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Semigroup ations on tori and stationarymeasures on projetive spaesby
Yves Guivarc’h (Rennes) and Roman Urban (Wroªaw)Dediated to Hillel Furstenberg on the oasion ofhis 70th birthday, with admirationAbstrat. Let Γ be a subsemigroup of G = GL(d, R), d > 1. We assume that the a-tion of Γ on Rd is strongly irreduible and that Γ ontains a proximal and quasi-expandingelement. We desribe ontration properties of the dynamis of Γ on Rd at in�nity. Thisamounts to the onsideration of the ation of Γ on some ompat homogeneous spaesof G, whih are extensions of the projetive spae Pd−1. In the ase where Γ is a subsemi-group of GL(d, R)∩M(d, Z) and Γ has the above properties, we dedue that the Γ -orbitson Td = Rd/Zd are �nite or dense.1. Introdution and main results. Let Γ be a multipliative semi-group of integers. The semigroup Γ is said to be launary if the members

{γ ∈ Γ : γ > 0} are of the form γk0 , k ∈ N, γ0 ∈ N∗. Otherwise Γ isnon-launary. In 1967 Furstenberg [12℄ proved that if Γ is a non-launarysemigroup of integers and α is an irrational number, then the orbit Γα isdense modulo 1. The problem of approximating a number θ modulo 1 bynumbers of the form qα, where α is a �xed irrational and q varies in aspei�ed subset Q ⊂ N, was onsidered by Hardy and Littlewood in [20℄for various subsets Q of N. In partiular, the result of Furstenberg abovean be onsidered as a generalization of a theorem of [20℄, whih assertsthat if r is a positive integer and α is an irrational number, then the set
{qrα : q ∈ N} is dense modulo 1; furthermore, this result draws attention tothe role of the multipliative struture of Q in Diophantine approximation,hene of the role of the orresponding dynamial properties of endomor-phisms of T = R/Z. Hene, one is led, more generally, to onsider separately2000 Mathematis Subjet Classi�ation: 54H20, 37C85, 60B11, 60J05.Key words and phrases: asymptoti set, proximal and quasi-expanding element, toralautomorphism, ID-property, random walk, projetive spae, stationary measure.The seond author was partially supported by RTN Harmoni Analysis and RelatedProblems ontrat HPRN-CT-2001-00273-HARP and in part by KBN grant 1P03A01826.[33℄



34 Y. Guivar'h and R. Urbanthe properties depending on the multipliative struture of Γ and the prop-erties depending on the additive struture implied in redution modulo 1.In this diretion, a generalization of Furstenberg's result to a ommutativesemigroup Γ ⊂ Minv(d,Z) := GL(d,R) ∩ M(d,Z), where M(d,Z) is the setof d×d matries with integer entries, ating by endomorphisms on the torus
Td = Rd/Zd was given by Berend in [4℄.Following [4℄, we say that the semigroup of endomorphisms of a d-di-mensional torus Td has the ID-property (f. [4, 25, 26℄) if the only in�nitelosed Γ -invariant subset of Td is Td itself. (ID stands for in�nite invariantis dense.) Berend [4℄ gave neessary and su�ient onditions in arithmetialterms for a ommutative semigroup to have the ID-property.On the other hand, starting from [4℄ and [12℄, Margulis [24℄ asked forneessary and su�ient onditions on a subsemigroup Γ ⊂ Minv(d,Z) inorder that the Γ -orbit losures on Td are �nite unions of manifolds. Weobserve that it follows from general results of Dani and Raghavan on linearations [9℄ that the orbits of Γ = SL(d,Z) ating on Td are �nite or dense. Inthis diretion a detailed study of Γ -orbits in Rd of a general subgroup Γ ⊂
SL(d,R) was developed by Conze and Guivar'h in [7℄. The homogeneity atin�nity of Γ -orbits was pointed out there as well as the role of �Γ -irrational�vetors in the onstrution of limit points of Γ -orbits, if Γ is a generalsubgroup of SL(d,R).Some results in the diretion of the general question of Margulis have beenobtained reently. Muhnik proved in [25℄ that if the semigroup Γ of SL(d,Z)is Zariski dense in SL(d,R), then Γ ating on Td has the ID-property. In [29℄Starkov proved the same result in ase Γ is a strongly irreduible subgroupof SL(d,Z). In the next paper [26℄ Muhnik generalized the results of Berendto semigroups of Minv(d,Z). At the same time Guivar'h and Starkov [19℄derived an important part of Muhnik's result using di�erent methods, basedon [6, 7℄. We observe that in [19℄, the property Γ ⊂ SL(d,Z) is used onlywhen additive aspets onneted with redution modulo one ome into play.It turned out that the property of Γ -orbits in Rd whih is responsible fordensity in Td is �thikness� at in�nity of Γ -orbits (see Theorem 5.23 andthe omments to it). Hene, this property an be studied separately in fullgenerality; Γ is then a general subsemigroup of GL(d,R) and the use ofboundaries and random walks is natural in this ontext.In this paper we onsider this problem in a simpli�ed setting, we give aself-ontained exposition of some of the methods developed in [6, 7, 19℄ inthe more general ontext of random walks and linear ations, and we usethe results to prove the ID-property in our setting. We also prove some newresults for ations on tori and on ertain ompat G-fator spaes of Rd.The general idea is to lift the automorphisms of the torus Td to its uni-versal over Rd and to study the ation of the lifts at in�nity. The ation



Semigroup ations on tori 35of Γ at in�nity an be expressed in terms of some ompat homogeneousspaes of GL(d,R) whih are losely related to the projetive spaes Pd−1.The random walk framework allows us to take into aount the global semi-group asymptoti behavior in terms of stationary measures and onvergeneto them. As in [13℄ and [15℄, the results an be used to obtain topologialproperties of the Γ -ation. Furthermore, this general framework allows usto obtain a series of fats about linear ations whih are of interest in otherproblems.Before we state the results we need to introdue some notions. A matrix
γ ∈ GL(d,R) is said to be proximal if it has an eigenvalue λγ suh that
|λγ | > |λ| for all other eigenvalues λ of γ. A matrix γ is said to be quasi-expanding if it has an eigenvalue λ suh that |λ| > 1.Let Γ be a subsemigroup of GL(d,R). The Γ -ation on Rd (or simply
Γ ) is said to be strongly irreduible if no �nite union of proper subspaes is
Γ -invariant.The �rst main theorem of this paper is as follows:Theorem 1.1. Let Γ be a subsemigroup of Minv(d,Z), d > 1, suh that
Γ ontains a proximal element and the Γ -ation on Rd is strongly irreduible.Then the semigroup Γ ating on Td has the ID-property , that is, every in�-nite Γ -invariant subset of Td is dense.If d = 1, one has Minv(1,Z) = Z∗ ⊂ R∗. As said above, the onlusion ofTheorem 1.1 is valid in this ase too, if and only if Γ is non-launary, i.e., notontained in a yli subgroup of R∗. For d > 1, the ondition in Theorem 1.1implies that Γ is not ontained in a �nite extension of an abelian subgroupof Minv(d,Z); in partiular, here Γ is non-abelian, hene the situation of [4℄is exluded from our setting.The �rst step in order to get Theorem 1.1 is to study losed in�nite
Γ -invariant subsets Σ of Td suh that 0 is a limit point of Σ. Then we notiethat the inverse image in Rd of suh an in�nite Γ -invariant subset ontainssome asymptoti set whih onsists of lines. Moreover, there are some rayswith good properties, that is, not ontained in a subspae having a basiswhih onsists of integer vetors. This allows us to projet them using theanonial projetion p : Rd → Rd/Zd, p(x) = x + Zd, on Td and obtainthe result in the ase when 0 is a limit point of the subset Σ. Furthermore,using arguments lose to [4℄ and [12℄ and redution to a �nitely generatedsubsemigroup of Γ, we show that the opposite situation does not our.Let LΓ ⊂ Pd−1 be the losure of the set of diretions orrespondingto dominant eigenvetors of the proximal elements in Γ. We denote by L̃Γthe set of orresponding non-zero vetors in V = Rd, by σ the symmetry
σ : v 7→ −v in V, and by Ṽ the fator spae Ṽ = V/{σ, Id}.The following is the basi tool in the proof of Theorem 1.1.



36 Y. Guivar'h and R. UrbanTheorem 1.2. Suppose Γ is a subsemigroup of GL(d,R), d > 1, whihis strongly irreduible and ontains a proximal and quasi-expanding element.Let Σ be a Γ -invariant subset of Ṽ \ {0} and suppose 0 ∈ Σ. Then
Σ ⊃ L̃Γ /{σ, Id}.To have in mind a simple example illustrating Theorems 1.1 and 1.2,onsider the torus T2. One of the simplest examples of a subsemigroup of

SL(2,Z) satisfying the onditions of Theorem 1.1 is the semigroup Γ = 〈a, b〉generated by the matries a =
(

2 1
1 1

) and b =
(

3 2
1 1

) from SL(2,Z).From Theorem 1.1 we infer that the Γ -orbits in T2 are �nite or dense.Furthermore we observe that, in the ontext of Theorem 1.2, the dynamisof Γ on R2 is easy to visualize. The losure of the eigen-diretions in thepositive quadrant R2
+ forms a Cantor set and the orresponding lines forman �attrator set� L̃1
Γ for the ation of Γ in R2

+. There exist vetors in
R2 whose orbit losures ontain 0, for example dominant eigenvetors ofelements of Γ−1. The Γ -orbit for suh a vetor tends to �ll L̃1

Γ ∪−L̃1
Γ sinethe dynamis of its Γ -orbit onsists of attration towards 0 and expansionalong the eigenvetors sitting in L̃1

Γ ∪ −L̃1
Γ .For a general vetor, for example a vetor v ∈ R2

+, there is attrationtowards L̃1
Γ and expansion along L̃1

Γ , and the Γ -orbit of v is �thik at in�nity�due to the irrationality properties of eigenvalues of elements in Γ. In thegeneral ase the situation is similar, in partiular the projetions of general
Γ -orbits into Td are large, hene one an expet the losed Γ -orbits in Td tobe �nite unions of speial manifolds, as onjetured in [24℄.Let us now onsider, for c > 1, the fator spae Pd−1

c of V \ {0} by thesubgroup of homotheties with ratio ±ck (k ∈ Z). The ation of g ∈ G =
GL(d,R) on v ∈ Pd−1

c will be denoted v 7→ g.v. Let µ be a probabilitymeasure on Γ ⊂ GL(d,R) whose support generates Γ. Then we an de�nean assoiated Markov operator Pµ on Pd−1
c by the formula

Pµ(v, ·) =
\
δg.v dµ(g).The iterates Pnµ of Pµ de�ne a random walk on Pd−1

c .The following desribes the asymptoti behavior of the iterates Pnµ ; it isan essential tool in the proof of Theorem 1.2, hene of Theorem 1.1.Theorem 1.3. Assume that Γ ⊂ GL(d,R) is a subsemigroup whih isstrongly irreduible and ontains a proximal element. With the above nota-tions, the Markov operator Pµ on Pd−1
c has a unique stationary measure ̺,the support S̺ of ̺ is the unique losed Γ -invariant minimal subset of Pd−1

c ,and for any v ∈ Pd−1
c the sequene of measures Pnµ (v, ·) onverges to ̺.Moreover , the trajetories of Pµ starting from v onverge a.e. to S̺.



