f‖bs−γ
q,θ

≥ c(1 − s)−1/θ ≥ c′(1 − s)−1/p‖f‖bs
p,θ

(c′ is positive and does not depend on s). This shows that the exponent 1/p
of 1 − s in (2) is sharp (θ < p).

If θ > p, it suffices to consider the function f(x) = max(1 − |x|, 0).

Remark 3.3. If either p 6= 1 or n 6= 1, 1/2 < s < 1, and 1 ≤ p < n/s,
then Theorem 1.1 easily implies (6):

‖f‖p
q∗,p ≤ cp,n

1 − s

(n − sp)p
‖f‖p

bs
p

(

q∗ =
np

n − sp

)

,

which is a more precise result than (4). Indeed, set θ = p, γ = s − 1/2, and
q = np/(n − γp). Then q∗ = nq/(n − q/2). Applying Theorems 2.8 and 1.1,
we have

‖f‖p
q∗,p = ‖f‖p

nq/(n−q/2),p
≤

cn,p

(n − sp)p
‖f‖

b
1/2
q,p

≤ cp,n
1 − s

(n − sp)p
‖f‖p

bs
p
,

as required.
In the next section we will show a different way of proving (6) for any p

and n.

4. On the Bourgain–Brezis–Mironescu inequality. In Section 2
we applied inequality (19) to prove Theorem 2.8. We now use sharper re-
arrangement estimates (Theorem 2.7) to prove the following.

Theorem 4.1. Let 0 < s < 1 and 1 ≤ p < n/s. Then for any f ∈
Bs

p(R
n),

(23) ‖f‖p

Lq∗,p(Rn)
≤ cp,n

s(1 − s)

(n − sp)p
‖f‖p

bs
p(Rn)

(

q∗ =
np

n − sp

)

.

Observe that, by (16),

‖f‖p

Lq∗ ≤
n − sp

n
‖f‖p

Lq∗,p ,

and hence (23) immediately implies (4) with the constant

cp,ns(1 − s)(n − sp)1−p.

Proof of Theorem 4.1. Suppose first that 1/2 ≤ s < 1. Using the identity

f∗∗(t) =

∞\
t

(f∗∗(τ) − f∗(τ))
dτ

τ
,
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we obtain

‖f‖p
q∗,p =

∞\
0

(f∗(t))p dt

tsp/n
≤

∞\
0

(f∗∗(t))p dt

tsp/n

≤

(

np

n − sp

)p ∞\
0

(f∗∗(t) − f∗(t))p dt

tsp/n

=

(

np

n − sp

)p

(1 − s)p

∞\
0

u(1−s)p
∞\
un

t−p/n(f∗∗(t) − f∗(t))p dt
du

u

≤

(

np

n − sp

)p

(1 − s)p

∞\
0

u(1−s)p
∞\
un

t−p/n
t\
0

(f∗(ξ) − f∗(t))p dξ
dt

t

du

u

≤ cp,n
1 − s

(n − sp)p

∞\
0

(u−sωp(f, u))p du

u
= cp,n

1 − s

(n − sp)p
‖f‖p

bs
p

(we applied Hardy inequality (8), Fubini’s theorem, Hölder’s inequality and
(18), respectively).

Consider now the case 0 < s < 1/2. Using the elementary estimate

f∗(t) ≤

∞\
t

(f∗(τ/e) − f∗(τ))
dτ

τ
,

we have

‖f‖p
q∗,p ≤

(

np

n − sp

)p ∞\
0

(f∗(t/e) − f∗(t))p dt

tsp/n

=

(

np

n − sp

)p sp

n

∞\
0

u−sp/n
u\
0

(f∗(t/e) − f∗(t))p dt
du

u

≤

(

np

n − sp

)p sp

n

∞\
0

u−sp/n
u\
0

(f∗(t/e) − f∗(u))p dt
du

u

≤ e

(

np

n − sp

)p sp

n

∞\
0

u−sp/n
u\
0

(f∗(t) − f∗(u))p dt
du

u

≤ 2e

(

np

n − sp

)p sp

n

∞\
0

u−sp/nωp
p(f, u1/n)

du

u

= 2enppp+1 s

(n − sp)p
‖f‖p

bs
p

(here we used Hardy inequality (8), Fubini’s theorem and (17)). Combining
both cases, we get (23).
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Remark 4.2. The cases 0 < s < 1/2 and 1/2 ≤ s < 1 correspond to
“small” and “big” smoothness, respectively. Inequality (17) is sharp only in
the case of “small” smoothness, while (18) is sharp in both cases (see [5]
for details). Therefore, to prove Theorem 4.1 for small s, it suffices to apply
(17), while the case of big s requires a stronger inequality (18).

Remark 4.3. Observe that in the case p = n = 1 the proof of (23) is
extremely simple. Indeed, exactly as in [5, Theorem 1], one can prove that

(24) f∗∗(t) ≤ 2ω1(f, t)/t.

Therefore,

‖f‖1/(1−s),1 = s

∞\
0

f∗∗(t)
dt

t1/s
≤ 2s

∞\
0

ω1(f, t)
dt

t1+1/s
= 2s‖f‖bs

1
,

and (23) is proved. We also outline, for the sake of completeness, the proof
of (24). It suffices to assume that f has a compact support. Then for any
x ∈ R and all t > 0,

|f(x)| ≤

∣

∣

∣

∣

f(x) −
1

t

t\
0

f(x + y) dy

∣

∣

∣

∣

+
1

t

∞
∑

j=0

∣

∣

∣

∣

(j+1)t\
jt

f(x + y) dy −

(j+2)t\
(j+1)t

f(x + y) dy

∣

∣

∣

∣

≤
1

t

t\
0

|f(x + y) − f(x)| dy +
1

t

\
R

|f(y + t) − f(y)| dy.

Hence,

f∗∗(t) ≤
1

t2

t\
0

‖f(y + ·) − f(·)‖1 dy +
1

t

\
R

|f(y + t) − f(y)| dy ≤ 2ω1(f, t)/t,

and (24) is proved.
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