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ε-Kronecker and I0 sets in abelian groups, III:

interpolation by measures on small sets

by

Colin C. Graham (Bowen Island, BC)
and Kathryn E. Hare (Waterloo)

Abstract. Let U be an open subset of a locally compact abelian group G and let E

be a subset of its dual group Γ . We say E is I0(U) if every bounded sequence indexed
by E can be interpolated by the Fourier transform of a discrete measure supported on U .
We show that if E · ∆ is I0 for all finite subsets ∆ of a torsion-free Γ , then for each open
U ⊂ G there exists a finite set F ⊂ E such that E \ F is I0(U). When G is connected, F

can be taken to be empty. We obtain a much stronger form of that for Hadamard sets and
ε-Kronecker sets, and a slightly weaker general form when Γ has torsion. This extends
previously known results for Sidon, ε-Kronecker, and Hadamard sets.

1. Introduction. This paper is a continuation of [4]. We refer the reader
to that paper for further background and motivation. We give here only the
absolute essentials from [4].

G denotes a locally compact abelian group and Γ its dual group. Group
operations will be written multiplicatively, except for explicit elements of
N (non-negative integers), R (real line), T (circle group), and Z (integers).
The duality will be denoted 〈x, γ〉, x ∈ G, γ ∈ Γ or by eixy in the case of
the three classical groups.

Recall that an increasing sequence of real numbers 1 ≤ n1 < n2 < · · · is
an Hadamard set if there is a real number q > 1 such that q ≤ nj+1/nj for
all j ≥ 1. We will call any such number q a “ratio” of the set.

We now define ε-Kronecker sets, I0 sets, and the other classes of sets
needed here. These are elaborations of the definitions given in [4].

Definition. (1) Let U ⊆ G and E ⊆ Γ . We say E is I0(U) if there is a
constant K such that for every bounded, continuous function φ on E there
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is a discrete measure µ supported on U such that φ is the restriction of the
Fourier–Stieltjes transform of µ to E and ‖µ‖ ≤ K‖φ‖ℓ∞(E). The infimum
of all such K is called the interpolation constant and is denoted K(E,U).
The set is called I0 if it is I0(G).

(2) If E is I0(U), we say E has bounded I0(U) constants if the infimum
of the interpolation constants K(E \F,U) as F varies over the finite subsets
of E is bounded over all open subsets U of G (1).

(3) Let ε > 0 be given. A set E is ε-Kronecker(U) if for every continuous
φ : E → T there exists x ∈ U such that

(1.0.1) |〈x, γ〉 − φ(γ)| < ε for all γ ∈ E.

We say that a set E is ε-Kronecker if it is ε-Kronecker(G).

Summary of results. This paper addresses the question: if G is con-
nected, is every I0 set I0(U) for all open U ⊂ G? We show that some classes
of I0 sets are I0(U) for all open U ⊂ G. That is, these I0 sets have the re-
quired interpolation using only discrete measures concentrated in arbitrarily
small open sets U .

These classes include ε-Kronecker sets in the duals of compact connected
groups (with bounded constants—Corollary 3.3), Hadamard sets (bounded
constants—Theorem 3.10), and I0 sets in the duals of compact connected
groups having the property that E ·∆ is I0 for all finite sets∆ (Theorem 4.4).

Our conclusion about the I0(U) property for general I0 sets is rather un-
satisfactory since Example 5.1 and Proposition 5.2 show that the assumption
that E · ∆ is I0 for all finite sets ∆ is not necessary. At the present time
we are unable to decide if I0 ⇒ I0(U) for all open U ⊂ G, even in the case
of Γ = Z.

Background. The results here are motivated by work of Déchamps-
Gondim [1] and Méla [15]. Déchamps-Gondim showed that every Sidon set E
in a discrete torsion-free group is a Sidon(U) set (“U associated with E” in
[1]): every bounded function on E is the restriction of the Fourier–Stieltjes
transform of a (not necessarily discrete) measure supported on U . Obvi-
ously, I0(U) sets in discrete groups are Sidon(U). Much earlier, Weiss [20,
Theorem 2] had proved that Hadamard sets are Sidon(U) (in a quantitative
way) for all open intervals U .

Méla [15, Théorème 5] showed that Hadamard sets in R are Sidon(U)
for all open U with bounded constants and that each I0 set in R is a finite
union of Sidon(U) sets each with bounded constants [15, Théorème 6] (Méla
used the terminology “Sidon set of the first type”).

(1) In the definition of bounded constants, we delete finite sets F because otherwise we
would never have “bounded constants”: for fixed 0 6= m ∈ Z, the interpolation constants
from Md((−δ, δ)) to ℓ∞({0,m}) increase as δ → 0+ (see [15, p. 31]).
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See [1, 4, 5, 12, 14, 15, 17] and their references for further background.
At several points we have the hypotheses that G is connected and locally

connected. For a characterization of the connected, compact abelian groups
that are locally connected, see [8, Theorem 8.36].

2. Notation and preliminary results

2.1. Notation for this paper. Let U ⊂ G, E ⊂ Γ , N ≥ 1 and ε > 0. We
write

(2.1.1) D(N,U) =
{ N∑

j=1

ajδxj
: |aj| ≤ 1, xj ∈ U, 1 ≤ j ≤ N

}

and

(2.1.2) AP(E,N,U, ε)

= {φ ∈ TE : ∃µ ∈ D(N,U) with ‖φ− µ̂|E‖ℓ∞(E) ≤ ε}.
Then AP(E,N,U, ε) ⊂ AP(E,N + 1, U, ε) for all N .

