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Weighted L
∞-estimates for Bergman projections

by

José Bonet (Valencia), Miroslav Englǐs (Praha)
and Jari Taskinen (Helsinki)

Abstract. We consider Bergman projections and some new generalizations of them
on weighted L

∞(D)-spaces. A new reproducing formula is obtained. We show the bound-
edness of these projections for a large family of weights v which tend to 0 at the boundary
with a polynomial speed. These weights may even be nonradial. For logarithmically de-
creasing weights bounded projections do not exist. In this case we instead consider the
projective description problem for holomorphic inductive limits.

1. Introduction. We consider the Bergman projections

Pαf(z) := Cα

\
D

f(ζ)(1 − |ζ|2)α

(1 − zζ)2+α
dA(ζ),(1)

where Cα := α + 1, α > −1, D ⊂ C is the open unit disc, and dA is the
normalized 2-dimensional Lebesgue measure on D. Békollé characterized the
weight functions v : D → R

+ for which Pα is bounded on the space Lp
v(D),

1 ≤ p <∞, in his work [2]: the weight v has to satisfy a Muckenhoupt-type
condition. Such a characterization in the case p = ∞ seems to be missing.
The situation is more complicated, since for the constant weight no bounded
projection exists. In this paper we prove quite general sufficient conditions
for boundedness. These apply if v behaves in a sense polynomially near
the boundary of D. For example, if the variation of v is bounded on every
hyperbolic ball with radius 1, and if the radial behavior of v is controlled,
for some b > 0, by

1\
0

Kb(r, s)

v(seiθ)
ds ≤ C

v(z)
for all z = reiθ ∈ D,(2)
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where Kb(r, s) := 1/(1 − s) if s ≤ r, and Kb(r, s) := (1 − s)b(1 − r)−b−1 if
s > r, and the nonradial behaviour is controlled, for some a > 0, by

1

v(eiτz)
≤ C

( |τ |
1 − |z|

)a 1

v(z)
for all τ ∈ [−π, π], |τ | ≥ (1 − |z|)/2,(3)

then Pα is bounded L∞
v → L∞

v for every α > a + b. This is the result
of Theorem 4. Notice that for example v(z) := (1 − |z|)c satisfies (2) for
0 < c < b+ 1.

In Section 2 we consider a large, new class of generalized Bergman projec-
tions PF . A general reproducing formula is proven in Theorem 1. For suitably
chosen examples we prove that PF is bounded on the spaces L∞

β := L∞
v with

v = (1−|z|)β, simultaneously for all β. Recall that none of the projections Pα

has this property. (This result is also useful for applications to holomorphic
inductive limits, which are defined in terms of some weight families.)

If the radial weight v approaches 0 only at logarithmic speed, there
does not exist any bounded projections from L∞

v onto the corresponding
holomorphic subspaceH∞

v (see for example [10]). However, it turns out that,
even in the logarithmic case, a Bergman projection method combined with
a cut-off argument is still useful enough to attack the so-called projective
description problem for holomorphic inductive limits. This is explained in
Section 4.

Notations. We denote by H the shifted right half-plane {z ∈ C : Re z >
1/2}. By C we denote a positive constant which may vary from place to
place, but not in the same inequality. Similarly, Cα denotes a constant de-
pending on α, and so on. By f(x) ∼ g(x) we mean that there exists a positive
constant C independent of x such that C−1f(x) ≤ g(x) ≤ Cf(x) for all x.

For basics of the hyperbolic metric on D we refer to [11, Section 4].
By a weight we mean a strictly positive bounded continuous function

v : D → R. Concerning the behavior of weights, “polynomial” etc. weight
refers to a polynomial of the function 1/(1−|z|) rather than to a polynomial
of z. Given a weight, we define ‖f‖v := supz∈D |f(z)|v(z) if f is continuous,
with “ess sup” replacing “sup” if f is just measurable. We write L∞

v :=
{f : D → C measurable | ‖f‖v < ∞}, and denote by Cv (respectively, by
H∞

v or Hv) the closed subspace consisting of continuous (resp. holomorphic)
functions. The notation L∞

β , β > −1, stands for the space L∞
v with v(z) :=

(1 − |z|)β. By Cv0 and Hv0, respectively, we mean the closed subspaces of
Cv and Hv consisting of functions such that lim|z|→1− |f(z)|v(z) = 0.