Semigroup ations on tori 37Along the way, we get some new results and fats. For example, we showa priori that the weak ID-property (that is, the losures of the orbits Γx,
x ∈ Td, are either �nite or equal to Td itself) and the ID-property areequivalent, a fat impliitly used in previous papers, but apparently unprovedin the literature.We also larify the relations between a fundamental oyle equationon Γ × Pd−1 and an aperiodiity ondition for the dominant eigenvalues ofproximal elements in Γ whih ours in [22℄ and whih also has a geometriinterpretation in terms of lengths of losed geodesis (see [8℄).Furthermore, the result in Theorem 1.3 extends results of [17℄ but is newin this generality.Also the result of Theorem 1.1 is not overed by [19℄ sine, in our setting,
Γ is allowed to be a subsemigroup of Minv(d,Z) (d > 1). We are led to provea result of independent interest: Γ an be supposed to be �nitely generated(see Proposition 2.6).The struture of the paper is as follows. In Setion 2 we set the notationand give all neessary de�nitions. In partiular, we de�ne a dominant vetor,a proximal element and state our two hypothesis (H1) (strong irreduibility)and (H2) (proximality), under whih we prove Theorem 1.3. We introduehypothesis (H0), i.e. the unboundedness of Γ -orbits in V \ {0}. Under (H1)and (H2), this ondition is equivalent (see Proposition 2.4) to the existeneof a proximal and quasi-expanding element in Γ , whih allows us to proveTheorems 1.1 and 1.2. It is lear that this ondition is neessary for thevalidity of the ID-property.We observe that onditions (H0), (H1) and (H2) are analogous to thoseused in [16, Theorem 2.5℄ in order to get a homogeneous behavior at in�nityof the potential measure in Ṽ assoiated with µ, hene also of the Γ -orbitsat in�nity in Ṽ . (See also [10℄ for the ase of a�ne ations.)In Setion 3 we prove the equivalene of the weak ID-property and ID-property (Proposition 3.1).In Setion 4 we study the Γ -ations on various spaes, namely on theprojetive spae P(V ), the ompat homogeneous spae Pc(V ) and V itself.We de�ne the asymptoti sets for Γ -ations and we study their properties.We also larify the role of aperiodiity hypotheses of Γ onsidered by Kestenin [22℄ and Eberlein in [11℄ (see Corollary 4.8 and Proposition 4.6).Setion 5 develops the random walks tehniques whih are used in theproof of the main new result of this setion whih is Theorem 5.19. Thistheorem together with the method presented in [12℄ allow us to prove Theo-rem 1.1 in Setion 6. Theorem 5.19 follows from a detailed study of randomwalks on V and various Γ -spaes, governed by a measure µ sitting on Γand suh that the onvolution iterations µ∗k �ll Γ. Some of these results



38 Y. Guivar'h and R. Urbanare well known but we have inluded the proofs in order to make the paperself-ontained. Some others are new.Finally, in Setion 6 we give the proof of Theorem 1.1.2. Proximality, irreduibility, expansivity. In what follows, Γ willdenote a subsemigroup of GL(d,R). We onsider the ations of Γ on thevetor spae V = Rd, on the assoiated projetive spae Pd−1 = P(V ), andon Ṽ = V/{Id, σ} = V/{±Id}. We denote by π the projetion of V \ {0} on
Pd−1 = P(V ) and we identify P(V ) with the unit sphere Sd−1 divided by thesymmetry σ : x 7→ −x. Also K = SO(d,R) will denote the speial orthogonalgroup and m the unique K-invariant probability measure on P(V ).The ation of the matrix g on the vetor x ∈ V is denoted by (g, x) 7→ gx,whereas for the ation of g on the projetive spae P(V ) we write g.π(x) =
π(gx).A matrix γ ∈ GL(d,R) is said to be proximal if it has an eigenvalue λγsuh that |λγ | > |λ| for all other eigenvalues λ of γ. Thus λγ ∈ R. For suha γ an eigenvetor vγ ∈ V orresponding to the eigenvalue λγ is alled adominant eigenvetor or simply dominant vetor of γ. By ∆Γ we denote theset of all proximal elements in Γ. An element γ ∈ GL(d,R) is said to bequasi-expanding if it has an eigenvalue λ suh that |λ| > 1.More generally, for u∈End(V ), we denote by |λu| the spetral radius of u.If γ ∈ ∆Γ then we de�ne γ+ ∈ P(V ) as a point orresponding to the linein V generated by vγ . By V <

γ we denote the unique γ-invariant hyperplaneomplementary to V max
γ = Rvγ .We onsider the following assumptions.

(H0) For every v ∈ V \ {0}, the orbit Γv is unbounded.
(H1) The Γ -ation is strongly irreduible (for short, Γ is strongly irre-duible), that is, no �nite union of proper subspaes is Γ -invariant.
(H2) Γ ontains a matrix γ whih is proximal.Remark 2.1. (i) Condition (H1) an be equivalently formulated as fol-lows. A subsemigroup Γ of GL(V ) ats strongly irreduibly on V if every�nite index subgroup H of the group 〈Γ, Γ−1〉 ats irreduibly on V, that is,every H-invariant subspae of V is either 0 or V.(ii) If Γ is a subsemigroup of SL(d,R), then onditions (H1) and (H2)imply (H0), sine otherwise the determinant of the proximal element γ wouldbe stritly less than 1. The same is true, using the same argument, if Γ isa subsemigroup of Minv(d,Z), sine det γ, γ ∈ Γ, is a nonzero integer (seeProposition 2.4 below).(iii) Condition (H1) (resp. (H2)), if valid for Γ, is also valid for Γ t, thetransposed semigroup ating on the dual spae V ∗.



Semigroup ations on tori 39(iv) Conditions (H0), (H1) for Γ imply ondition (H0) for Γ t. This willbe used in the proof of Theorem 1.1 and an be seen as follows. Let W ⊂ V ∗be the subspae of vetors with bounded Γ t-orbits. Then W is Γ t-invariant,hene (iii) implies W = {0} or W = V ∗. In ase W = V ∗, Γ t is relativelyompat in End(V ∗), hene Γ is relatively ompat in End(V ). This ontra-dits ondition (H0) for Γ.The onept of Zariski losure, de�ned below, will be freely used whendealing with the above onditions (see [27℄).Let Γ be a subset of GL(d,R).We reall that the Zariski losure Z(Γ ) of
Γ is the set of zeros of all real polynomials in the oe�ients of g ∈ GL(d,R)and (det g)−1, whih vanish on Γ.If Γ is a subsemigroup of GL(d,R) then Z(Γ ) is a group whih ontains
Γ, is losed and has a �nite number of onneted omponents in the realtopology (see [27℄). The onneted omponent of the identity in the Zariskitopology is a subgroup of �nite index whih will be denoted by Z0(Γ ).We have the following generalization of Lemma 2.8 in [6℄ to the ase ofsemigroups.Lemma 2.2. Let Γ ⊂ GL(V ) be a subsemigroup. The Γ -ation satis�esondition (H1) if and only if the orbit Γv of no non-zero vetor v is ontainedin a �nite union of proper vetor subspaes of V.Proof. Suppose (H1) to be valid and v ∈ V be suh that Γv ⊂

⋃n
j=1 Vjwhere Vj are proper subspaes of V. Let W be a �nite union of subspaesof V suh that Γv ⊂ W , and W the set of suh W. We observe that Γv ⊂⋂

W∈W W. Sine a stritly dereasing family of elements of W is �nite we seethat ⋂
W∈W W also belongs to W , in other words W0 :=

⋂
W∈W W is theminimum element in W . We write W0 =

⋃m
j=1 Vj ; we are going to show that

W0 is preserved by Γ. Sine W ∈ W is algebrai we have Z(Γ )v ⊂ W, inpartiular 〈Γ, Γ−1〉v ⊂W. It follows that, for any γ ∈ Γ ,
γW ⊃ γ〈Γ, Γ−1〉v ⊃ Γv.Hene, γW ∈ W . Sine W0 is the minimum element of W , we have γW0 ⊃

W0, so γW0 = W0; hene, ΓW0 = W0. Condition (H1) says that this isimpossible.Conversely, suppose Vj (1 ≤ j ≤ n) is a family of proper subspaes whihis preserved by Γ. Let v ∈ V1; then Γv ∈
⋃n
i=1 Vi. From the hypothesis thisis impossible, hene ondition (H1) is satis�ed.Let X be a ompat metri spae with distane funtion δ. We say thatthe ation of a semigroup Γ of ontinuous transformations ofX is proximal if,given x, y ∈ X, there exists a sequene {γn} ⊂ Γ suh that δ(γn.x, γn.y) → 0as n→ ∞.



40 Y. Guivar'h and R. UrbanDe�ne the distane funtion δ on P(V ) as follows:
δ(u, v) = ‖u ∧ v‖/‖u‖‖v‖, u, v ∈ P(V ),where u and v are the orresponding vetors in the vetor spae V.Proposition 2.3 (Theorem 2.9 in [14℄). Let Γ be a subsemigroup of

GL(V ). Then the following are equivalent :(a) Γ satis�es (H1) and (H2).(b) Γ ats proximally on P(V ) and is strongly irreduible.Proof. ((a)⇒(b)) We onsider a proximal element γ ∈ Γ and de�ne
u = lim

n
‖γ2n‖−1γ2n, z = Keru ⊂ P(V ∗).Then if x, y ∈ P(V ) do not belong to Keru, we have limn γ

n.x = γ+,
limn γ

n.y = γ+. Hene, limn δ(γ
n.x, γn.y) = 0.In general, if x, y ∈ P(V ) are given we an �nd h ∈ Γ suh that h.x 6∈Keru and h.y 6∈ Keru, otherwise, passing to the dual spae V ∗, transposingmaps, and using the hyperplanes x⊥ and y⊥ of V ∗ de�ned by x and y, onewould have

∀h ∈ Γ, ht.z ⊂ x⊥ or ht.z ⊂ y⊥.But Remark 2.1(iii) and Lemma 2.2 say that this is impossible under ondi-tion (H1).((b)⇒(a)) It follows from proximality of Γ on the ompat metri spae
P(V ) (see [13℄) that, given a �nite subset E ⊂ P(V ), there exist a sequene
{gn} ⊂ Γ and x ∈ P(V ) suh that

∀y ∈ E, lim
n
gn.y = x.We onsider a �nite system E = {x1, . . . , x2d−1} of 2d − 1 points in P(V )suh that any d-subsystem onsists of independent points.We onsider the linear maps un = gn/‖gn‖ and using a onvergent subse-quene, we an assume that un onverges towards u ∈ End(V ) with ‖u‖ = 1.We show that u has rank one.From the de�nition of E it follows that at least d points of E do notbelong to Keru. We replae these points, as well as x, by the orrespondingunit vetors in V, say x̃1, . . . , x̃d, x̃. Then we obtain

ux̃i = λix̃, 1 ≤ i ≤ d,where λi 6= 0; the points {x̃i} form a basis of V, hene the rank of u isone, i.e., dimKeru = d − 1. We an moreover suppose that Imu 6⊂ Keru,sine otherwise we ould replae gn by ggn, where g ∈ Γ satis�es Im gu =
g(Imu) 6⊂ Keru and Ker gu = Keru. The existene of g ∈ Γ suh that
g(Imu) 6⊂ Keru = Ker gu follows from Lemma 2.2.