Given E ⊂ Γ , we write ℓ∞(E) for the set of bounded functions on a
set E and B(ℓ∞(E)) for the unit ball of ℓ∞(E). If the mapping µ 7→ µ̂|E
sends Md(U) onto ℓ∞(E), then there is an interpolation constant C, the
infimum of the numbers K such that for each φ ∈ B(ℓ∞(E)) there exists
µ ∈Md(U) with ‖µ‖ ≤ K and µ̂|E = φ.

The Bohr compactification of Γ will be denoted by Γ . The Bohr topology

on E ⊂ Γ is the restriction to E of the topology of Γ . That is the topology
of pointwise convergence on G.

If f ∈ L1(Γ ), its Fourier transform is denoted by f̂ and ‖f̂‖A = ‖f‖1, as
usual. Similarly, µ̂ denotes the Fourier–Stieltjes transform of a measure.

2.2. General preliminary results. An easy observation is this:

Lemma 2.1. Let G be a locally compact abelian group, U ⊂ G be open,
and E ⊂ Γ . If E is I0(U), then

(1) E · γ is I0(U) for every γ ∈ Γ , and

(2) E is I0(U · x) for every x ∈ G.

If E ⊂ Γ is ε-Kronecker(U) then

(3) E is ε-Kronecker(U · x) for every x ∈ G.

With the notation of the preceding subsection, we give the following
useful result, adapted from [6, Prop. 2.1].

Proposition 2.2. Let G be a locally compact group, U a σ-compact

subset of G and E ⊂ Γ . Consider the following properties:
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(1) E is I0(U).
(2) For every φ ∈ B(ℓ∞(E)) there exists µ ∈ Md(U) such that µ̂(γ) =

φ(γ) for all γ ∈ E.

(3) There exists some 0 < ε < 1 (equivalently , for every 0 < ε < 1) and

integer N such that for every φ ∈ B(ℓ∞(E)) there exists µ ∈Md(U)
with ‖µ‖ ≤ N and |µ̂(γ) − φ(γ)| < ε for all γ ∈ E.

(4) There exists some 0 < ε < 1 (equivalently , for every 0 < ε < 1)
such that for every φ ∈ B(ℓ∞(E)) there exists µ ∈ Md(U) with

|µ̂(γ) − φ(γ)| < ε for all γ ∈ E.

(5) There exists some 0 < ε < 1 (equivalently , for every 0 < ε < 1)
and integer N such that for every φ ∈ B(ℓ∞(E)) there exists µ ∈
D(N,U2) with |µ̂(γ) − φ(γ)| < ε for all γ ∈ E.

Then properties (1)–(3) are equivalent. Property (1) implies (4) implies (5)
implies E is I0(U

2).
Finally ,

(6) Under the conditions of property (3) one can show K(E,U) ≤
N/(1 − ε).

We will need the following results.

Lemma 2.3 ([10]). Let A,B be subsets of the connected , locally com-

pact group G. Then the lower Haar measure m∗ on G satisfies m∗(A ·B) ≥
m∗(A) +m∗(B), unless m(G) ≤ m∗(A ·B) in which case A ·B = G.

Lemma 2.4. Let G be a compact connected group and U a Borel subset

of G of non-zero Haar measure. Then there exists N > 0 such that G = UN .

Proof. Because m(U) > 0, U2 has non-empty interior V (see [7, 20.17]).

By Lemma 2.3, there exists an integer M such that m(VM ) > 1/2. Then

m(V 2M ) = 1. That means V 2M is dense in G. Of course, V 2M+1 contains
the closure of V 2M , so V 2M+1 = G. Hence, N = 4M + 1 will do.

Lemma 2.5. Let G be a locally compact abelian group. Let E ⊂ Γ ,
U ⊂ G, N ≥ 1 and ε > 0. Then AP(E,N,U, ε) is closed in TE if U is

compact and is an Fσ in TE if U is σ-compact.

Proof. The first assertion is [16, Appendix, Lemma 6]. The second follows
from the first by writing

AP(E,N,U, ε) =
⋃

n

AP(E,N,Un, ε),

where the Un are compact subsets of U with Un ⊂ Un+1 for all n and
U =

⋃
Un.

Proof of Proposition 2.2. The equivalence of (1)–(2) is the closed graph
theorem.
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Clearly (1) implies (3) and (4).
The implication (3)⇒(1) is an iteration argument as follows: let φ ∈

B(ℓ∞(E)). Choose µ1 ∈ Md(U) such that ‖φ(γ) − µ̂1(γ)‖∞ < ε for all
γ ∈ E and ‖µ1‖ ≤ N . Now choose µ2 ∈Md(U) such that

|φ(γ) − µ̂1(γ) − µ̂2(γ)| < ε2 for all γ ∈ E

and ‖µ2‖ ≤ εN . Continuing in this way, we find µ =
∑
µj ∈ Md(U) such

that ‖µ‖ ≤ N/(1 − ε) and φ(γ) = µ̂(γ), γ ∈ E.
The claim (6) about the interpolation constant follows from the proof.
This iteration argument, applied finitely many times, also shows the

equivalence of the statements “there exists some 0 < ε < 1” and “for every
0 < ε < 1”, at the cost of a larger constant N .

In (5) the condition µ ∈ D(N,U2) ensures ‖µ‖ ≤ N ; thus (5) implies
that E is I0(U

2) (via (3)).
To prove (4) implies (5), we appeal to an argument similar to that given

in [16, pp. 127 ff.]: Suppose that (4) holds for ε. Fix ε1 > 0. We claim that
we may assume that ε < ε1/4. Choose any φ ∈ TE . Then the hypothesis
of (4) says that we can find µ1 ∈ Md(U) such that ‖φ − µ̂1|E‖∞ < ε. Let

φ2 = φ− µ̂1|E. Then there exists µ2 ∈Md(U) such that |φ2(γ)− µ̂2(γ)| < ε2

for all γ ∈ E, so

|φ(γ) − (µ̂1 + µ̂2)(γ)| < ε2

for all γ ∈ E. Iterating in this way, we eventually find a ν ∈ Md(U) such
that

(2.2.1) |φ(γ) − ν̂(γ)| < εk < ε1/4

for all γ ∈ E. This can be done for all φ ∈ TE . Hence, we may assume that
ε < ε1/4.