Finally, we recall basic facts on inductive limits of weighted spaces of
continuous or holomorphic functions. If V = (vk)

∞
k=1 is a decreasing sequence

of weight functions defined on D, the weighted inductive limits indk Cvk

and indk Hvk are denoted by VC and VH; they are the spaces
⋃

k Cvk and
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⋃
k Hvk endowed with the finest locally convex topologies such that the

canonical embeddings Cvk → VC and Hvk → VH are continuous.
The inductive limits V0C and V0H are defined in the same way using

the subspaces C(vk)0 and H(vk)0 instead of Cvk and Hvk.
In order to describe the topology of the weighted inductive limits, Bier-

stedt, Meise and Summers [5] associated with the sequence V the system V
of all those weights v : D → ]0,∞[ such that, for all k, the quotient v/vk

is bounded on D. The corresponding projective hull CV (resp. HV ) is the
locally convex space of all those continuous (resp. holomorphic) functions
on D such that, for all v ∈ V ,

‖f‖v = sup
z∈D

v(z)|f(z)| <∞,

endowed with the canonical sup-seminorms.
The projective description problem asks if the topologies HV and VH

coincide; the same question can be posed for the other pair of spaces as well.
We refer to K. Bierstedt’s survey [3] for further details and open problems
about projective description. Our results in Section 4 complement the results
for the polynomially decreasing weights in [4] and [9].

2. Exponential case. We introduce a large family of reproducing ker-
nels and study the boundedness properties of the corresponding projection
operators in this and the next section.

Recall that the mapping

(z, ζ) 7→ 1 − zζ

1 − |ζ|2
maps D × D onto H = {z ∈ C : Re z > 1/2}.

Theorem 1. Let F be a holomorphic function on H satisfying

sup
j=0,1,2,...

1

j!

∞\
1

|(x− 1)jF (j)(x)| dx <∞,(4)

γF :=

∞\
1

F (x) dx 6= 0,(5)

and

lim
x∈R, x→∞

xk+1F (k)(x) = 0 ∀k = 0, 1, 2, . . . .(6)

Then for any z ∈ D and any holomorphic function g on D for which the

integral on the left hand side exists,\
D

g(ζ)F

(
1 − zζ

1 − |ζ|2
)

dA(ζ)

(1 − |ζ|2)2 = γF g(z).(7)
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Proof. Passing to the polar coordinates ζ = reiθ, the hypothesis of the
existence of the integral on the left hand side of (7) implies that this integral
equals the repeated integral

1\
0

2π\
0

g(reiθ)F

(
1 − zre−iθ

1 − r2

)
dθ

2π

2r dr

(1 − r2)2
.(8)

Observe that for any 0 < r < 1 and any pair of functions f(ζ) =
∑∞

j=0 fjζ
j

and g(ζ) =
∑∞

j=0 gjζ
j holomorphic in a neighbourhood of rD,

2π\
0

g(reiθ)f(re−iθ)
dθ

2π
=

2π\
0

∞∑

j,k=0

gjfkr
j+ke(j−k)iθ dθ

2π
=

∞∑

j=0

fjgjr
2j ,

the interchange of summation and integration being justified by the uni-
form convergence of the Taylor series on rD. Applying this, in particular,
to f(ζ) = F

(1−zζ
1−r2

)
, we see that the inner integral in (8) equals

∞∑

j=0

gjr
2j 1

j!

dj

dζj
F

(
1 − zζ

1 − r2

)∣∣∣∣
ζ=0

=
∞∑

j=0

gjr
2j 1

j!

( −z
1 − r2

)j

F (j)

(
1

1 − r2

)
.

Performing the change of variable 1
1−r2 = x, we thus obtain

(8) =

∞\
1

∞∑

j=0

gj
zj

j!
(1 − x)j F (j)(x) dx.