Semigroup ations on tori 41Under this ondition, u is proportional to the projetion on Imu alongthe hyperplane Keru. In partiular, u has a unique non-zero eigenvalue λ.Sine the sequene gn/‖gn‖ − u onverges to zero, we onlude that for nlarge, gn/‖gn‖ also has a unique dominant eigenvalue lose to λ. The sameis true for gn, hene Γ satis�es (H2).Proposition 2.4. Let Γ be a subsemigroup of GL(V ). Then the follow-ing are equivalent :(a) Γ satis�es (H1), (H2) and the element γ in ondition (H2) satis�es
|λγ | > 1.(b) Γ is unbounded and satis�es (H1) and (H2).() Γ satis�es (H0), (H1) and (H2).(d) Γ satis�es (H1), (H2) and there exists γ ∈ Γ suh that |λγ | > 1.Proof. ((d)⇒(b)) Let γ ∈ Γ be a quasi-expanding element in Γ, hene

|λγ | > 1. Then ‖γn‖ ≥ |λγ |
n. Hene limn ‖γ

n‖ = ∞, i.e., Γ is unbounded.((b)⇒(a)) We will use the basi [1, Theorem 4.1℄, whih allows us toonstrut new proximal maps and whih implies the following. If Γ ⊂ GL(V )satis�es (H1) and (H2) there exist ε > 0, r > 1 and a �nite subset M ⊂ Γ,suh that, for any g ∈ GL(V ), there exist a ∈ M suh that ag is proximal,the distane in P(V ) of (ag)+ to V <
ag is at least ε, and

|λag| ≥ r‖(ag)|V <
ag
‖.Sine Γ is unbounded, there exists a sequene {γn} ⊂ Γ suh that

lim
n

‖γn‖ = ∞.Using a subsequene of γn we an suppose that, for some a ∈ M, aγn isproximal, (aγn)
+, (V <

aγn
resp.) onverges to x ∈ P(V ) (Wn = V <

aγn
onvergesto the hyperplane W of P(V ), resp.). We have x 6∈ W, sine the distane of

(aγn)
+ to Wn is at least ε. We an also suppose that aγn/‖aγn‖ onvergesto u ∈ End(V ) with ‖u‖ = 1. Clearly, V is the diret sum of the hyperplane

W and of the line generated by x. Furthermore,
|λu| = lim

n

|λaγn |

‖aγn‖
, ‖u|W ‖ = lim

n

1

‖aγn‖
‖(aγn)|Wn‖.Sine u 6= 0 preserves the above diret sum we have |λu| > 0. Then theondition |λaγn | ≥ r‖(aγn)|Wn‖ implies

|λu| ≥ r‖u|W‖, |λu| > ‖u|W‖.In partiular, u has a dominant eigenvalue whih is simple. Sine ∥∥u− aγn

‖aγn‖

∥∥onverges to zero, for n large we have
|λaγn | ≥ ‖aγn‖ |λu|/2.



42 Y. Guivar'h and R. UrbanMoreover, the ondition limn ‖γn‖ = ∞ implies
lim
n

‖aγn‖ ≥ lim
n

‖a−1‖−1‖γn‖ = ∞.In partiular, for n large, |λaγn | > 1, hene aγn is proximal and quasi-expanding, i.e., (a) is valid.((b)⇒()) We onsider the subspae W ⊂ V of vetors in V having abounded Γ -orbit. Clearly, this subspae is Γ -invariant. Then ondition (H1)implies W = V or W = {0}. In the seond ase (H0) has been proved.The �rst ase does not our sine it ontradits the hypothesis that Γ isunbounded.(()⇒(b)) and ((a)⇒(d)) are trivial.The following is a useful haraterization of strong irreduibility in termsof Zariski losure.Proposition 2.5. Let Γ be a subsemigroup of GL(V ). Then Γ satis�es
(H1) if and only if Zc0(Γ ) ats irreduibly on V.Proof. Assume that Γ satis�es (H1) and let W ⊂ V be a non-zeroZ0(Γ )-invariant subspae. For some �nite set F ⊂ Γ we have Γ ⊂ Z(Γ ) =⋃
γ∈F γZ0(Γ ), hene ΓW =

⋃
γ∈F γW. Sine Γ satis�es (H1) we getW = V,hene Z0(Γ ) ats irreduibly on V.Assume that Z0(Γ ) ats irreduibly on V and let W be a non-zerosubspae of V, and F a �nite subset of Γ suh that ΓW =

⋃
γ∈F γW. Sine

ΓW is an algebrai manifold, Z(Γ ) leaves ΓW invariant, hene permutesthe subspaes γW (γ ∈ Γ ). Sine Z0(Γ ) is onneted, for any γ ∈ F wehave
Zc0(Γ )γW = γW.From the irreduibility of the ation of Zc0(Γ ) on V, we get W = V.The following will be essential in the proof of Theorem 1.1.Proposition 2.6. Assume that the semigroup Γ ⊂ GL(V ) satis�es (H1)and (H2). Then Γ ontains a �nitely generated subsemigroup whih satis�es

(H1) and (H2).The proof of the above proposition depends on the followingLemma 2.7. Assume that Γ satis�es (H1), (H2). Denote by D (resp. C)the ommutator subgroup (resp. onneted enter) of Zc0(Γ ). Then Zc0(Γ ) isthe almost diret produt of D and C. Furthermore, D is semisimple withoutompat fators and C onsists of homotheties.Proof. Sine Γ ats irreduibly on V, Zc(Γ ) is an R-redutive group (see[27℄), hene D is semisimple and Zc0(Γ ) is the almost diret produt of Cand D. We an write D as the almost diret produt D = D1D2, where
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D1 is ompat and D2 is semisimple without ompat fator. Sine Γ on-tains a proximal element and Zc(Γ )/Zc0(Γ ) is �nite, Zc0(Γ ) also ontainsa proximal element. We denote this element by γ and write γvγ = λγvγ ,
γ = cd1d2 with c ∈ C, d1 ∈ D1, d2 ∈ D2. Sine d1 and γ ommute, and thediretion of vγ is uniquely determined by γ, d1vγ is proportional to vγ . Sine
D1 is ompat we have d1vγ = ±vγ , hene cd2 is also proximal with dom-inant eigenvetor vγ . Sine C ommutes with cd2, and vγ is cd2-dominant,there exists an R-harater χ of C suh that gvγ = χ(g)vγ for every g ∈ C.Sine the subspae W = {v : cv = χ(c)v, ∀c ∈ C} is Γ -invariant, on-tains vγ , and the ation of Γ is irreduible, it follows that cv = χ(c)v forall v ∈ V and c ∈ C. Thus, C onsists of homotheties, D1D2 also atsirreduibly on V , and vγ is d2-dominant. Sine D1 ommutes with d2 weinfer, as above, that D1 preserves the diretion of vγ . Sine D1 is ompatand onneted, vγ is D1-invariant. Sine D1 ommutes with CD2, the sub-spae of D1-invariant vetors is preserved by the ation of CD1D2. From theirreduibility of Zc0(Γ ), we onlude that D1 = Id, hene Zc0(Γ ) = CD2.Proof of Proposition 2.6. We onsider the semigroup Γ (S) generated bythe �nite set S ⊂ Γ. Clearly, if S ⊂ S′, then Γ (S) ⊂ Γ (S′).We take a totallyordered family Si (i ∈ I) suh that Γ =

⋃
i∈I Γ (Si); we denote by Gi0 theonneted omponent of the identity in Zc(Γ (Si)). Then, sine Gi0 ⊂ Gj0 if

Si ⊂ Sj , for some ι ∈ I we get
H0 := Gι0 =

⋃

i∈I

Gi0 = Gk0 if Sk ⊃ Sι.We an suppose that Gi0 = Gι0 for any i ∈ I. It follows that H0 is normal in
Zc(Γ (Si)) for any i ∈ I, hene H0 is normal in Zc(Γ ). In partiular, H0 ⊂
Zc0(Γ ).We observe thatH0 has �nite index in Zc(Γ (Si)), hene L = Zc0(Γ )/
H0 is an algebrai group whih is the Zariski losure of the union of the �nitesubgroups Φi orresponding to Zc0(Γ (Si)). In view of Lemma 2.7 we knowthat the algebrai group L has the same struture as Zc0(Γ ), in partiularis redutive. We write it as the almost diret produt of its onneted enter
C ′ ⊂ R∗ and its ommutator subgroup D′. Passing to the fator group L/
D′, using the �nite subgroups Φi, we get C ′ = {Id}, L = D′. We onsider afaithful, irreduible representation of the adjoint group of L in a real vetorspae V ′. Then eah �nite subgroup Φi leaves invariant a positive de�nitequadrati form qi. We an suppose that the forms qi are normalized and wedenote by q a luster value of the (qi)i∈I . Then q is invariant under the ationof the topologial losure Φ of ⋃

i∈I Φi. Sine Zc(
⋃
i∈I Φi) = L = Zc(Φ),we see that Φ ats irreduibly on V ′, as L itself. Sine the kernel of q is

Φ-invariant, it is trivial, hene q is positive de�nite. It follows that Φ isompat. Sine Zc(Φ) = L, we onlude that L = Φ is ompat, hene fromLemma 2.7, L = {Id}. It follows that H0 = Zc0(Γ ) = Zc0(Γ (Sι)). We an



44 Y. Guivar'h and R. Urbansuppose that Γ (Sι) ontains a proximal element from Γ ∩ Zc0(Γ ). Then
Γ (Sι) is �nitely generated, and satis�es (H2). From Proposition 2.5 we seethat ondition (H1) is also satis�ed by Γ (Sι), sine Zc0(Γ (Sι)) = Zc0(Γ )ats irreduibly on V.Remark 2.8. We will see in Lemma 3.3 below that ondition (H0) alsoremains valid after passing to a onvenient �nitely generated subsemigroup.However, in Proposition 2.6, this property annot be ahieved with ondi-tion (H1) alone. A simple ounterexample is the following: suppose Γ is thesemigroup of rational rotations of the Eulidean plane, entered at the ori-gin. Then any �nitely generated subsemigroup Γ ′ preserves a regular polygoninsribed in the unit irle. Hene, ondition (H1) is not satis�ed by Γ ′.This explains why we onsider (H1) and (H2) simultaneously in Propo-sition 2.6.3. Equivalene of the weak ID-property and ID-property. Let usreall the de�nitions of the weak ID-property and ID-property one again,in the ontext of subsemigroups of Minv(d,Z) ating in the usual way on
d-dimensional tori. We say that a subsemigroup Γ of Minv(d,Z) has theID-property if every in�nite Γ -invariant subset of Td is dense in Td. This isof ourse equivalent to the fat that every in�nite losed Γ -invariant subsetof Td is Td itself.We say that a subsemigroup Γ of Minv(d,Z) ating on the d-dimensionaltorus has the weak ID-property if for every x ∈ Td, the losure of the orbit
Γx is either �nite or the whole Td.Here it is onvenient to use ondition (H0) whih is weaker than thehypothesis in Theorem 1.1.Proposition 3.1. Let Γ be a subsemigroup of Minv(d,Z) ating on Tdand satisfying ondition (H0). Then Γ has the weak ID-property if and onlyif Γ has the ID-property.To prove the above equivalene we need the following three lemmas.Lemma 3.2. Suppose S is a �nite subset of GL(d,R) whih generates asemigroup Γ whih satis�es (H0). De�ne

C = sup{‖s‖ : s ∈ S}.Then for every x ∈ V with ‖x‖ ≤ 1 there exists an element g ∈ Γ suh that
1 < ‖gx‖ ≤ C.Proof. Note that C > 1, sine Γ is unbounded. We onsider a sequene

sk ∈ S suh that the sequene sn . . . s1x, ‖x‖ ≤ 1, is unbounded, and de�ne
k = sup{n ∈ N : ‖sn . . . s1x‖ ≤ 1}.
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‖sk+1‖ ≤ C, ‖sk . . . s1x‖ ≤ 1, ‖sk+1 . . . s1x‖ > 1.It follows that

1 < ‖sk+1sk . . . s1x‖ ≤ C‖sk . . . s1x‖ ≤ C.Then the onlusion follows with g = sk+1 . . . s1.Lemma 3.3. Let Γ be a subsemigroup of GL(d,R) whih satis�es on-dition (H0). Then Γ ontains a �nitely generated subsemigroup whih satis-�es (H0).Proof. For any �nite subset S ⊂ Γ, we denote by Γ (S) the semigroupgenerated by S, and by V (S) the subspae of vetors v ∈ V suh that Γ (S)vis bounded. We observe that the inlusion S ⊂ S′ implies V (S′) ⊂ V (S).We onsider a totally ordered family of �nite subsets Sι (ι ∈ I) suh that
Γ =