By our hypothesis,
⋃

N AP(E,N,U, ε) = TE . By Lemma 2.5, the sets
AP(E,N,U, ε) are Borel sets, so there exists an integer M such that
AP(E,M,U, ε) has TE-Haar measure greater than 1/2. Therefore

AP(E,M,U, ε) · AP(E,M,U, ε) = TE

by Lemma 2.3, that is, for each φ ∈ TE there exists φ1, φ2 ∈ AP(E,M,U, ε)
such that φ = φ1φ2. Let µj ∈ D(M,U) be such that

|φj(γ) − µ̂j(γ)| ≤ ε for j = 1, 2 and all γ ∈ E.

Then

(2.2.2) |φ− (µ̂1µ̂2)| ≤ ε+ ε(1 + ε) < 3ε < ε1 for all γ ∈ E.

Hence, AP(E,M2, U2, 3ε) = TE . Since every element of B(ℓ∞(E)) is the
average of two elements of TE , (5) holds with N = 2M2, and ε1.
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Remark 2.6. Item (3) implies that ε-Kronecker sets with 0 < ε < 1
are I0 (see [19]), but [4, Prop. 2·8] shows that the inequality can be weakened

to ε <
√

2.

2.3. Preliminaries on I0(U) sets. The following was proved for Sidon
sets in discrete groups Γ in [1, Lemme 6.5].

Lemma 2.7. Let G be a connected locally compact abelian group with

dual group Γ . Let U ⊂ G be open. If E ⊂ Γ is I0(U), λ ∈ Γ and W ⊂ G
any neighbourhood of the identity , then E ∪ {λ} is I0(U ·W ).

Proof. By Lemma 2.1(1) we may assume that λ is the identity 1 of Γ
and U is a neighbourhood of 1.

Let V be a neighbourhood of the identity of G such that V · V −1 ⊂W .
Since E is an I0 set, [5, Cor. 4·2] tells us that E does not cluster in

the Bohr topology at any element of Γ and that E ∪ {1} is also an I0
set. Therefore, there exists a finitely supported measure µ ∈ Md(G) such

that |µ̂| < 1/100 on E and µ̂(1) = 1. Suppose µ =
∑J

j=1 ajδxj
. Then

µ̂(1) =
∑

j aj = 1.

Since G is connected and V is an open neighbourhood of the identity,⋃∞
N=1 V

N = G. Therefore there exists an integer N such that xj ∈ V N for

all 1 ≤ j ≤ J . That is, there exist wj,k ∈ V such that xj =
∏N

k=1wj,k for
all j. Now, a continuity argument shows that for some ε > 0,

(2.3.1)
J∑

j=1

N∑

k=1

|〈wj,k, γ〉 − 〈wj,k,1〉| ≥ ε for γ ∈ E.

Indeed, if (2.3.1) failed for all ε > 0, then µ could not be uniformly away
from 1 on E. Thus, for γ ∈ E, (2.3.1) and the Cauchy–Schwarz inequality
imply that

(2.3.2)
[ J∑

j=1

N∑

k=1

(δwj,k
− δ1) ∗ (δw−1

j,k
− δ1)

]̂
(γ) ≥ ε2

JN
.

Let ω =
∑J

j=1

∑N
k=1(δwj,k

− δ1) ∗ (δw−1

j,k
− δ1). Then ω has Fourier–Stieltjes

transform 0 at the identity of Γ , and transform at least ε2/JN on E. Of
course, ω is supported on V · V −1 ⊂W .

Since E is I0(U), there exists ν ∈ Md(U) such that ν̂ = 1/ω̂ on E.
Therefore, τ = ω ∗ ν ∈Md(U ·W ), and

(2.3.3) τ̂ =

{
1 on E,

0 at 1.

Hence, we can interpolate on E ∪ {1} with discrete measures from U ·W .
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Corollary 2.8. Let G be a connected , locally compact abelian group

with dual group Γ̂ . Let U ⊂ G. If E ⊂ Γ is I0(U), F is a finite subset of

Γ and W ⊂ G any neighbourhood of the identity , then E ∪ F is I0(U ·W ).

Proof. This is a straightforward induction on the number of elements
of F , using Lemma 2.7, where the V in the proof of Lemma 2.7 is replaced
with a neighbourhood V1 such that (V1 · V −1

1 )#F ⊂W .

Lemma 2.9. Let G be a connected locally compact abelian group. Suppose

that E ⊂ Γ is such that for every open subset U ⊂ G, there exists a finite

subset FU ⊂ E with E \ FU ∈ I0(U). Then E ∈ I0(U) for all open U ⊂ G.

Proof. Fix the set U . We may assume that U is a neighbourhood of the
identity. Choose U1 ⊂ U and a neighbourhood W of the identity 1G such
that U1 ·W ⊂ U . The assumptions tell us that there is a finite set F ⊂ E
such that E \ F ∈ I0(U1). By Corollary 2.8, E = (E \ F ) ∪ F ∈ I0(U1 ·W ).
Hence, E ∈ I0(U).

Corollary 2.10. Let G be a connected locally compact abelian group.

Let E be a finite subset of its dual Γ . Then E is I0(U) for all open sets

U ⊂ G.

In §3 we will need a strengthening of [4, proof of Prop. 2·8]. The proof of
the version here follows that of [4], with some changes necessitated by the
substitution of the set U for the group G.