In view of the absolute convergence of the Taylor series
∑∞

j=0 gjz
j and (4),

the integration and summation can again be interchanged. We thus see that
the left hand side of (7) equals

∞∑

j=0

γjgjz
j,

with

γk =
(−1)k

k!

∞\
1

(x− 1)k F (k)(x) dx.

However, integration by parts reveals that

γk − γk−1 =

[
(1 − x)k

k!
F (k−1)(x)

]x=∞

x=1

= lim
x∈R, x→∞

(1 − x)kF (k−1)(x)/k! = 0

in view of (6). Thus

γk = γk−1 = · · · = γ0 = γF for all k,(9)

with γF given by (5). This completes the proof.
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Remark 1. In view of (9), condition (4) is fulfilled, in particular, when-

ever the derivative F (j)(x) does not change sign on the interval 1 ≤ x <∞,

for each j, and |γF | <∞ (since one then has (1/j!)
T∞
1 |(x−1)jF (j)(x)| dx =

|γj | = |γF | for all j). In particular, taking F (z) = e−z or F (z) = z−2e−z, we
have the reproducing formulas

f(z) = e
\
D

f(ζ)

(1 − |ζ|2)2 exp

(
− 1 − zζ

1 − |ζ|2
)
dA(ζ)(10)

and

f(z) = C
\
D

f(ζ)

(1 − zζ)2
exp

(
− 1 − zζ

1 − |ζ|2
)
dA(ζ),(11)

for any f holomorphic on D for which the integrals exist.

Given F as in Theorem 1 we define the projection operator

(12) PF f(z) :=
1

γF

\ f(ζ)

(1−|ζ|2)2 F
(

1−zζ
1−|ζ|2

)
dA(ζ) with γF :=

∞\
1

F (x) dx.

Of course, Pα = PF with F (z) := z−α−2.

Proposition 1. Assume that v(z) := w(|z|2) is a radial weight such

that the function B(s) = − logw(1 − e−s) satisfies

B′, (B′′)1/2 = O(e(1/4−δ)s) for some δ > 0,(13)

and that
∞∑

k=1

̺k

w(1 − 1/k)
≤ C

1

w(̺2)
∀̺ ∈ (0, 1)(14)

for some finite constant C. Then the projection PF , F (z) = e−z, is bounded

on L∞
v .

Proof. If ‖f‖v ≤ 1, then

|PF f(z)| ≤ e
\
D

1

w(|ζ|2) exp

[
−Re

1 − zζ

1 − |ζ|2
]

dA(ζ)

(1 − |ζ|2)2 .

We have

2π\
0

exp

[
−Re

1 − zreiθ

1 − r2

]
dθ

2π
= e−1/(1−r2)I0

( |z|r
1 − r2

)
,

where I0 is the modified Bessel function (see [1, Section 7.2.2]). Switching
to polar coordinates and estimating the radial integral as in the proof of



72 J. Bonet et al.

Theorem 1, we obtain the bound (̺ := |z|)

|PF f(z)| ≤ e

1\
0

1

w(t)
I0

(
̺
√
t

1 − t

)
e−1/(1−t) dt

(1 − t)2

= e

∞\
1

1

w(1 − 1/x)
I0(̺

√
x(x− 1))e−x dx

≤ e

∞\
1

1

w(1 − 1/x)
I0(̺x)e

−x dx.

We need to show that this is ≤ C/w(̺2).
By formula 7.13.1(5) in [1],

I0(x) =
ex

√
x

(1 +O(1/x)) as x→ ∞.

We now use Theorem 1 of Holland and Rochberg [7] as follows: we take
a(t) := e−t, b(t) := 1/w(1−1/t) there (the hypothesis (13) precisely ensures
that this is possible), and we obtain

1

k!

∞\
1

1

w(1 − 1/x)
xke−x dx ∼ 1

w(1 − 1/k)
.

Consequently,
∞\
1

1

w(1 − 1/x)
I0(̺x) e

−x dx ≤ C

∞\
1

1

w(1 − 1
x)

e̺x

√
x
e−x dx

= C
∞∑

k=0

̺k

k!