⋃
ι∈I Γ (Sι). Then W =

⋂
ι∈I V (Sι) is of the form V (Sj) for some j ∈ Iand we have V (Sι) = V (Sj) if Sι ⊃ Sj . It follows that W is Γ -invariant.Furthermore, for any v ∈W and ι ∈ I, Γ (Sι)v is bounded.We show that, if W 6= {0}, then Γv is bounded, for some v ∈ W \ {0}.Hene W = {0} by ondition (H0). This implies that ondition (H0) issatis�ed by Γ (Sj).We onsider the omplexi�ed vetor spae WC ⊂ V C, a Γ -irreduiblesubspae U ⊂WC, and the ation of Γ (Sι) on U. Sine every Γ (Sι)-orbit in

W is bounded for any γ ∈ Γ (Sι) we have |λγ | ≤ 1, hene |Tr γ|U | ≤ dimUfor any γ ∈ Γ .Sine the ation of Γ on U is irreduible, Burnside's theorem implies thatthe algebra End(U) is generated by Γ , i.e. there exist γ1, . . . , γr in Γ suhthat the linear forms f1, . . . , fr on End(U) de�ned by
fk(w) = Tr(γkw) (1 ≤ k ≤ r)form a basis of (End(U))∗. Sine |fk(γ)| ≤ dimU for every γ ∈ Γ, and thefamily {fk} forms a basis of (End(U))∗, we dedue that Γ |U is bounded. Thenany Γ -orbit in U is bounded. Hene the same is true for the onjugate spae

U ⊂ V C, and for the sum U + U ⊂ V C. In partiular, any v ∈ (U + U) ∩ Vhas a bounded Γ -orbit. Hene from ondition (H0), (U + U) ∩ V = {0},
U = {0}, W = {0}.Let Bε ⊂ Rd denote the ball with radius ε and enter 0. For ε < 1/2, wealso denote by Bε the homeomorphi image of Bε ⊂ Rd under the anonialquotient map p : Rd → Td = Rd/Zd.Lemma 3.4. Let Γ be a subsemigroup of Minv(d,Z) whih satis�es (H0).Then there exists ε = εΓ > 0 suh that for every 0 6= x ∈ Td,

Γx ∩ Td \Bε 6= {0}.



46 Y. Guivar'h and R. UrbanProof. From Lemmas 3.3 and 3.2 above we an �nd C > 1 suh that forany x ∈ Bε ⊂ Rd, ε < 1/2, there exists g ∈ Γ suh that
ε ≤ ‖gx‖ ≤ Cε.If εΓ = 1/2C < 1/2 we see that Γx 6⊂ Bε for every x ∈ Bε ⊂ Td. If forsome y 6∈ Bε we had Γy ⊂ Bε, then x = γy ∈ Bε for some γ ∈ Γ ; hene,from the above observation, Γx 6⊂ Bε; in partiular, sine Γx ⊂ Γy, we have

Γy 6⊂ Bε, and this is a ontradition.Now we are ready to prove Proposition 3.1.Proof of Proposition 3.1. It is obvious that the ID-property implies theweak ID-property. Therefore we have to prove the onverse, i.e. any in�nitelosed subset Σ with ΓΣ ⊂ Σ is equal to Td.If Γx is in�nite for some x ∈ Σ, then the hypothesis implies Γx=Td=Σ.Hene we an suppose that Σ is in�nite, Σ =
⋃
x∈Σ Γx and eah Γx with

x ∈ Σ is �nite. It follows that Σ ⊂ p(Qd), hene Σ is ountable.Now onsider the sequene of derived sets,(3.5) Σ0 = Σ ⊃ Σ1 ⊃ · · · ⊃ Σn ⊃ · · · ,that is, Σn+1 is the set of limit points of Σn. Atually, the sequene (3.5)terminates, i.e. there is an index n suh that Σn = ∅. If not we onsider
Σ∞ :=

⋂∞
n=0Σ

n. Clearly, Σ∞ is a losed ountable set suh that the set
(Σ∞)a of limit points of Σ∞ is equal to Σ∞. This means that Σ∞ is anon-void and ountable perfet set. Sine every point of Σ∞ is losed andhas empty interior in Σ∞, the Baire theorem says that Σ∞ also has emptyinterior in Σ∞, whih is impossible. Therefore, there is n ∈ N suh that

Σ0 = Σ ⊃ Σ1 ⊃ · · · ⊃ Σn = ∅.Without loss of generality we may assume n = 2. It follows that Σ1 is �nite.In fat, otherwise Σ2 would not be an empty set. Let {x1, . . . , xn} = Σ1 ⊂
p(Qd) be the set of limit points of Σ and let q be a ommon denominator of
xi, 1 ≤ i ≤ n. Then 0 ∈ qΣ1 is the unique limit point of qΣ. Consider a ball
Bε around 0 with ε < εΓ given by Lemma 3.4. Then the points of qΣ outside
Bε have no limit point, hene form a �nite set F. Now we an onsider the
Γ -orbits of these points, i.e. Γx, x ∈ F. They form a Γ -invariant �nite set
F ′ =

⋃
x∈F Γx that we an exlude from qΣ without hanging its properties.Therefore, now we have the new set Σ′ = qΣ \ F ′ whih is losed, in�nite,

Γ -invariant and fully inluded in Bε, and this ontradits Lemma 3.4.4. Dominant vetors, a ohomologial equation and the spe-trum of Γ . As in Setion 2, Γ is a subsemigroup of GL(V ) = GL(d,R) andwe onsider its ation on V and P(V ) = π(V \ {0}).



Semigroup ations on tori 47We de�ne the asymptoti sets:
LΓ = {π(v0) : v0 is a dominant vetor for Γ},
L̃Γ = {v 6= 0 : π(v) ∈ LΓ } = π−1(LΓ ).We start with the following proposition whih is a semigroup version ofa result of Guivar'h and Conze (f. [6, Proposition 3.2℄).Proposition 4.1. Let Σ be a Γ -invariant subset of V \ {0} suh that

0 ∈ Σ. Then, under assumptions (H0), (H1) and (H2), for any proximal andquasi-expanding element γ ∈ Γ there exists a γ-dominant vetor u0 suh that(4.2) γZu0 := {γku0 : k ∈ Z} ⊂ Σ.Proof. Let V = V max
γ ⊕ V <

γ be the deomposition of V relative to aproximal and quasi-expanding element γ ∈ Γ.Let xi ∈ Σ and xi → 0 as i → ∞. Then there exists a sequene {αi} ofreals and w ∈ V suh that αixi → w as i → ∞. We will show that withoutloss of generality we an assume that w 6∈ V <
γ . In fat, sine Γ ats stronglyirreduibly on V, by Lemma 2.2 one an �nd an element h ∈ Γ suh that

hw 6∈ V <
γ , i.e. w 6∈ h−1V <

γ . De�ne
Γ1 = h−1Γh, γ1 = h−1γh ∈ Γ1, Σ1 = h−1Σ.Then γ1 is proximal in Γ1, w 6∈ h−1V <

γ = V <
γ1 , and Σ1 is a Γ1-invariant subsetthat ontains 0 as a limit point. Assume that we have found a non-zero vetor

u0 ∈ V max
γ1 suh that γZ

1 u0 ⊂ Σ1. Then h−1γZhu0 ⊂ h−1Σ, i.e., γZhu0 ⊂ Σ.But hu0 ∈ V max
γ and we are done.Thus from the very beginning we an assume that w 6∈ V <

γ .Let e1, . . . , en be a basis of V suh that e1 ∈ V max
γ , ‖e1‖ = 1 and

e2, . . . , en ∈ V <
γ . Let φj : V → R be linear forms suh that

x =
n∑

j=1

φj(x)ej, x ∈ V.Let Φ : V = V max
γ ⊕ V <

γ → V max
γ be the projetion along V <

γ , i.e., Φ(x) =

φ1(x)e1. Sine w 6∈ V <
γ , it follows without loss of generality that Φ(xi) 6= 0(sine αixi → w 6∈ V <
γ ). Sine |λγ | = λ > 1, there exists a sequene {pi} ofintegers suh that pi → ∞ and

1 ≤ λpi |φ1(xi)| ≤ λ.Now passing to a subsequene if neessary one an �nd a γ-dominant ve-tor u0 ∈ V max
γ suh that γpi(Φ(xi)) → u0 as i → ∞. We will prove that

γpi(xi) → u0 as i→ ∞.Clearly, it is enough to show that(4.3) φj(xi)γ
pi(ej) → 0 as i→ ∞, for any j > 1.



48 Y. Guivar'h and R. UrbanIn fat, γpi(xi) → u0 if γpi(
∑n

j=1 φj(xi)ej) =
∑n

j=1 φj(xi)γ
pi(ej) → u0 andso we are led to (4.3).Therefore, we are going to prove (4.3). One has

φj(xi)γ
pi(ej) =

φj(xi)

|φ1(xi)|

γpi(ej)

λpi
‖γpi(Φ(xi))‖,where the �rst fration tends to φj(w)/|φ1(w)|, the seond one tends to zero,and the third term tends to ‖u0‖ as i→ ∞.Sine xi ∈ Σ and γpi ∈ Γ for every i ∈ N it follows that u0 ∈ Σ.Sine limi γ

pi(xi) = u0, we infer that γ−m(u0) = limi γ
pi−m(xi).We see that

γpi−m(xi) ∈ Σ for almost all i, thus γ−mu0 ∈ Σ.Remark 4.4. Notie that the ondition (4.2) implies that 0 ∈ Σ. In fat,simply take a sequene Z ∋ kn suh that kn → −∞.Proposition 4.5. Under onditions (H1) and (H2), the set LΓ is theunique minimal Γ -invariant losed subset of P(V ).Proof. We �rst show that LΓ is Γ -invariant. Consider g ∈ ∆Γ , and
u = limn g

2n/‖g2n‖, where the limit exists in End(V ) by proximality of g.Consider a deomposition V = V <
g ⊕ V max

g . Then u is a multiple of theprojetion of V onto V max
g along V <

g .On the other hand, we onsider γ ∈ Γ and want to show that γ.g+ ∈ LΓ .We observe that for any δ ∈ Γ, we have
lim
n

∥∥∥∥γ
g2n

‖g2n‖
δ − γuδ

∥∥∥∥ = 0.We have Im(γuδ) = γ(Imu) and Ker(γuδ) = δ−1(Keru). We note that
γuδ has rank one, like u, hene γuδ will be a multiple of a one-dimensionalprojetion if γ(Imu) 6⊂ δ−1(Keru), i.e. δ(Im(γu)) 6⊂ Keru.Sine Γ is strongly irreduible, Lemma 2.2 shows that suh a δ ∈ Γexists. Then, as in the proof of Proposition 2.3, perturbation theory showsthat for n large, γ(g2n/‖g2n‖)δ has a simple dominant eigenvalue and theorresponding eigenvetor is lose to γ(vg). In other words,

γg2mδ ∈ ∆Γ , γ.g+ = lim
m

(γg2mδ)+.Hene γLΓ ⊂ LΓ .Now let Λ be a losed Γ -invariant subset of P(V ) and let us show that
Λ ⊃ LΓ . Sine Γ is strongly irreduible, Λ is not ontained in a propersubspae. In partiular Λ 6⊂ V <

γ , hene there exists x ∈ Λ with x 6∈ V <
γ .Then γ+ = limn γ

n.x ∈ Λ. Sine Λ is losed, we have LΓ ⊂ Λ. This showsthat LΓ is minimal and is the unique minimal subset of P(V ).Proposition 4.6 (Proposition 2.2 in [7℄). Let Γ be a subsemigroup of
GL(d,R), d > 1, satisfying ondition (H1) and (H2). Let S be a generating