Proposition 2.11. Let Γ be a locally compact abelian group. Let 0 <
ε<

√
2. Let E ⊂ Γ be an ε-Kronecker(U) set. Then E∪E−1 is I0(U ∪U−1).

The I0(U ∪U−1) constant K(E,U ∪U−1) depends only on ε and not on U .

Proof. Let φ1 : E → [−1, 1] be given. Let

ψ(γ) =

{
1 if φ1(γ) ≥ 0,

−1 if φ1(γ) < 0.

Let x ∈ U be such that |δ̂x(γ)−ψ(γ)| < ε on E. Let µ = 1
4(δx + δx−1). Then

µ̂(γ) ∈ R; in fact, there exists 0 < δ < 1/2 such that

µ̂(γ) ∈ [δ, 1/2] if ψ(γ) = 1 and µ̂(γ) ∈ [−1/2,−δ] if ψ(γ) = −1.

Hence,

(2.3.4) |µ̂− φ1| ≤ max(1 − δ, 1/2) = λ < 1 on E.

Iterating, we find a real ν1 ∈Md(U) with ν̂1 = φ1 on E. We note that

(2.3.5) ν̂1(γ) = ν̂1(γ
−1)

for all γ. Similarly, if φ2 : E → [−1, 1], by taking sums of measures of the
form (i/4)(δy − δy−1), we can find a purely imaginary ν2 ∈Md(U) such that
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ν̂2(γ) = φ2 on E and

(2.3.6) ν̂2(γ) = − ̂ν2(γ−1)

for all γ. Functions on E ∪ E−1 satisfying (2.3.5) are “Hermitian”, and
every function satisfying (2.3.6) is “anti-Hermitian”. Of course, every φ :
E ∪ −E → {z ∈ C : |z| ≤ 1} can be written φ = φ1 + φ2, where φ1

is Hermitian and φ2 is anti-Hermitian. Thus, every bounded real-valued φ
on E is the Fourier–Stieltjes transform of a discrete measure concentrated
on U ∪ U−1. Repeating this for bounded imaginary-valued φ, we see that
E ∪ −E is indeed I0(U ∪ U−1).

The statement about the interpolation constant K follows immediately
from the above: K(E ∪ E−1, (U ∪ U−1)) ≤ 8/(1 − λ), where λ is given
by (2.3.4).

3. Sets that are I0(U) with bounded constants

3.1. Bounded constants and unions of translates. There is a connection
between being I0(U) with bounded constants and having E · ∆ being I0.
Here is one direction. The other direction is in Theorem 4.4. Unfortunately,
there is not an equivalence; see Example 5.1 and Proposition 5.2.

Theorem 3.1. Let G be a connected compact abelian group and E ⊂ Γ .

Suppose that E is I0(U) for all open U with bounded constants. Then E ·∆
is I0 for all finite sets ∆.

Proof. Let K be a bound for the I0(U) constants for E. Fix γ 6= λ ∈ Γ .
It will suffice to show that E · γ and E · λ have disjoint closures for all
γ 6= λ ∈ Γ .

Let x ∈ G be such that z = 〈x, λγ−1〉 6= 1. Let U be a neighbourhood
of x such that

|〈u, λγ−1〉 − z| < |1 − z|
10K

, u ∈ U.

Let F be a finite subset of E such that for some ν ∈ Md(U) we have
‖ν‖ ≤ 2K and ν̂ = 1 on (E \ F ) · γ. Such a ν exists by our hypothesis and
both parts of Lemma 2.1 (we have to translate both U and E). Then

|ν̂(ωλ) − zν̂(ωγ)| < ‖ν‖ |1 − z|/(10K) <
|1 − z|

5
for all ω ∈ E \ F.

Hence, |ν̂ − z| < |1− z|/5 on (E \ F ) · λ, so (E \ F ) · λ and (E \ F ) · γ have
disjoint closures in Γ . Now apply [4, Lemma 2·1] and [5, Cor. 4·2].

3.2. ε-Kronecker sets are ε-Kronecker(U)

Theorem 3.2. Let 0 < ε′ < ε < 2 and let E be a discrete ε′-Kronecker

subset of the locally compact abelian group Γ whose dual group is σ-compact.
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Then for each open U ⊂ G there exists a finite set F such that E \ F is

ε-Kronecker(U).

We state and prove some corollaries before proving Theorem 3.2.

Corollary 3.3. Let 0 < ε <
√

2. Suppose that G is connected. Let E
be an ε-Kronecker set. Then E ∪ E−1 is I0(U) for all open U ⊂ G with

bounded constants.

Proof. This is immediate from Lemma 2.9, Proposition 2.11, and Theo-
rem 3.2.

The next corollary follows from Theorems 3.2 and 3.1.

Corollary 3.4. Let 0 < ε <
√

2. Suppose that G is connected. Let E
be an ε-Kronecker set. Then (E ∪ E−1) ·∆ is I0 for all finite sets ∆ ⊂ Γ .

Proof of Theorem 3.2. Let U ⊂ G be open. For each precompact V ⊂ G,
let

Φ(V ) = {φ : E → T : ∃x ∈ V such that |φ(γ) − 〈γ, x〉| ≤ ε′ ∀γ ∈ E}.
We give TE the product topology. Then the closure of Φ(V ) in TE

is Φ(V ). Indeed, suppose that φα ∈ Φ(V ) and that xα ∈ V satisfy
|φα(γ) − 〈γ, xα〉| ≤ ε′ for all γ ∈ E. Suppose also that φα → φ pointwise
on E (this being the topology on TE). Let x ∈ G be an accumulation point
of the xα. Then clearly φ is in Φ(V ).

We now assume that V is compact, has non-empty interior, and V ⊂ U .
Then the σ-compactness of G implies there exist a countable number of
translates V · xj such that

⋃
j V · xj = G. As E is ε′-Kronecker,

⋃
Φ(V · xj)

= TE . Because TE is a compact Hausdorff space, the Baire category theorem
applies: there exists j such that Φ(V · xj) has interior in TE .