∞\
1

1

w(1 − 1/x)
xk−1/2e−x dx

≤ C ′
∞∑

k=0

̺k

w(1 − 1/k)

≤ C ′′

w(̺2)
by (14).

In the next result we show that the projections PF with F (z) = z−αe−z,
α > 1, are bounded simultaneously for every polynomial weight v(z) =
(1 − |z|)β, β > 0. (These weights do not satisfy the hypothesis of the pre-
ceding theorem.)

Some more projections PF with this property will be exhibited in the
next section. However, the method of proof is completely different there.

Theorem 2. Let β > 0, α > 1. Then the projection PF corresponding

to F (z) = z−αe−z is bounded on L∞
β := L∞

(1−|z|2)β .
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Proof. Let ‖f‖(1−|z|2)β ≤ 1. Then (with CF := |γF |−1)

|PF f(z)| ≤ CF

\
D

∣∣∣∣f(ζ)F

(
1 − zζ

1 − |ζ|2
)∣∣∣∣

dA(ζ)

(1 − |ζ|2)2

≤ CF

\
D

(
1

1 − |ζ|2
)β∣∣∣∣

1 − ζz

1 − |ζ|2
∣∣∣∣
−α

e
−Re 1−zζ

1−|ζ|2
dA(ζ)

(1 − |ζ|2)2

= CF

1\
0

2π\
0

(1 − r2)−β

∣∣∣∣
1

1 − r2
− r|z|eiθ

1 − r2

∣∣∣∣
−α

e
− 1

1−r2 +
Re r|z|eiθ

1−r2
dθ

2π

2r dr

(1 − r2)2

= CF

∞\
1

2π\
0

xβ
∣∣x− |z|

√
x(x− 1)eiθ

∣∣−α
e−xe|z|

√
x(x−1) cos θ dθ

2π
dx

= CF

∞\
1

π\
0

xβ−α |1 −Reiθ|−αe−xeRx cos θ dθ

π
dx,

where we have made the changes of variable ζ = re−iθ|z|/z and x =

1/(1 − r2), and R := |z|
√

1 − 1/x; note that 0 ≤ R < |z| < 1. We need

to show that this double integral is ≤ C(1 − |z|2)−β, for some C indepen-
dent of z. The integral is clearly uniformly bounded when z ranges in a
compact subset of D; we can thus assume that |z| > 1/2. Easy estimates
also show that the integral over 1 ≤ x ≤ 2 stays bounded as |z| ր 1; thus it
is enough to deal only with the integral over 2 < x < ∞. However, for x in
this range and |z| > 1/2 we have R > 1/2

√
2; also,

1 − cos θ = 2 sin2 θ

2
≥ 2

π2
θ2,

since (sin ξ)/ξ ≥
(
sin π

2

)
/π

2 = 2/π for ξ ∈ (0, π/2) by convexity. Thus

|1 −Reiθ|2 = 1 − 2R cos θ +R2 = (1 −R)2 + 2R(1 − cos θ)

≥ (1 −R)2 +
1√
2
· 2

π2
θ2 ≥

√
2

π2
[(1 −R)2 + θ2]

≥ 1√
2π2

[(1 −R) + θ]2.

Since, further,

1 −R = (1 − |z|) + |z|
[
1 −

√
1 − 1

x

]
≥ (1 − |z|) + |z|

[
1 −

√
1 − 1

x
+

1

4x2

]

= (1 − |z|) +
|z|
2x

≥ (1 − |z|) +
1

4x
,

we see that
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|1 −Reiθ| ≥ 1

q

[
(1 − |z|) +

1

x
+ θ

]

where q = 4 4
√

2π. Since, as noted above, R < |z|, we therefore obtain
∞\
2

π\
0

xβ−α|1 −Reiθ|−αe−xeRx cos θ dθ

π
dx

≤ qα
∞\
2

π\
0

xβ−αe−x[(1 − |z|) + 1/x+ θ]−αe|z|x
dθ

π
dx

= qα
∞\
2

xβ−αe−(1−|z|)x
π\
0

[1 − |z| + 1/x+ θ]−α dθ

π
dx.