Semigroup ations on tori 49subset of Γ. If ϕ is a non-zero, ontinuous funtion on Pd−1, t is real and
θ ∈ [0, 2π), then the equation

∀ γ ∈ S, ∀x ∈ LΓ , ϕ(γ.x)‖γx‖it = eiθϕ(x)has no solution, unless θ = 0, t = 0, ϕ(x) ≡ const on LΓ .Proof. Clearly we an suppose that |det γ| = 1 for γ ∈ Γ. Consider thefuntion ψ(v) de�ned on L̃Γ by the formula ψ(v) = ϕ(π(v))‖v‖it. Then therelation for ϕ an be written as
∀γ ∈ S, ψ(γv) = eiθψ(v).Suppose that t 6= 0 and put log ̺ = 2π/|t|. Then additionally we have

ψ(±̺kv) = ψ(v) and the ondition ψ(λv) = ψ(v) for some v ∈ L̃Γ and some
λ ∈ R∗

+ implies that λ = ±̺k, where k ∈ Z.Let c be any of the values of ψ and put Lc = ψ−1({c}) ⊂ L̃Γ . Then, sine
ψ is ontinuous, Lc is a non-empty losed subset of L̃Γ whih satis�es

∀γ ∈ S, γ(Lc) ⊂ Lceiθ .For every λ ∈ H̺, whih is the group of homotheties of the form ±̺k, k ∈ Z,we also have
λLc = Lc.If now u ∈ End(Rd) satis�es u = limk ̺

−nkγk with γk ∈ Γ, ̺−1 ≤ ‖u‖ < 1,then we have |detu| = limk ̺
−nkd = 0 and u(Lc) ⊂ Lceiα ∪ {0} with α ∈ R.From ondition (H2) we an hoose γk = γk ∈ Γ with W = Keru 6= 0having odimension 1. Sine Imu = Rvγ = Ra, a 6= 0, we �nd that u(Lc) ⊂

H̺a ∪ {0}. Sine u−1(a) = b + W with b ∈ Rd \ {0} we dedue that Lc ⊂
W ∪H̺(b+W ). It follows that, in the quotient spae Rd/W, Lc is projetedonto a set whih is ountable and H̺-invariant. If Wi, 1 ≤ i ≤ r, is a familyof suh subspaes then ⋂r

i=1Wi has the same property. In fat V/⋂r
i=1Wian be identi�ed with the diagonal subspae of V/W1 × · · · × V/Wr, andso the projetion of Lc into V/⋂r

i=1Wi an be identi�ed with a subset ofthe produt of the projetions of Lc. Hene, suh a projetion is ountableand H̺-invariant. Sine the intersetion of any family of subspaes withthe above properties is a �nite intersetion, there exists a unique minimalsubspae W0 whih has these properties. This subspae is unhanged when
c is replaed by ceiα. As a onsequene, the ondition γ(Lc) ⊂ Lceiθ for
γ ∈ Γ implies that γ(W0) = W0. Sine π(Lc) = LΓ and LΓ is unountable(see Lemma 5.1), W0 is proper. This ontradits the irreduibility of Γ, andso t = 0, e−iθϕ(γ.x) = ϕ(x) for all x ∈ LΓ and γ ∈ S. Therefore, forevery n, all γi ∈ S, and all x ∈ LΓ we have e−inθϕ(γ1 . . . γn.x) = ϕ(x). Sine
Γ =

⋃∞
n=0 S

n satis�es (H2), we dedue that ϕ ≡ onst on LΓ , and eiθ = 1.In fat, suppose that there are two di�erent points x and y in LΓ suh that
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ϕ(x) 6= ϕ(y). Then

ϕ(x) = e−inθϕ(γ1 . . . γn.x) 6= e−inθϕ(γ1 . . . γn.y) = ϕ(y)and so,(4.7) 0 < |ϕ(x) − ϕ(y)| = |ϕ(γ1 . . . γn.x) − ϕ(γ1 . . . γn.y)|for every n ∈ N and all γi ∈ S. By proximality of Γ on P(V ) (see Proposition2.3) there exists a sequene {γi}
∞
i=1 suh that

lim
n
δ(γ1 . . . γn.x, γ1 . . . γn.y) = 0.By ontinuity of ϕ we a get a ontradition to (4.7).Now we onsider the set SΓ = {log |λg| : g ∈ ∆Γ}, the so-alled spetrumof Γ ([8℄).The following orollary, whih is a omplement to Proposition 4.6 above,lari�es the onnetions between the aperiodiity hypotheses on Γ onsideredby Kesten in [22℄, Guivar'h and Raugi in [17℄ (Proposition 3 and Lemmap. 45), Lalley in [23℄ (Corollaries 11.3, 11.4) and the geometri onditionsonsidered by Eberlein in [11℄ and Dal'bo in [8℄ in the ontext of lengths oflosed geodesis in the ase of negative urvature. For an extension of theseresults and their use in the more general setting of semisimple groups see [3℄and [19℄. The orollary below also explains why aperiodiity onditions arenot expliitly stated in Theorem 1.1, as in [4℄ and [26℄.Corollary 4.8. Suppose Γ ⊂ GL(d,R) is a subsemigroup whih satis-�es (H1), (H2) and de�ne SΓ = {log |λg| : g ∈ ∆Γ}. Then SΓ generates adense subgroup of R.For the proof, whih uses standard arguments of thermodynami for-malism, we need three lemmas, the �rst of them being well known (see [5,pp. 90�94℄).Lemma 4.9. Let A be a �nite set , Ω the ompat metri spae AN, and θthe shift transformation on Ω given by (θω)k = ωk+1, k ∈ N. For a funtion

ϕ on Ω de�ne
Snϕ(ω) =

n−1∑

k=0

ϕ ◦ θk(ω).Suppose ϕ is Hölder ontinuous, and for any periodi point ω of period p,the sum Spϕ(ω) belongs to Z. Then there exists a Hölder Z-valued funtion
ϕ′ on Ω and a Hölder funtion ψ suh that ϕ = ϕ′ + ψ − ψ ◦ θ.Lemma 4.10. Suppose g, h ∈ GL(d,R) are suh that h is proximal and
g.h+ 6∈ V <

h . Then, for n = 2p large, ghn is proximal and
lim
n

(ghn)+ = g.h+, lim
n
V <
ghn = V <

h .



Semigroup ations on tori 51Proof. We onsider the sequene of linear maps un = hn/‖hn‖ and ob-serve that un onverges towards a map πh whih is proportional to the pro-jetion on Rvh along the subspae V <
h . Hene gun onverges towards gπh.We have Im(gπh) = Rg.h+, Ker(gπh) = V <

h .Hene, if g.h+ 6∈ V <
h , then gπh is ollinear to a projetion onto a one-dimen-sional subspae. Sine gπh has a simple dominant eigenvalue, the same is truefor gun for n large. Therefore, for n large, gun is proximal, and moreover,we have the required onvergene.Lemma 4.11. Suppose Γ ⊂ GL(V ) is a subsemigroup and satis�es on-ditions (H1), (H2). Then there exist a, b ∈ ∆Γ suh that a+ 6= b+, V <

a 6= V <
band a+ 6∈ V <

b , b
+ 6∈ V <

a .Proof. We onsider the transposed semigroup Γ t ating on the dual spae
V ∗ and the projetive spae P(V ∗). From Remark 2.1(iii) onditions (H1) and
(H2) remain valid for Γ t and we an onsider the orresponding asymptotiset LΓ t = L∗

Γ . We �x a ∈ ∆Γ and observe that we an �nd b ∈ ∆Γ suhthat V <
b 6= V <

a , a
+ 6∈ V <

b . Otherwise there would be a dense subset of L∗
Γontained in the union of the two projetive subspaes de�ned by V <

a and
a+ in P(V ∗). Hene L∗

Γ itself would be ontained in suh a union. But, fromLemma 5.1 below, this is impossible. If b+ 6∈ a+ ∪ V <
a , we have found therequired pair (a, b). If not, we onsider g ∈ Γ and the sequene gbn, n ∈ 2N.In view of Lemma 2.2 we an hoose g ∈ Γ suh that

g.b+ 6∈ V <
b ∪ V <

a ∪ a+.Then we an apply Lemma 4.10 and replae b by gbn = b′ for n large. Underthis ondition, V <
b′ is lose to V <

b and the relations are still satis�ed. Sine
(b′)+ is lose to g.b+ and g.b+ 6∈ a+ ∪ V <

a , the ondition (b′)+ 6∈ a+ ∪ V <
a isalso satis�ed. Hene, we an take (a, b′) as the required pair.Proof of Corollary 4.8. Sine Γ satis�es (H1) and (H2) we an hoose

a1, a2 in Γ aording to Lemma 4.11. Let C1, C2 be losed and disjointneighborhoods of a+
1 , a

+
2 in P(V ) suh that (C1 ∪C2)∩ (V <

a1
∪ V <

a2
) = ∅, andlet o be a point outside V <

a1
∪ V <

a2
∪ C1 ∪ C2. Then, for i = 1, 2,

lim
n
ani .(C1 ∪ C2) = a+

i , lim
n
ani .o = a+

i .If we take n large and set a = an1 , b = an2 , we have(4.12) a.o ∈ C1, b.o ∈ C2, a.(C1 ∪ C2) ⊂ IntC1, b.(C1 ∪ C2) ⊂ IntC2.It follows from (4.12) that the semigroup Γ (a, b) generated by a, b is free. Inorder to prove Corollary 4.8 we an suppose Γ = Γ (a, b). We onsider thetrivial metri δ on {a, b} and endow Ω = {a, b}N with the metri δ(ω, ω′) =∑∞
k=1 2−kδ(ωk, ω

′
k). We de�ne a homeomorphism z between Ω and LΓ as



52 Y. Guivar'h and R. Urbanfollows. We observe that if ω = (ak)k∈N and ak ∈ {a, b}, then it follows from(4.12) that the sequene a1 . . . an.o onverges to z(ω) ∈ C1 ∪C2. It is easy toverify that z is a bi-Hölder homeomorphism, hene we an transfer propertiesof (Ω, θ) to the ation of Γ on LΓ . We onsider z(ω) as a unit vetor in Vand observe that, by de�nition of z,
a1(ω)z(θω) = ε(ω)‖a1(ω)z(θω)‖z(ω),with ε(ω) = +1 or −1. It follows that, if we set

ϕ(ω) = log ‖a1(ω)z(θω)‖, Snϕ(ω) =
n−1∑

k=0

ϕ(θkω),we have, with γ = a1 . . . an−1 ∈ Γ and x = z(θnω) ∈ LΓ ,

Snϕ(ω) = log ‖γx‖.Given a Hölder funtion ψ on Ω we de�ne a Hölder funtion ψ on LΓ by
ψ[z(ω)] = ψ(ω) and we also have ψ(ω)−ψ(θnω) = ψ(γ.x)−ψ(x). In parti-ular, if ω ∈ Ω is periodi with period p (θpω = ω), then z(ω) is a dominanteigenvetor of γ = a1 . . . ap−1 and the orresponding eigenvalue λγ satis�es

log |λγ | = Spϕ(ω).If SΓ does not generate a dense subgroup of R, then for some positive c wehave SΓ ⊂ cZ, hene Spϕ(ω) ∈ cZ for any periodi point ω and we an applyLemma 4.9 to the funtion (1/c)ϕ. In partiular, the funtion e2iπϕ/c an bewritten in the form e2iπ(ψ−ψ◦θ), where ψ is a Hölder funtion on Ω. We ande�ne ψ on LΓ as above and write u(x) = e2iπψ. Then u is ontinuous andwe obtain, with γ = a1 . . . an, x = z(θnω),
‖γx‖2iπ/c =

u(γ.x)

u(x)
.We extend u to P(V ) as a ontinuous funtion, again denoted by u. Thenwe have

∀x ∈ LΓ , ∀γ ∈ Γ, ‖γx‖2iπ/c =
u(γ.x)

u(x)
.In view of Proposition 4.6, this implies 2iπ/c = 0, u = 1, and this is impos-sible.5. Random walks on a vetor spae and its fator spaes. In thissetion, relying strongly on [13℄, [17℄ (see also [18℄), we develop the randomwalk approah to the study of Γ -orbits on V \{0} and other related Γ -spaes.The main new results are Theorems 5.10 and 5.19 and their orollaries.They give Theorems 1.3 and 1.2 of the Introdution. In partiular, Corollary5.22 is one of the main tools for the study of Γ -orbits on the torus Td if

Γ ⊂ Minv(d,Z), i.e., for Theorem 1.1.