That means Φ(V · xj) contains a set of the form (z1, . . . , zn) × TE\F for
some finite set F . In particular, for every φ : (E \ F ) → T there exists
x ∈ V · xj ⊂ U · xj such that |φ(γ) − 〈γ, x〉| ≤ ε′ for all γ ∈ E \ F .
Because ε′ < ε, E \ F is ε-Kronecker(V · xj). By Lemma 2.1(3), E \ F is
ε-Kronecker(V ), and therefore ε-Kronecker(U).

Remark 3.5. A slightly sharper version of Corollary 3.4 appears in
[4, Theorem 3·1(2)]: suppose that 0 < ε <

√
2, that E is an ε-Kroneck-

er subset of the discrete abelian group Γ , and γ, λ ∈ Γ , γ 6= λ. Then
E · γ ∩E · λ = E · γ ∩ E · λ, and this set is finite.

Corollary 3.6. Let G be compact , locally connected , and connected.

Then Γ contains an infinite set that is I0(U) for all open U with bounded

constants.



24 C. C. Graham and K. E. Hare

Proof. Every such group contains an infinite 1
2 -Kronecker set [2, Lem-

ma 3.2].

We say that a subset X of a Banach space Y is w-ε-dense in Y if for
every y ∈ Y there exists x ∈ X such that

(3.2.1) ‖x− y‖ ≤ ε.

It is obvious that if E is Hadamard and m ∈ N, m 6= 0, then there
exists a finite set ∆ (of cardinality at most two) such that (E \∆)∪ {m} is
Hadamard with the same ratio as E.

We have the following analogue for ε-Kronecker sets.

Corollary 3.7. Let ε, δ > 0. Let E ⊂ Γ be an ε-Kronecker set , where

G is σ-compact. Suppose that γ ∈ Γ is such that 〈G, γ〉 is w-δ-dense in T.

Then there exists a finite set ∆ ⊂ Γ such that (E \∆)∪{γ} is ε′-Kronecker

for all ε′ > ε+ δ.

Proof. Let τ = 1
4(ε′ − ε − δ). Choose a finite subset X ⊂ G such that

〈X, γ〉 is τ + δ-dense in T . For each x ∈ X, choose a neighbourhood Ux of x
such that |〈xu−1, γ〉 − 1| < τ for all u ∈ Ux. For each x ∈ X, there exists a
finite subset ∆x such that E \∆x is ε′-Kronecker(Ux), by Theorem 3.2.

Let ∆ =
⋃

x∈X ∆x. Then (E \∆) ∪ {γ} has the required properties.

Corollary 3.8. Let 0 < ε < ε′. Let E ⊂ Γ be an ε-Kronecker set ,
G be σ-compact , and suppose that F is a finite ε-Kronecker set. Then there

exists a finite set ∆ such that (E \∆) ∪ F is ε′-Kronecker.

We remark that we may perturb an ε-Kronecker set and still have such a
set (less an initial segment and with slightly larger ε), rather like topological
Sidon sets [1].

Corollary 3.9. Let G be a σ-compact abelian group. Suppose 0 ≤ ε <
ε1 < 2, that E ⊂ Γ is a discrete ε-Kronecker set , ∆ ⊂ Γ is finite, and

φ : E → ∆ is any function. Then there exists a finite set F ⊂ E such that

E′ = {γφ(γ) : γ ∈ E \ F} is ε1-Kronecker.

Proof. Let U ⊂ G be an open neighbourhood of the identity such that
|〈u, δ〉− 1| < ε1 − ε for all u ∈ U and δ ∈ ∆. Choose a finite F so that E \F
is ε-Kronecker(U). Then E′ is ε1-Kronecker.

3.3. Hadamard sets. It has been known for a long time that if E ⊂ R

is an Hadamard set, then E ∪ −E is I0. That was proved originally by
Strzelecki [18]; other proofs can be found in [9, 11] and [15]. We note that
some authors (e.g., [9, 21]) use “Hadamard” for symmetric subsets E such
that E ∩ [0,∞) is Hadamard in our sense.

Theorem 3.10. Let E ⊂ R be Hadamard with ratio q. Then E ∪−E is

I0(U) for every open U ⊂ R with bounded constants.
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Corollary 3.11. Let E ⊂ N be an Hadamard set. Then (E ∪−E) +∆
is I0 for all finite sets ∆ ⊂ Z.

In the proof of Theorem 3.10, we will use the sets D(N,U) as defined
in (2.1.1).

Lemma 3.12. Let G be a σ-compact locally compact abelian group. Let

E ⊂ Γ be I0 and 0 < ε < 1. Then there exists N ≥ 1 and a compact set

U ⊂ G such that D(N,U )̂ is w-ε-dense in B(ℓ∞(E)).

For the term w-ε-dense see formula (3.2.1).

Proof. Let Un be compact subsets of G such that Un ⊂ Un+1 for all
n ≥ 1 and G =

⋃
Un. Because Un is compact, An = AP(E, n, Un, ε/3)

is closed in TE . Because E is I0,
⋃
An = TE . Since TE is a compact

abelian group and the An are increasing, some An must have Haar mea-
sure greater than 1/2. Then An · An = TE by Lemma 2.3. A computation
shows that

(3.3.1) An ·An ⊂ AP(E, n2, Un ·Un, 2ε/3+ε2/9) ⊂ AP(E, n2, Un ·Un, ε),

since 0 < ε < 1. Since every element of B(ℓ∞(E)) is the average of two
elements of TE , N = 2n2 and U = U2

n will do.