Making the substitution η := θ/B shows that, for any B > 0,

π\
0

(B + θ)−α dθ = B1−α

π/B\
0

(1 + η)−α dη ≤ B1−α
∞\
0

(1 + η)−α dη =
B1−α

α− 1

since α > 1. Thus we can continue our estimate with

≤ qα

(α− 1)π

∞\
2

xβ−αe−(1−|z|)x[(1 − |z|) + 1/x]1−α dx

=
qα

(α− 1)π

∞\
2

xβ−1e−(1−|z|)x[1 + (1 − |z|)x]1−α dx

=
qα

(α− 1)π

(
1

1 − |z|

)β ∞\
2(1−|z|)

yβ−1e−y(1 + y)1−α dy

≤ qα

(α− 1)π
cα,β

(
1

1 − |z|

)β

,

where

cα,β :=

∞\
0

yβ−1

(1 + y)α−1
e−y dy <∞

and we have made the change of variable y := (1−|z|)x. This completes the
proof.

Remark 2. The following can be shown by similar arguments: for β > 0,
PF maps L∞

(1−|z|2)β into L∞
(1−|z|2)β−α+1 if α< 1, and into L∞

(1−|z|2)β/|log(1−|z|2)|

if α= 1. For β = 0, PF maps the ordinary L∞ into L∞
1/|log(1−|z|)|, L

∞
1/|log(1−|z|)|2

and L∞
(1−|z|2)1−α if α > 1, α = 1 and α < 1, respectively; and for β < 0,

PF maps L∞
(1−|z|2)β into the ordinary L∞ if α > β + 1, into L∞

1/|log(1−|z|2)| if

α = β + 1, and into L∞
(1−|z|2)β−α+1 if α < β + 1.
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Unfortunately it seems that the use of the projections PF is more re-
stricted than perhaps expected. We have for example the following negative
result.

Theorem 3. Let F be any function as in Theorem 1, v a radial weight

on D vanishing at the boundary , and assume that PF is bounded on L∞
v .

Then

lim inf
tր1

log v(t)

log(1 − t)
<∞.

Hence, if v is also decreasing , then it decays at most polynomially as |z| ր 1:

∃A ∃t0 ∀t > t0 : v(t) ≥ (1 − t)A.

In particular, PF is not bounded on L∞
v for v(z) = e−(1−|z|2)−β

, β > 0,
for any F .

Proof. For 1/2 < r < 1, define

fr(z) := e−iθ(z,r)/v(z) ∈ L∞
v ,

where θ(ζ, r) ∈ [0, 2π] is the argument of the complex number

F

(
1 − rζ

1 − |ζ|2
)
.

Clearly, fr has the property ‖fr‖v = 1. Thus

‖PF ‖v→v ≥ ‖PF fr‖v ≥ |PF frv(r)|.(15)

Define further (1 − rζ)/(1 − |ζ|2) =: Φr(ζ) and

Dr :=

{
ζ ∈ D

∣∣∣∣ 1 − 1 − r

2
≤ |ζ| ≤ 1 − 1 − r

4
, |arg(ζ)| ≤ 1 − r

4

}
.

Then (with CF := |γF |−1)

|PF fr(r)| = CF

\
D

1

v(ζ)
|F (Φr(ζ))|

dA(ζ)

(1 − |ζ|2)2

≥ CF

supDr
v

\
Dr

|F (Φr(ζ))|
dA(ζ)

(1 − |ζ|2)2 .

Write for a moment ζ = x+ yi; a routine calculation of the Jacobian shows
that

dA(Φr(ζ))

dA(ζ)
=

r2

(1 − |ζ|2)2 +
2r(x− r)

(1 − |ζ|2)3 .

Since x− r ∼ 1 − r and 1 − |ζ|2 ∼ 1 − r for ζ ∈ Dr, it follows that

dA(Φr(ζ)) ∼
dA(ζ)

(1 − |ζ|2)2 on Dr.
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Therefore for some constant C ′ > 0 (independent of F and r),

|PF fr(r)| ≥
CF

supDr
v
C ′
\

Dr

|F (Φr(ζ))| dA(Φr(ζ)) =
C ′CF

supDr
v

\
Φr(Dr)

|F | dA.