Semigroup ations on tori 53Let µ be a probability measure on G = GL(V ), and Γµ the losed sub-semigroup generated by the support Sµ of µ. We denote by M1(X) the setof probability measures on a given Polish spae X. We set Ω = SN
µ and weonsider the probability measure Pµ = µ⊗N on Ω; the shift θ on Ω given by

(θω)k = ωk+1 (k ∈ N) preserves Pµ and the omponents ωk = gk(ω) of ωare i.i.d. G-valued random variables of law µ. From the Markov�Kakutanitheorem, there exists a probability measure ν on P(V ) whih is µ-stationary,i.e.,
µ ∗ ν =

\
g.ν dµ(g) = ν.We are going to establish that [P(V ), ν] is a µ-boundary (see [13℄), i.e.,

lim
n
g1g2 . . . gn.ν = δzω ,where zω ∈ P(V ). This will allow us to derive some properties of the typialsequenes

Sn = gngn−1 . . . g1 and Xn = g1g2 . . . gn,and of the transposed maps Stn and Xt
n.Lemma 5.1. Assume that Γ = Γµ satis�es ondition (H1), and let ν bea µ-stationary measure. Then ν gives zero mass to every projetive subspae.Furthermore, if Γ also satis�es (H2), then LΓ is not ontained in a ountableunion of subspaes.Proof. Let W be a projetive subspae of minimal dimension suh that

ν(W ) > 0. De�ne(5.2) σ =
∑

k≥1

(1/2k)µ∗k

and onsider the funtion f(g) = g.ν(W ) = ν(g−1.W ). This funtion is
µ-harmoni, i.e. satis�es\

f(gh) dµ(h) =
\
f(gh) dσ(h) = f(g),and reahes its maximum. In fat, the hypothesis on W gives ν(g.W ∩

g′.W ) = 0 if g.W 6= g′.W, so the set of g.W suh that ν(g.W ) > δ is �nite forevery δ. Then if f(g0) = supg∈G f(g), the equation f(g0) =
T
f(g0h) dσ(h)gives f(g0h) = f(g0), σ-a.e. Let E be the set of subspaes W ′ = g−1.W suhthat ν(W ′) = f(g0). Then, from above, E is �nite and Γ−1-invariant. Henethe strong irreduibility of Γ gives a ontradition.If (H2) is also satis�ed by Γ, then LΓ is well de�ned. From the Markov�Kakutani theorem, we know that there exists a µ-stationary measure λ suhthat λ(LΓ ) = 1, hene Sλ ⊂ LΓ . Sine λ gives zero measure to every sub-spae, the same is true for a ountable union of subspaes, hene LΓ annotbe ontained in suh a union.



54 Y. Guivar'h and R. UrbanProposition 5.3. Let ν be a µ-stationary measure on P(V ) and η be asin (5.2). Then the sequene g1 . . . gn.ν onverges Pµ-a.e. and for Pµ⊗η-a.e.
(ω, g) ∈ Ω ×G we have

lim
n
g1(ω) . . . gn(ω).ν = lim

n
g1(ω) . . . gn(ω)g.ν.Proof. For a ontinuous funtion ϕ, we set Fϕ(g) = g.ν(ϕ) and we ob-serve that the relation Tg.ν dµ(g) = ν gives TFϕ(gh) dµ(h) = Fϕ(g), andonsequently Fϕ(Xn) = g1 . . . gn.ν(ϕ) is a bounded martingale. This martin-gale onverges and, letting ϕ vary in a dense ountable part of C(P(V )), weobtain the onvergene of g1 . . . gn.ν. In order to obtain the seond laim, itsu�es to show that Fϕ(Xng)− Fϕ(Xn) onverges to zero Pµ ⊗ µ∗r-a.e. forevery r ≥ 1. But\

|Fϕ(Xng) − Fϕ(Xn)|
2 dµ∗r(g) dP(ω) = µ∗n+r(F 2

ϕ) − µ∗n(F 2
ϕ)beause TFϕ(Xng) dµ

∗r(g) = Fϕ(Xn). One dedues that\\p∑

n=0

|Fϕ(Xng) − Fϕ(Xn)|
2 dP(ω) dµ∗r(g) ≤ 2r‖ϕ‖2

∞for every r ≥ 1; this proves the onvergene P ⊗ µ∗r-a.e. of the series∑∞
n=0 |Fϕ(Xng)−Fϕ(Xn)|

2 and onsequently the onvergene of Fϕ(Xng)−
Fϕ(Xn) to zero.In what follows we are going to use onepts introdued in [13℄. Therefore,we reall them brie�y.To every linear transformation of Rd is assoiated a quasi-projetive trans-formation ating on the lines of Rd not ontained in the kernel of the trans-formation. So we have maps of Pd−1 de�ned outside a projetive subspae:these maps are ontinuous outside the exeptional subspae and are limits,outside this subspae, of a sequene of projetive transformations. Further-more, from every sequene of projetive transformations, we an extrat asubsequene onverging to a quasi-projetive one, outside a projetive sub-spae.Theorem 5.4. Let ν be a µ-stationary measure on P(V ). Assume that
Γ = Γµ satis�es onditions (H1) and (H2). Then we have Pµ-a.e.

lim
n
g1g2 . . . gn.ν = δzω .In partiular ν is unique and its support is LΓ .Proof. The proof goes as in [17℄. For a �xed ω, we onsider the relationgiven by Proposition 5.3,

θ(ω) = lim
n
g1(ω) . . . gn(ω).ν = lim

n
g1(ω) . . . gn(ω)g.ν,



Semigroup ations on tori 55whih is true for Pµ ⊗ η-a.e. (ω, g). One an extrat from g1(ω) . . . gn(ω) asubsequene onverging outside a projetive subspae to a quasi-projetivemap τ(ω). As ν gives zero measure to any projetive subspae (Lemma 5.1),from Proposition 5.3 above one has τ(ω).ν = τ(ω)γ.ν = θ(ω) for η-a.e. γ, andtherefore for all γ ∈ Γ . As Γ satis�es (H1) and (H2), one an �nd a sequene
γn ∈ Γ suh that γn.ν onverges to a Dira measure δz with z belonging tothe open set of ontinuity of τ(ω). Then, in the limit θ(ω) = τ(ω).δz. Thisproves that θ(ω) is a Dira measure δzω . The law of the random variable z isneessarily ν by the martingale onvergene theorem. Sine z is independentof the hoie of the µ-stationary measure ν we get the uniqueness of ν.Clearly, Sν is losed and Γ -invariant. Hene, Proposition 4.5 shows that
Sν ⊃ LΓ . The Markov�Kakutani theorem and uniqueness of ν give, as inthe proof of Lemma 5.1, ν(LΓ ) = 1, hene Sν = LΓ .Corollary 5.5. Let ̺ (̺∗ resp.) be a probability measure on P(V ) (P(V ∗)resp.) whih gives zero mass to every projetive subspae. Then we have Pµ-a.e.

lim
n
g1 . . . gn.̺ = δzω (lim

n
gt1 . . . g

t
n.̺

∗ = δz∗ω resp.).In partiular
lim
n
g1 . . . gn.m = δzω (lim

n
gt1 . . . g

t
n.m

∗ = δz∗ω resp.),where m (m∗ resp.) is the K-invariant probability measure on P(V ) (P(V ∗)resp.)Proof. We observe that g1 . . . gn/‖g1 . . . gn‖ ∈ End(V ) has norm one, andonsider an arbitrary onvergent subsequene,
u = lim

k

g1 . . . gnk

‖g1 . . . gnk
‖
.Clearly u 6= 0, sine ‖u‖ = 1. We note that u de�nes a ontinuous map from

P(V )\Keru into P(V ).We will denote it again by u, and observe that, sine
̺(Keru) = 0, u.̺ is well de�ned, and from dominated onvergene,

u.̺ = lim
k
g1 . . . gnk

.̺.In partiular, from Theorem 5.4 and Lemma 5.1, u.ν = δzω . This means thatthe linear map u has rank one and satis�es u(P(V ) \ Keru) = δzω . Hene
u.̺ = δzω . The onvergent subsequene hosen above was arbitrary, hene

lim
n
g1 . . . gn.̺ = δzω .In partiular, we have the above onvergene for ̺ = m.The results for P(V ∗), ̺∗, m∗, z∗ω follow from Γµ∗ = (Γµ)

t and Remark2.1(iii).



56 Y. Guivar'h and R. UrbanReall m is the K-invariant probability measure on P(V ), where K =
SO(d,R). One says that a sequene fn ∈ GL(d,R) has the ontration prop-erty on P(V ) towards z if the sequene of measures fn.m on P(V ) onvergesweakly towards δz. A point z ∈ P(V ) will be identi�ed with a vetor of normone, de�ned up to sign.We will use, as in [17℄ and [18℄, theKA+K deomposition of g∈GL(d,R),

g = kak′, k and k′ are orthogonal matries and A+ ∋ a = diag(a1, . . . , ad)with a1 ≥ · · · ≥ ad. Let (e1, . . . , ed) denote the anonial basis of Rd. Inpartiular, if g ∈ SL(d,R) then k, k′ ∈ K = SO(d,R) and a ∈ A+ =

{diag(a1, . . . , ad) : a1 ≥ · · · ≥ ad > 0 and ∏d
i=1 a

i = 1}.If one writes the polar deomposition of fn as fn = knank
′
n, where

kn, k
′
n ∈ K, a ∈ A+, one sees that the ontration property is equivalentto ain = o(a1

n), 1 < i ≤ d, limn kn.e1 = z.In the proposition below and its orollary, the point z ∈ P(V ∗) is onsid-ered as a unit vetor, hene |z(x)| is well de�ned for x ∈ V.Proposition 5.6. Assume that fn ∈ GL(V ) is a sequene suh that f tnhas the ontration property on P(V ∗) towards z ∈ P(V ∗). Then for any
x, y ∈ P(V ),

lim
n

‖fn(x)‖

‖fn‖
= |z(x)|, lim

n
z(x)z(y)

δ(fn.x, fn.y)

δ(x, y)
= 0.The seond onvergene is uniform when x, y belong to a ompat subset of

P(V ) \Ker z. If fn ∈ SL(V ), then limn ‖fn(x)‖ = +∞ for every x 6∈ Ker z.Proof. Reall that the distane between u = π(u) and v = π(v) in P(V )is equal to δ(u, v) = ‖u ∧ v‖/‖u‖‖v‖.One writes fn = knank
′
n as above, with kn, k′n ∈ K and an ∈ A+. Fromthe ontration property of f tn we get

lim
n
k′−1
n .e1 = z, ain = o(a1

n) (i > 1).Writing x =
∑d

i=1 xiei, we get
‖fnx‖

2 = ‖ank
′
nx‖

2 =
d∑

i=1

(ain)
2|〈k′nx, ei〉|

2 ≥ (a1
n)

2|〈k′nx, e1〉|
2.