Lemma 3.13. Let q > 1 and ε < 1. Then there exists an integer N ≥ 1
and a compact set U ⊂ R such that for every Hadamard set E of ratio q,
there exists a finite set ∆ ⊂ E such that D(N,U )̂ is w-ε-dense in B∆ =
B(ℓ∞[(E \∆) ∪ −(E \∆)]).

Proof. Suppose otherwise. Then for every n ≥ 1, there exists an
Hadamard set En of ratio q such that D(n, [−n, n])̂ is not w-ε-dense in
B∆ for all finite sets ∆.

Because [−n, n] is compact, for each finite set ∆, there exists a finite sub-
set Fn,∆ ⊂ En such that D(n, [−n, n])̂ is not w-ε-dense in B∆. [Otherwise,
a limit argument shows that D(n, [−n, n])̂ was w-ε-dense in B∆.]

Let F1 ⊂ (0,∞) be a finite Hadamard set of ratio q such that
D(1, [−1, 1])̂ is not w-ε-dense in B(ℓ∞(F1 ∪ −F1)). Assume that k ≥ 1
and that we have found finite, pairwise disjoint subsets F1, . . . , Fk of R such

that
⋃k

j=1 Fj is Hadamard with ratio q and D(k, [−k, k])̂ is not w-ε-dense

in B(ℓ∞(
⋃k

j=1 Fj ∪ −Fj)). Then we can find Ek+1 as above.

Choose a finite subset ∆ ⊂ Ek+1 such that (Ek+1 \ ∆) ∪ ⋃k
j=1 Fj is

also Hadamard of ratio q. Now choose a finite subset Fk+1 of Ek+1 such
that D(k + 1, [−k − 1, k + 1])̂ is not w-ε-dense in B(ℓ∞(Fk+1 ∪ −Fk+1)).
Then

⋃∞
j=1 Fj is such that for all 1 ≤ k, D(k, [−k, k])̂ is not w-ε-dense in
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B(ℓ∞(
⋃∞

j=1 Fj ∪−Fj))0. That contradicts Lemma 3.12 and the I0 property

of the Hadamard set
⋃∞

j=1 Fj ∪ −Fj .

Proof of Theorem 3.10. This is now easy. Let U and N be given by
Lemma 3.13 for q and let E ⊂ R be Hadamard with ratio q. Let V ⊂ R be
any neighbourhood of 0. Let t > 1 be such that tU ⊂ V . Let

F = {t−1γ : γ ∈ E ∪ −E}.
Then F is symmetric and F ∩ [0,∞) is Hadamard with ratio q so D(N,U )̂
is ε-dense in B(ℓ∞(F \∆)) for some finite set ∆. Let

∆′ = {tγ : γ ∈ ∆}.
Then D(N,V )̂ is ε-dense in B(ℓ∞((E ∪ −E) \ ∆′)). Thus, by Proposi-
tion 2.2(5) and Lemma 2.9, E ∪−E is I0(U) for all open U with a constant
that depends only on q.

4. More general I0(U) sets. We show that if an I0 set in a discrete
abelian group has all finite unions of its translates being I0 (and another
condition necessary when G is not connected), then it is I0(U) for all open U .

4.1. Preliminaries for general I0(U) sets. The following material is in-
cluded for completeness.

Definition ([12, 8.2]). Let X0 be a subgroup of Γ . Then E is X0-sub-

transversal if each coset of X0 intersects E in at most one point. The set E
is almost X0-subtransversal if there is a finite subset ∆ such that E \∆ is
X0-subtransversal.

Remark 4.1. If the steps of E tend to infinity, then E is almost X0-sub-
transversal for every finite subgroup X0 of Γ . Such is the case when E is
an ε-Kronecker subset of a metrizable group and 0 < ε <

√
2 (see [4, The-

orem 3·1]). If G is connected, then Γ is torsion-free (and conversely), and
therefore every subset of Γ is X0-subtransversal for the unique finite sub-
group of Γ .

Lemma 4.2 ([12, 8.9–8.10]). Let Γ be a discrete abelian group. If E ⊂ Γ
is a Sidon set , then there exists an integer m ≥ 1 such that for any finite

set ∆ ⊂ Γ , E = F ∪ ⋃
i Fi where

(1) F and the Fi are finite and pairwise disjoint ,
(2) #Fi ≤ m for all i, and

(3) Fi · F−1
j ∩∆ = ∅.

Lemma 4.3 ([12, 8.15]). Let Γ be a discrete abelian group. Let m be a

positive integer and g ∈ L1(G), g ≥ 0. Then there exists δ > 0 and a finite

subgroup X0 of Γ such that if χ1, . . . , χk is an X0-subtransversal subset of
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Γ with 2 ≤ k ≤ m, then the determinant

det[ĝ(χiχ
−1
j )]ki,j=1 ≥ δ.

4.2. Sets that are I0(U)

Theorem 4.4. Suppose that Γ is a discrete abelian group and E ⊂ Γ
is an I0 set such that

(1) E ·∆ is I0 for all finite sets ∆ ⊂ Γ , and

(2) E is almost X0-subtransversal for all finite subgroups X0 ⊂ Γ .

Then for each open set U ⊂ G there exists a finite set F such that E \ F
is I0(U).

Proof. By Lemma 2.1, we may assume that U is a neighbourhood of the
identity of G.

Let W be a neighbourhood of the identity of G such that W 2 ⊂ U . We
shall show that there is a finite set F such that for every φ ∈ B(ℓ∞(E \F ))
there exists µ ∈Md(W ) such that

(4.2.1) |µ̂(γ) − φ(γ)| < ε/6 for all γ ∈ E \ F .

Then Proposition 2.2(4) implies E \ F is I0(W
2).

Let C1 be the I0 constant of E. Let g ∈ A(G) ⊂ L1(G) be such that
g ≥ 0, Supp g ⊂W and ĝ(1) = 1.