Thus from (15) we get

‖PF ‖ ≥ C ′CF
v(r)

supDr
v

\
Φr(Dr)

|F | dA.(16)

We now claim that the intersection Q :=
⋂

1/2<r<1 Φr(Dr) has positive mea-

sure. Indeed, we have

Φr

(
1 + r

2

)
=

4 + 2r

3 + r
<

3

2
and Φr

(
3 + r

4

)
=

4(4 + r)

7 + r
>

16

7
,

so, by continuity, Φr(Dr∩R) always contains the interval [3/2, 16/7]. On the
other hand, consider the mapping

dr(x, y) := Φr

((
1 + r

2
+ x

1 − r

4

)
eiy(1−r)/4

)

which maps the rectangle 0 ≤ x ≤ 1, −1 ≤ y ≤ 1 onto Φr(Dr). One more
tedious but routine calculation reveals that

∇Φr(x, 0) =

[
4 (2−x)2r2+(12−x2−4x)r+8(x+2)

(2−x)2(6+2r+(1−r)x)2
0

0 r(2+2r+(1−r)x)
(2−x)(6+2r+(1−r)x)

]
.

Straightforward estimates show that both diagonal elements are positive,
bounded and bounded away from zero uniformly as x ∈ [0, 1] and r ∈
(1/2, 1). It therefore follows that Φr(Dr) always contains also some small
neighbourhood (independent of r) in C of, say, the subinterval [7/4, 2] of
[3/2, 16/7]. This establishes the claim.

Consequently, setting C ′′
F :=

T
Q |F | dA > 0, it transpires from (16) that

‖PF ‖ ≥ C ′′
FC

′CF
v(r)

supDr
v
,

so that
v(r)

supDr
v
≤ ‖PF ‖
C ′′

FC
′CF

=: cF <∞, by hypothesis.

Hence, for each r ∈ (1/2, 1), there exists ̺(r) ∈ [(1 + r)/2, (3 + r)/4] such
that

v(r)

v(̺(r))
≤ cF ;

that is,

log
1

v(̺(r))
≤ log

1

v(r)
+ log cF .
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Iteration gives

log
1

v(̺k(r))
≤ log

1

v(r)
+ k log cF , k = 1, 2, 3, . . . .(17)

On the other hand, (1 − ̺(r))/(1 − r) ∈ [1/4, 1/2] for any r, so

log
1

1 − ̺k(r)
≥ log

1

1 − r
+ k log 2.

Since the left hand side of (17) is positive for k large enough, we can divide
to get

− log v(̺k(r))

− log(1 − ̺k(r))
≤ − log v(r) + k log cF

− log(1 − r) + k log 2
→ log cF

log 2
<∞ as k → ∞.

Thus

lim inf
tր1

− log v(t)

− log(1 − t)
<∞,

which proves the first part of the theorem.
If v is in addition decreasing, then for any t ∈ [̺k(r), ̺k+1(r)] we have

v(t) ≥ v(̺k+1(r)) and 1 − t ≤ 1 − ̺k(r).

Hence, for these t,

− log v(t)

− log(1 − t)
≤ − log v(̺k+1(r))

− log(1 − ̺k(r))
≤ − log v(r) + (k + 1) log cF

− log(1 − r) + k log 2
,

and it follows that even

lim sup
tր1

− log v(t)

− log(1 − t)
≤ lim sup

k→∞

− log v(r) + (k + 1) log cF
− log(1 − r) + k log 2

=
log cF
log 2

.

Defining A := log cF

log 2 + 1, it therefore transpires that there exists t0 ∈ (0, 1)

such that for all t > t0,
− log v(t)

− log(1 − t)
≤ A,

or v(t) ≥ (1 − t)A. This completes the proof.