Sine the norm of fn is a1
n, we get

lim
n

‖fnx‖
2

‖fn‖2
= lim

n
|〈x, k′−1

n e1〉|
2 + lim

n

∑

i>1

(
ain
a1
n

)2

|〈k′nx, e1〉|
2

= lim
n

|〈x, k′−1
n e1〉|

2 = |z(x)|2.
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‖fn(x) ∧ fn(y)‖

2 =
∑

i6=j

(aima
j
n)

2|〈k′n(x ∧ y), ei ∧ ej〉|
2,

‖fn(x) ∧ fn(y)‖ ≤ d2a1
na

2
n‖x ∧ y‖.Therefore,

δ(fn.x, fn.y)

δ(x, y)
=

‖fnx ∧ fny‖

‖fnx‖ ‖fny‖ ‖x ∧ y‖
≤ d2 a

2
n

a1
n

1

|〈k′nx, e1〉〈k
′
ny, e1〉|and

lim
n

|z(x)| |z(y)|
δ(fn.x, fn.y)

δ(x, y)
= 0.The uniformity of the required onvergene is lear from the previous formulaif z(x)z(y) 6≡ 0.In order to obtain the last assertion, it su�es to show, in view of the�rst statement, that ‖fn‖ onverges to ∞. The relation a2

n = o(a1
n) implies

det fn =
∏d
i=1 a

i
n = o(a1

n). Sine det fn = 1, we onlude that limn ‖fn‖ =
limn a

1
n = ∞.Now we are able to get information about the vetor Sn(ω)x, if x is �xed,as follows:Corollary 5.7 (see [17, 18℄). If µ, z∗ω are as in Theorem 5.4 and Corol-lary 5.5, then, as n tends to in�nity , we have uniformly in x, y ∈ P(V ),

lim
n
Eµδ(Sn.x, Sn.y) = 0,and Pµ-a.e.

lim
n

‖Snx‖

‖Sn‖
= |z∗ω(x)|.If µ ∈M1(SL(V )), then, for every x ∈ V and Pµ-a.e., limn ‖Snx‖ = ∞.Proof. Note that Corollary 5.5 implies that Stn(ω) has the ontrationproperty towards z∗ω. Hene Proposition 5.6 implies

lim
n

‖Snx‖

‖Sn‖
= |z∗ω(x)|.For the �rst onvergene it su�es to show that for any sequene xn, yn ∈

P(V ) we have Pµ-a.e.(5.8) lim
n
δ(Sn.xn, Sn.yn) = 0.Then the �rst formula will follow from dominated onvergene.One an suppose that limn xn = x and limn yn = y. From Corollary5.5 and Lemma 5.1, one knows that the law of z∗ω = limn S

t
n.m

∗ gives zeromeasure to every subspae. Hene, for almost every ω ∈ Ω, x and y are not



58 Y. Guivar'h and R. Urbanin Ker z∗ω, and the same is true for xn, yn for large n. Then (5.8) follows fromthe seond formula in Proposition 5.6.The last assertion is proved as follows. If x is �xed, then Pµ-a.e. as above
|z∗ω(x)| 6= 0, hene from the �rst formula in Proposition 5.6 it follows that
limn ‖Snx‖ = ∞.Remark 5.9. In [18℄ (see Theorem 4.4) the �rst and the last onlusionof Corollary 5.7 is proved under a weaker hypothesis, namely validity of (H2)is replaed by non-relative ompatness of Γ = Γµ. Suh a result an also bededued from Corollary 5.7, using wedge produts.Now we are going to study stationary measures on fator spaes of V \{0}.Fix c > 1 and denote by Pc(V ) = Pd−1

c the fator spae of V \ {0} by themultipliative subgroup
±cZ := {±cn : n ∈ Z}of R∗ and denote by Tc the 1-torus R∗/± cZ.We an onsider the projetion from V \ {0} to P(V ) × Tc given by

v 7→ (v, ‖v‖iα),where α = 2π/log c and we observe that Pc(V ) is then naturally identi�edwith P(V )× Tc. Hene a point of Pc(V ) will be written as v = (v, z), where
v ∈ P(V ) is the projetion of v and z = ‖v‖iα. The ation of g ∈ G = GL(V )on Pc(V ) an then be written as

g.v = g.(v, z) = (g.v, z‖gv‖iα).

R∗ ats also on this spae and the two ations ommute. The orrespondingformula is
t.(v, z) = (v, z|t|iα), t ∈ R∗.We denote by λc = dz the normalized Lebesgue measure on Tc andobserve that every measure of the form ν ⊗ λc, where ν ∈ M1(P(V )), isinvariant under the ation of R∗ on Pc(V ). Furthermore, if µ ∈ M1(G) and

ν ∈M1(P(V )) is µ-stationary, then ν⊗λc is also µ-stationary. If LΓ ⊂ P(V )is the asymptoti set of Γ (Γ = Γµ satis�es onditions (H1) and (H2)), then
LΓ (c) = LΓ × Tc is a losed and Γ -invariant subset of P(V ) × Tc.Theorem 5.10. Assume that µ ∈ M1(G) is suh that Γ = Γµ satis�esonditions (H1) and (H2). Then, with the above notations, for every ψ ∈
C(Pc(V )) the sequene µ̌∗n ∗ ψ onverges uniformly to (ν ⊗ λc)(ψ), where νis the µ-stationary measure on P(V ). Furthermore, for any v ∈ Pc(V ) wehave the following a.e. onvergene:

lim
n
δc(Sn(ω).v, LΓ (c)) = 0,



Semigroup ations on tori 59where δc is the distane on P(V ) × Tc given by(5.11) δc(v, v′) = δ(v, v′) + |z − z′|,and v = (v, z), v′ = (v′, z′).Corollary 5.12. Assume Γ ⊂ G is a subsemigroup of G whih satis�esonditions (H1) and (H2) and c > 1 is �xed. Then the losed Γ -invariantsubset LΓ (c) = LΓ × Tc of Pc(V ) is the unique minimal set. Furthermore,any µ ∈ M1(G) suh that Γ = Γµ satis�es onditions (H1) and (H2) has aunique stationary measure on Pc(V ).Clearly, Theorem 5.10 and its orollary imply Theorem 1.3 of the Intro-dution.For the proof of Theorem 5.10 we need three lemmas.Lemma 5.13. If µ is as in Theorem 5.10 then for x, y ∈ V,

lim
y→x

lim sup
n

Eµ∣∣∣∣(‖Snx‖

‖Sny‖

)iα

− 1

∣∣∣∣ = 0.Proof. From Corollary 5.7 we know that if xn → x and yn → y, then
lim
n

‖Snxn‖

‖Snyn‖
=

|zω(x)|

|zω(y)|
.Hene, from dominated onvergene,

lim sup
n

Eµ∣∣∣∣(‖Snxn‖

‖Snyn‖

)iα

− 1

∣∣∣∣ = Eµ∣∣∣∣∣∣∣∣zω(x)

zω(y)

∣∣∣∣
iα

− 1

∣∣∣∣.The formula in the lemma orresponds to the speial ase xn = x, y = x.Lemma 5.14. If µ is as in Theorem 5.10, then for every ψ ∈ C(Pc(V ))the sequene of funtions µ̌∗k ∗ ψ is uniformly equiontinuous.Proof. One onsiders the distane δc on Pc(V ) given by (5.11). Then, inview of the form of the ation of G on Pc(V ),
δc(Sn.v, Sn.v

′) = δ(Sn.v, Sn.v′) +

∣∣∣∣
(
‖Snv‖

‖Snv′‖

)iα

− 1

∣∣∣∣ + |z − z′|.From the proof of Lemma 5.13, we get
lim
n
δc(Sn.v, Sn.v

′) =

∣∣∣∣
∣∣∣∣
〈v, z∗ω〉

〈v′, z∗ω〉

∣∣∣∣
iα

− 1

∣∣∣∣ + |z − z′|.Hene, by dominated onvergene,(5.15) lim sup
n

Eµδc(Sn.v, Sn.v′) = |z − z′| +Eµ(∣∣∣∣
〈v, z∗ω〉

〈v′, z∗ω〉

∣∣∣∣
iα

− 1

)
.The right hand side of this formula is uniformly small when δc(v, v′) is small.Now, if ψ ∈ C(Pc(V )) is Lipshitz, with oe�ient [ψ], then

|µ̌∗n ∗ ψ(v) − µ̌∗n ∗ ψ(v′)| ≤ Eµ[δc(Sn.v, Sn.v′)][ψ].



60 Y. Guivar'h and R. UrbanSine Lipshitz funtions are dense in C(Pc(V )) the above inequality and(5.15) imply equiontinuity of the sequene µ̌∗n ∗ ψ(v) for ψ ∈ C(Pc(V )).Lemma 5.16. Suppose θ ∈ R, η ∈ C(P(V )) and η 6≡ 0 and satis�es theequation(5.17) \
η(g.v)‖gv‖iα dµ(g) = eiθη(v).Then α = 0, θ = 0 and η = const on P(V ).Proof. Passing to absolute values in (5.17) we get(5.18) |η(v)| ≤

\
|η(g.v)| dµ(g).LetM = {v ∈ P(V ) : |η(v)| = ‖η‖∞}. Then from (5.18) the ondition v ∈Mimplies g.v ∈ M µ-a.e. Hene from ontinuity of |η|, we have g.M ⊂ M forevery g ∈ Sµ and Γµ.M ⊂ M. Sine LΓ is the unique minimal subset in

P(V ) (see Proposition 4.5), we get LΓ ⊂ M. In partiular, |η(v)| = ‖η‖∞for every v ∈ LΓ . From strong onvexity of the unit dis in C and (5.17) weget
∀v ∈ LΓ , ∀g ∈ Sµ, η(g.v)‖gv‖iα = eiθη(v).From Proposition 4.6 it follows that α = 0, θ = 0 and η = onst on LΓ .Now on P(V ) we have \

η(g.v) dµ(g) = η(v).We an suppose η to be real and we onsider the set M ′ (M ′′ resp.) ofpoints where η attains its maximum (minimum resp.). As above we obtain
M ′ ⊃ LΓ . Replaing η by −η, we also obtain M ′′ ⊃ LΓ , hene M ′ = M ′′.We onlude that

∀ v ∈ P(V ), η(v) = onst.Proof of Theorem 5.10. We use the following result of [28℄. Let P bea Markov operator on the ompat metri spae X, whih preserves C(X)and is equiontinuous, i.e., for any ψ ∈ C(X), the sequene P kψ, k ∈ N, isequiontinuous. Then if 1 is the only eigenvalue of modulus one in C(X),the sequene P kψ onverges uniformly. Here we have P (x, ·) = µ ∗ δx, and
X = Pc(V ). From Lemma 5.14 we know that P is equiontinuous. Supposethat η ∈ C(X) with η 6≡ 0 satis�es Pη = eiθη, i.e.,\

η(g.v) dµ(g) = eiθη(v)for any v in Pc(V ). Now we an onsider the Fourier oe�ients (k ∈ Z)
ηk(v) =

\
η(v, z)zk dλc(z)and we obtain \

ηk(g.v)‖gv‖
ikα dµ(g) = eiθηk(v).