Let m be given by Lemma 4.2 for E, which we may apply because I0 sets
are Sidon sets. Let X0 and δ be given by Lemma 4.3 for E, m and g. Let
C2 = max(1,m!/δ).

Let 0 < ε < 1/2 be such that C1C2ε‖g‖A < 1/24. Choose a finite
symmetric subset ∆ ⊂ Γ such that 1 ∈ ∆ and

48C1C2

∑

χ∈Γ\∆

|ĝ(χ)| < 1.

Let F0 be a finite set such that E\F0 isX0-subtransversal and (E\F0)∩∆
= ∅. By Lemma 4.2,

E \ F0 = F ∪
⋃
Fi,

where

F, Fi are finite with #Fi ≤ m for all i, and Fi · F−1
j ∩∆ = ∅, i 6= j.

Let E0 =F0 ∪F , so E \E0 =
⋃
Fi is X0-subtransversal and disjoint from ∆.

Let φ : E → {z : |z| ≤ 1}. It will suffice to find ω ∈ Md(W ) such that
|ω̂ − φ| ≤ 1/6 on E \E0, which easily implies that E \E0 is I0(W

2).
Fix i, let Fi = {χi,1, . . . , χi,k}, k = #Fi ≤ m, and consider the linear

system

(4.2.2)
k∑

s=1

xsĝ(χi,rχ
−1
i,s ) = φ(χi,r), 1 ≤ r ≤ k.
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If k = 1, then (4.2.2) reads x1ĝ(1) = φ(χ1,1) with

x1 = φ(χ1,1)/1, so |x1| ≤ 1.

If k ≥ 2 then Lemma 4.3 implies det[ĝ(χiχ
−1
j )] ≥ δ. An application of

Cramer’s rule shows that there is a unique solution to the system (4.2.2)
satisfying |xs| ≤ m!/δ ≤ C2, 1 ≤ s ≤ k. Define φ1(χi,s) = xs on Fi for all i.
Then, for each i,

∑

s

φ1(χi,s)ĝ(χi,rχ
−1
i,s ) = φ1 ∗ ĝ(χi,r) = φ(χi,r).

Define φ1 = 0 on E0. Then φ1 ∈ ℓ∞(E), ‖φ1‖∞ ≤ C2.
Next, we claim that

(4.2.3) ((Fi ·∆) \ Fi) ∩ (E \ E0) = ∅.
Indeed, suppose that χ ∈ χ0 · ∆, χ0 ∈ Fi, χ 6∈ Fi, but χ ∈ E \ E0. Then
χ ∈ Fj for some j 6= i and so (Fj ·F−1

i )∩∆ 6= ∅, and this is a contradiction,
establishing (4.2.3).

Hence,
⋃

((Fi ·∆)\Fi)∩ (E \E0) = ∅. Because
⋃

i(Fi ·∆)\Fi and E \E0

are both subsets of E ·∆, which is assumed to be an I0 set, their closures
in Γ must be disjoint. By the regularity of the topology on Γ , there exists
µ ∈ Md(G) such that |µ̂| ≤ ε on

⋃
(Fi ·∆) \ Fi, |µ̂− 1| < ε on E \ E0, and

sup |µ̂| ≤ 2 everywhere. Also, because E is I0, there exists ν ∈ Md(G) such
that

ν̂ = φ1/µ̂ on E \E0

and

‖ν‖ ≤ C1

∥∥∥
φ1

µ̂|E\E0

∥∥∥
∞

≤ C1‖φ1‖∞
1 − ε

≤ 2C1‖φ1‖∞ ≤ 2C1C2.

Now consider ω = g · (µ ∗ ν) ∈ Md(W ). Fix χ0 ∈ E \ E0, say χ0 = χi,r ∈
Fi = {χi,1, . . . , χi,k}, so i is also fixed. We have already observed that

φ(χ0) = φ(χi,r) =
∑

s

φ1(χi,s)ĝ(χi,rχ
−1
i,s ) =

∑

s

µ̂(χi,s)ν̂(χi,s)ĝ(χ0χ
−1
i,s )

=
∑

χ∈Fi

µ̂(χ)ν̂(χ)ĝ(χ0χ
−1),

while

̂g · µ ∗ ν(χ0) =
∑

χ∈Γ

ĝ(χ0χ
−1)µ̂(χ)ν̂(χ).

Thus

| ̂g · µ ∗ ν(χ0) − φ(χ0)| =
∣∣∣

∑

χ∈Γ\Fi

ĝ(χ0χ
−1)µ̂(χ)ν̂(χ)

∣∣∣ ≤ S1 + S2,
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where

S1 =
∣∣∣

∑

χ∈χ0∆\Fi

ĝ(χ0χ
−1)µ̂(χ)ν̂(χ)

∣∣∣,

S2 =
∣∣∣

∑

χ∈Γ\(Fi∪χ0∆)

ĝ(χ0χ
−1)µ̂(χ)ν̂(χ)

∣∣∣.

Then

|S1| ≤
∑

χ∈χ0∆\Fi

|ĝ(χ0χ
−1)| |µ̂(χ)| ‖ν‖

≤
∑

χ∈Fi·∆\Fi

|ĝ(χ0χ
−1)|ε‖ν‖ ≤ ε · 2C1C2‖g‖A ≤ 1

12
,

|S2| ≤
∑

χ∈Γ\(Fi∪χ0∆)

|ĝ(χ0χ
−1)| sup

λ
|µ̂(λ)| ‖ν‖ ≤ 4C1C2

∑

χ∈Γ\∆

|ĝ(χ)| ≤ 1

12
.

Therefore,

|φ(χ0) − ̂g · µ ∗ ν(χ0)| ≤
1

6
for all χ0 ∈ ⋃

Fi = E \E0.