3. Polynomial case. In this section we consider weights which tend to
0 polynomially at the boundary. Békollé characterized the boundedness of
Pα for such weights on Lp

v for 1 ≤ p < ∞. The characterization involved
some Muckenhoupt-type conditions for the weights. On the other hand, in
the radial case it is known that Pα is bounded on L∞

β if α+ 1 > β > 0. So
we consider the case of the spaces L∞

v with nonradial weights here.
It may be difficult to give a complete characterization for the bound-

edness of Pα, since, for the constant weight, no bounded projection exists.
We give instead some sufficient conditions. In general there will be different
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conditions for the radial and nonradial directions. The former will be rather
accurate whereas the latter are quite loose.

Given b > 0 define, for all 0 < s, r < 1, Kb(r, s) := 1/(1 − s) if s ≤ r,
and

Kb(r, s) :=
(1 − s)b

(1 − r)b+1
if s > r.(18)

Theorem 4. Assume that there exist constants a, b, C > 0 such that the

weight v satisfies

(i) the radial condition

1\
0

Kb(r, s)

v(seiθ)
ds ≤ C

v(z)
for all z = reiθ ∈ D,(19)

(ii) the angular condition

1

v(eiτz)
≤ C

( |τ |
1 − |z|

)a 1

v(z)
(20)

for all τ ∈ [−π, π], |τ | ≥ (1 − |z|)/2, and

(iii) the local condition: there exists a C > 0 such that for every hy-

perbolic ball D ⊂ D with radius at most 1,

inf
z∈D

v(z) ≥ C sup
z∈D

v(z).(21)

The projection Pα is then bounded L∞
v → L∞

v for every α > a + b. Also

PF : L∞
v → L∞

v is bounded if F satisfies, for an α > a+ b,

|F (z)| ≤ C|z|−2−α(22)

for all z ∈ H.

Clearly, v(z) := (1−|z|2)β, β > 0, satisfies the assumptions of Theorem 4
with any a > 0, b > β − 1. On the other hand, F (z) = e−zγ

or F (z) =
z−2e−zγ

, 0 < γ < 1, satisfy (22) for all α, hence, PF : L∞
β → L∞

β is bounded
for every β. More examples are presented at the end of this section.

The proof is based on a standard division of D into sets which essentially
are hyperbolic balls with constant radius. So, for every n ∈ N and m ∈
Mn := {1, 2, 3, . . . , 2n} define

(23) Dn,m := {z = reiθ ∈ D | 1 − 2−n ≤ r ≤ 1 − 2−n−1

and (m− 1)2−n ≤ θ/2π ≤ m2−n}.
For each n and m fix the point λn,m := (1 − 2−n)e2πim2−n ∈ Dn,m. We will
show that under the assumptions of our theorem, the assumptions of the
following lemma are satisfied, and hence Theorem 4 follows. Moreover, the
lemma provides our most general sufficient condition.
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For every N ∈ N, M ∈MN and n ∈ N, we denote by ν := ν(N,M, n) the
positive integer closest to M2−N2n. (The purpose of this definition is that,

given n 6= N , the number e2πiν2−n
is as close as possible to e2πiM2−N

, i.e.
λN,M and λn,ν have nearly the same arguments.) Moreover, given N ∈ N,
M ∈MN , n ∈ N and m ∈Mn, we define

µ := µ(N,M, n,m) := min(|m− ν|, |m− ν − 2n|).(24)

Lemma 1. Assume that there exists a strictly positive constant C such

that v satisfies the following two conditions:

C inf
ζ∈Dn,m

v(ζ) ≥ sup
ζ∈Dn,m

v(ζ) for all n,m,(25)

and , for all N and M ∈MN ,

(26)
∑

n<N

∑

m∈Mn

1

µ2+α

1

v(λn,m)
+

∑

n≥N

∑

m: µ≤2n−N

1

v(λn,m)
2(−n+N)(2+α)

+
∑

n≥N

∑

m: 2n−N≤µ≤2n

1

µ2+α

1

v(λn,m)
≤ C

v(λN,M )
.

Then Pα is bounded L∞
v → L∞

v . Also PF : L∞
v → L∞

v is bounded if F
satisfies (22).