Semigroup ations on tori 61From Lemma 5.16 we get eiθ = 1, ηk(v) = 0 for k 6= 0, η0(v) ≡ onst. Hene
η = onst on Pc(V ). Now the result of [28℄, realled above, gives the uniformonvergene of the sequene ψn = µ̌∗n ∗ ψ.Clearly, if limn ψn = η, one has Pη = µ̌∗η = η and η is ontinuous. Fromthe above result, we dedue η ≡ onst. Furthermore,

η = (ν ⊗ λc)(η) = lim
n

(ν ⊗ λc)(ψn) = (ν ⊗ λc)(ψ).Hene we obtain the formula η = (ν ⊗ λc)(ψ) and the required onvergene.In order to prove the seond statement of the theorem, notie that sine
LΓ (c) is the inverse image of LΓ in Pc(V ) we have

δc(Sn(ω).v, LΓ (c)) = δ(Sn(ω).v, LΓ ).Proposition 5.6 implies that, given v and w in P(V ), we have the a.e. on-vergene of the sequene δ(Sn(ω).v, Sn(ω).w) to zero. If we hoose w in LΓ ,then Sn(ω).w ∈ LΓ , hene
δ(Sn(ω).v, LΓ ) ≤ δ(Sn(ω).v, Sn(ω).w).It follows that limn δ(Sn(ω).v, LΓ ) = δ(Sn(ω).v, Sn(ω).w) = 0.Proof of Corollary 5.12. Suppose ξ ∈M1(Pc(V )) is another µ-stationarymeasure. Sine ψn = µ̌∗n ∗ ψ onverges uniformly to (ν ⊗ λc)(ψ), we get
ξ(lim

n
ψn) = lim

n
ξ(µ̌∗n ∗ ψ) = ξ(ψ).Hene, (ν ⊗ λc)(ψ) = ξ(ψ), ν ⊗ λc = ξ and the uniqueness follows.Suppose ∆ is a losed Γµ-invariant subset of Pc(V ). Then from the Mar-kov�Kakutani theorem, there is a µ-stationary measure arried by ∆. Fromthe uniqueness of the stationary measure we get

∆ ⊃ supp ν ⊗ λc = LΓ (c).Hene LΓ (c) is the unique Γ -minimal subset of Pc(V ).Theorem 5.19. Suppose that Γ is a subsemigroup of GL(d,R), d > 1,satisfying onditions (H0), (H1) and (H2), and let Σ be Γ -invariant subsetof Ṽ \ {0} suh that 0 is a limit point of Σ. Then(5.20) Σ ⊃ L̃Γ /{Id, σ}.Proof. We denote by Σ′ the inverse image of Σ in V \ {0}. Let u0 be a
γ-dominant vetor as in Proposition 4.1, that is, satisfying(5.21) γZu0 := {γku0 : k ∈ Z} ⊂ Σ′.Applying Corollary 5.12 with c = λ, where λ is the unique eigenvalue of γ ofmaximum modulus, greater than 1 sine γ is quasi-expanding, we �nd thatif u0 denotes the projetion of u0 on Pc(V ) then Γu0 ⊃ LΓ (c). It followsthat if y ∈ LΓ (c) is given, then there is a sequene {γn} ⊂ Γ suh that γn.u0



62 Y. Guivar'h and R. Urbanonverges to y. This implies that there is a sequene {pn} of integers suhthat λpnγnu0 → y ∈ V \ {0}, whih implies
γnλ

pnu0 = γnγ
pnu0 → y.But γpnu0 ∈ Σ′ by (5.21). Thus y ∈ Σ′. Sine y was an arbitrary point from

LΓ (c) we onlude that L̃Γ ⊂ Σ′ and (5.20) is proved.Clearly, Theorem 5.19 gives Theorem 1.2 of the Introdution.Theorem 5.19 will be used below in the following speial ase. In view ofRemark 2.1(ii) ondition (H0) is satis�ed in this ase.Corollary 5.22. Let Γ be a subsemigroup of Minv(d,Z), d > 1, satis-fying (H1) and (H2). Let Σ be a Γ -invariant subset of Ṽ \ {0} suh that 0is a limit point of Σ. Then Σ ⊃ L̃Γ /{Id, σ}.Theorem 5.19 does not give information on a general Γ -orbit losure
Γv, v ∈ Ṽ \ {0}, if 0 is not a limit point. On the other hand, Theorem5.10 and its orollary desribe the behavior of a general Γ -orbit in Pc(V ).Using more preise information on produts of random matries, i.e. therenewal theorem as in [19℄ (see also [22℄), one an go further and desribethe behavior at in�nity of a general orbit Γv ⊂ Ṽ \ {0} as follows. For any
c, d (1 ≤ c < d) we denote by Ṽ[c,d] ⊂ Ṽ \ {0} the �c-shell� Pd−1 × [c, d],and by L̃Γ,c ⊂ Ṽc := Pd−1 × [1, c] the losed subset LΓ × [1, c]. Then by themethods of [7℄ and [19℄ we an obtain the followingTheorem 5.23. Assume that the semigroup Γ ⊂ GL(d,R), d > 1, sat-is�es (H0), (H1) and (H2). With the above notations, for any c > 1 and
v ∈ Ṽ \{0} every luster value of the family of losed sets c−t(Γv∩ Ṽ[ct,ct+1])ontains L̃Γ,c.This an be interpreted as �thikness� at in�nity, in the diretion of L̃Γ ,of the orbit losure Γv ⊂ Ṽ .Theorems 5.19 and Corollary 5.22 an also be dedued from Theorem5.23.Remark 5.24. The onlusions in statements 5.19 to 5.23 are also validif d = 1, if one supposes the semigroup Γ of R∗ to be non-launary. The or-responding aperiodiity ondition in the statements above is automatiallysatis�ed if d > 1, beause of Corollary 4.8.6. Proof of Theorem 1.1. In order to prove the theorem, we use ideasof [12℄ and [4℄. The �rst step is to prove that if Σ ⊂ Td is a losed Γ -invariantsubset that ontains 0 ∈ Td as a limit point, then Σ = Td. Here we suppose
Γ ⊂ Minv(d,Z) and we apply Corollary 5.22 to the inverse image p−1(Σ) of
Σ in Rd.



Semigroup ations on tori 63In the general ase, we suppose Σ to be in�nite and we onstrut otherlosely related losed Γ -invariant subsets of Td whih ontain 0. Then weuse the speial ase above to get information on Σ and we onlude that
Σ = Td.6.1. The ase when 0 is a limit point of Σ. The statement Σ = Tdwill hold by Corollary 5.22 applied to p−1(Σ) if we are able to see that L̃Γontains at least one ray whih is not ontained in a rational subspae. Butthe set of rational subspaes is ountable and, by Lemma 5.1, LΓ is notontained in a ountable union of subspaes. The result follows.We an observe that the set L̃Γ is very large, sine it was proved in [6℄that LΓ has stritly positive Hausdor� dimension.6.2. The general ase. In order to show that the speial ase above isthe only one, we make use of previous ideas from [12℄ and [4℄.If γ ∈ Minv(d,Z) and m ∈ N is �xed we write

γ ≡ Id (mod m) ⇔ γ − Id = mA,with A ∈ M(d,Z) := {d× d matries with integer entries}.For a �xed m ∈ N de�ne
Γ (m) = {γ ∈ Γ : γ ≡ Id (mod m)}.We observe that Γ ats naturally on the �nite set (Z/mZ)d. We denote by

γ 7→ γ the orresponding homomorphism of Γ into the semigroup Λm,d ofmaps of (Z/mZ)d into itself and we write
Γm = {γ ∈ Λm,d : γ ∈ Γ}.The proof depends on the followingLemma 6.1. Assume that Γ ⊂ Minv(d,Z) is �nitely generated and satis-�es (H1) and (H2). Let m be a prime number not dividing the elements ofthe multipliative semigroup {det γ : γ ∈ Γ}. Then Γ ats on (Z/mZ)d as agroup of permutations and the semigroup Γ (m) = {γ ∈ Γ : γ ≡ Id (mod m)}satis�es (H1) and (H2).Proof. Here Z/mZ is a �nite �eld and for γ ∈ Γ, γ is an endomorphismof the vetor spae (Z/mZ)d. Then det γ is the ongruene lass of det γin Z/mZ. Sine m is a prime number not dividing det γ, we onlude that

det γ 6= 0, hene γ ∈ GL(d,Z/mZ). Thus Γm is a semigroup ontainedin the �nite group GL(d,Z/mZ); it follows that Γm is a group. We write
Γm = {ai : ai ∈ Γ, i = 1, . . . , q}, and we observe that the inverse of ai is ofthe form ai′ with ai′ ∈ Γ and 1 ≤ i′ ≤ q. Sine for every γ ∈ Γ, we have
γ = ai for some i, we get ai′γ = Id, ai′γ ∈ Γ (m).



64 Y. Guivar'h and R. UrbanAssume ondition (H1) is not satis�ed by Γ (m); then for some subspae
W ⊂ V, the orbit Γ (m)W is �nite, hene so is the set {ai′γW : ai′ ∈ Γm,
γ ∈ Γ, ai′γ = Id}. It follows that the set {γW : γ ∈ Γ} is �nite, and thisontradits ondition (H1) for Γ. Hene Γ (m) satis�es ondition (H1).Let γ ∈ Γ be a proximal element of Γ. Sine the group Γm is �nite, itfollows that for k = |Γm|, we have γk = Id, hene γk ∈ Γ (m). Clearly, γk isproximal.The following lemma will also be used. Its proof is analogous to thelassial ase of one endomorphism of Td (see for example [2℄). In this lemma,the torus Td is endowed with its normalized Haar measure, whih is Γ -invariant.Lemma 6.2. Assume Γ ⊂ Minv(d,Z) and Σ ⊂ Td is measurable, has pos-itive measure and satis�es ΓΣ ⊂ Σ. If any harater χ 6= Id has unbounded
Γ t-orbit , then Σ has measure 1; in partiular Γ is ergodi on Td.In order to prove Theorem 1.1, we an suppose Γ to be �nitely gener-ated. In fat, Proposition 2.6 implies that Γ ontains a �nitely generatedsemigroup Γ1 whih satis�es (H1) and (H2).Sine Σ is in�nite and losed, it ontains limit points. We have two ases.
Case 1: Some limit point of Σ is rational. So, let p/q be a limit pointof Σ. Then the set qΣ is Γ -invariant and has 0 as its limit point. Therefore,by onsiderations in Subsetion 6.1 we �nd that qΣ = Td. Hene, Σ haspositive Haar measure (greater than (1/q)d). Sine Γ satis�es (H1) and, byRemark 2.1(ii), also (H0), we infer from Remark 2.1(iv) that Γ t satis�es

(H0), hene Lemma 6.2 allows us to onlude that Σ has measure 1. Sine
Σ is losed, we have Σ = Td.

Case 2: Every limit point of Σ is irrational. Let Σa be the set oflimit points of Σ. For m �xed and prime not dividing the elements of the�nitely generated semigroup {det γ : γ ∈ Γ}, let Σ(m) ⊂ Σa be a minimal
Γ (m)-invariant set. Sine Σa onsists of irrational points, Σ(m) is in�nite,hene 0 is a limit point of the losed Γ (m)-invariant subset Σ(m) − Σ(m).From Lemma 6.1 above and onsiderations in Subsetion 6.1 we dedue that
Σ(m) − Σ(m) = Td. Therefore, for every r = (r1, . . . , rd) ∈ Zd there are xand y in Σ(m) suh that

x− y = (r1/m, . . . , rd/m) = r/m.De�ne
Σ(m)
r = {x ∈ Σ(m) : ∃y ∈ Σ(m), x− y = r/m}.Clearly, Σ(m)

r is losed and non-empty. Sine r/m is �xed by Γ (m) it follows



Semigroup ations on tori 65that Σ(m)
r is Γ (m)-invariant. Thus, by minimality of Σ(m) we get Σ(m) =

Σ
(m)
r . Therefore, for every m ∈ N, x ∈ Σ(m) and r ∈ Zd we have

x+ r/m = y ∈ Σ(m).Hene Σ(m) is invariant under translations in Td by r/m, r ∈ Zd. It followsthat Σ(m) is 1/m-dense, hene Σa is 1/m-dense for every prime m as above.We observe that the set of suh primes is in�nite, thus 1/m an be hosenarbitrarily small. Sine Σa is losed we have Σa = Td, whih ontraditsthe hypothesis. Thus, only Case 1 is possible, and hene Σ = Td.
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