Hence, E \E0 satisfies (4.2.1), as claimed, so E \E0 is I0(U).

Corollary 4.5. Suppose that G is connected and that E ⊂ Γ is an I0
set such that E ·∆ is I0 for all finite sets ∆ ⊂ Γ . Then E is I0(U) for all

open sets U ⊂ G.

Proof. The connectedness of G means all subsets of Γ are X0-subtrans-
versal for the unique finite subgroup of Γ . Now apply Theorem 4.4.

Corollary 4.6. If G is connected and 0 < ε <
√

2, then any finite

union of translates of ε-Kronecker sets is I0(U) for all open U .

Remarks 4.7. (i) If E is I0(U) for all open U , then E is X0-sub-
transversal for all finite subgroups X0. Indeed, if G0 is the annihilator of
X0 then G0 is an open subgroup. If a, b ∈ E and ab−1 ∈ X0, then a, b co-
incide on G0, so cannot be separated by elements of G0. Hence E is not
I0(G0).

A similar argument can be made for E almost X0-subtransversal and
E \ F being I0(U).

(ii) An I0 set can satisfy the finite union of translates condition, yet not
be I0(U) for all U . See Example 5.4.

(iii) Proposition 5.2 (and Example 5.1) shows that hypothesis (1) of The-
orem 4.4 is not a necessary condition for I0(U), but we do not have any ideas
on how to weaken that hypothesis.
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5. Some examples

5.1. The set of I0 sets is not closed under unions of translates. We have
shown that E∪Eγ is I0 when E is either an ε-Kronecker set (Corollary 3.4)
or an Hadamard set (Corollary 3.11). That is false for more general I0 sets,
even for sets that are I0(U) for all open U :

Example 5.1. Let E1 = {10j+2j+1} andE2 = {10j}. Then E1, E2 have
disjoint closures in Z sinceE1 ⊂ 2Z+1 and E2 ⊂ 2Z. Hence E = E1∪E2 is I0.
But E∪(E+1) is not I0 because it contains the union {10j+2j+1}∪{10j+1};
see [13, p. 178] or [4, Example 5·1]. Note that E is the union of two ε-Kro-
necker sets with ε < 2 sin(π/8) and E is not an ε-Kronecker set for any
0 < ε < 1/2. Also, E − E ⊃ 2N − 1.

Proposition 5.2. The set of Example 5.1 is I0(U) for all open sets

U ⊂ T, but not with bounded constants.

Proof. The “not with bounded constants” assertion follows from Theo-
rem 3.1 and the assertion of Example 5.1. Fix an open set W ⊂ T. Without
loss of generality, we may assume that W = (−τ, τ) for some 0 < τ < π, by
Lemma 2.1.

Choose N such that a = π/10N ∈ (−τ/4, τ/4). Let F = E ∩ [0, 10N+1],
so F is a finite subset of E. Then δa has Fourier transform

δ̂a(m) =

{
eπi(10j−N+(2j+1)10−N ) for m = 10j + 2j + 1 ∈ E1,

eπi10j−N

for m = 10j ∈ E2.

In E \ F ,

δ̂a(m) =

{
eπi(2j+1)10−N

for m = 10j + 2j + 1 ∈ E1 \ F ,

e2πi for m = 10j ∈ E2 \ F .

Now, infj |eπi(2j+1)/10N −1| > 0. Hence, ν = δa−δ0 has transform 0 on E2\F
and transform bounded away from zero on E1 \ F . Because E1 is I0(U) for
all open U , we can find a discrete measure µ supported on [−τ/4, τ/4] such
that µ̂ = 1/ν̂ on E1. That is, there exists a discrete measure ω = µ ∗ ν
supported on [−τ/2, τ/2] such that ω̂ = 1 on E1 \ F and ω̂ = 0 on E2 \ F .
Because E1 and E2 are both I0(U), it is now easy to show that E is I0(W ).

5.2. An ε-Kronecker set not I0(U) for some U . In disconnected groups,
ε-Kronecker does not necessarily imply I0(U) for all open U . Here is an
example.

Example 5.3. Let G = Z43 × T, where Z43 is the set of 43rd roots of
unity. Let E = {(1, 1), (0, 1)} ⊂ Z43 × Z. Then it is easy to see that E is
1
5 -Kronecker. On the other hand, E is not I0({0} × T).
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5.3. E ·∆ can be I0 for all finite ∆ but not I0(U)

Example 5.4. Let G = T × F where F is a finite group. Let E′ ⊂ Z

be an ε-Kronecker set and put E = E′ × {1} ∪ E′ × {s}, s ∈ F̂ , s 6= 1F .
Then T× {0} is an open subgroup of G and E is not I0(T× {0}) but E ·∆
is I0 for all finite sets ∆ ⊂ Γ = Z × F̂ since E ·∆ is just a set of the form
E′ ·∆′ and E′ is an ε-Kronecker set in Z. So assumption (1) of Theorem 4.4
is satisfied, but not the conclusion. Of course assumption (2) of Theorem 4.4
fails.
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[13] J.-F. Méla, Sur les ensembles d’interpolation de C. Ryll-Nardzewski et de S. Hart-

man, Studia Math. 29 (1968), 167–193.
[14] —, Sur certains ensembles exceptionnels en analyse de Fourier , Ann. Inst. Fourier

(Grenoble) 18 (1968), 31–71.
[15] —, Approximation diophantienne et ensembles lacunaires, Mém. Bull. Math. Soc.

France 19 (1969), 26–54.
[16] L. T. Ramsey, Comparisons of Sidon and I0 sets, Colloq. Math. 70 (1996), 103–132.
[17] K. A. Ross, Sur les compacts associés à un ensemble de Sidon, C. R. Acad. Sci.
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