Proof. Assume that f ∈ L∞
v with ‖f‖v ≤ 1. Let z ∈ D and let N and M

be such that z ∈ DN,M . We may assume |z| ≥ 3/4. We estimate

|Pαf(z)| ≤ C
\
D

|f(ζ)|(1 − |ζ|2)α

|1 − zζ|2+α
dA(ζ)(27)

≤ C
∑

n,m

\
Dn,m

1

v(ζ)

(1 − |ζ|2)α

|1 − zζ|2+α
dA(ζ).

By (25), we can here bound 1/v(ζ) by C/v(λn,m) for ζ ∈ Dn,m, for all n
and m. Moreover, (1 − |ζ|2)α ≤ C(1 − |λn,m|2)α ≤ C ′2−nα for such ζ. We
consider three cases.

1. Let n < N . We always have
∣∣∣∣

1 − zζ

z/|z| − ζ/|ζ|

∣∣∣∣ ≥
1

2
,(28)

since |z| ≥ 3/4. Moreover, since ζ ∈ Dn,m and 2−n(ν − 1) ≤ θ/(2π) ≤
2−n(ν + 1), we have

∣∣∣∣
z

|z| −
ζ

|ζ|

∣∣∣∣ ≥ C2−n min(|m− ν|, |m− ν − 2n|) = C2−nµ.
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This and (28) imply

1

|1 − zζ|2+α
≤ Cµ−2−α2n(2+α).(29)

The contribution of these terms in (27) is thus bounded by

∑

n<N, m∈Mn

m(Dn,m)

v(λn,m)

2−nα2n(2+α)

µ2+α
≤

∑

n<N, m∈Mn

1

v(λn,m)

1

µ2+α
,(30)

and by (26), this is bounded by C/v(z).
2. Assume n ≥ N and µ ≤ 2n−N . Then 1 − |z| ≤ |1 − zζ| and hence

1

|1 − zζ|2+α
≤ C

1

(1 − |z|)2+α
≤ C ′2N(2+α).(31)

Hence, these terms in (27) are bounded by

(32)
∑

n≥N

∑

m: µ≤2n−N

1

v(λn,m)
m(Dn,m)2N(2+α)2−nα

≤
∑

n≥N

∑

m: µ≤2n−N

1

v(λn,m)
2(−n+N)(2+α),

and we conclude as in case 1.
3. In the case n ≥ N and 2n−N ≤ µ ≤ 2n we again have (29), and we

proceed as in case 1.

Proof of Theorem 4. We show that the assumptions of Theorem 4 imply
the assumptions of Lemma 1. Clearly (25) follows from (21).

As for (26), letN andM be arbitrary, and z := λN,M = (1−2−N )e2πiM2−N
.

First, given n, we have |λn,m − λn,ν | ≤ Cµ2−n for all m ∈ Mn. Hence, (20)
implies for all m ∈Mn,

1

v(λn,m)
≤ C

( |λn,m − λn,ν |
1 − |λn,ν |

)a 1

v(λn,ν)
≤ C ′µa 1

v(λn,ν)
.(33)

The terms with n < N in (26) are thus estimated by (since a− 2 − α < −1
by assumption)

(34)
∑

n<N, m∈Mn

1

µ2+α

1

v(λn,m)
≤ C

∑

n<N, m∈Mn

µa−2−α 1

v(λn,ν)

≤ C ′
∑

n<N

1

v(λn,ν)
≤ C ′′

∑

n<N

m(In)

(1 − |λn,ν |)v(λn,ν)
,

where In := [1 − 2−n, 1 − 2−n−1].
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For n ≥ N , µ ≤ 2n−N we again use (33):
∑

n≥N

∑

m: µ≤2n−N

1

v(λn,m)
2(−n+N)(2+α) ≤

∑

n≥N

∑

m: µ≤2n−N

1

v(λn,ν)
µa2(−n+N)(2+α)

≤ C
∑

n≥N

1

v(λn,ν)
2(−n+N)(1+α−a).

Since n ≥ N and α− a > b, this is bounded by a constant times

∑

n≥N

1

v(λn,ν)
2(−n+N)(b+1) ≤ C

∑

n≥N

m(In)
(1 − |λn,ν |)b

(1 − |λN,ν |)b+1

1

v(λn,ν)
.(35)

Finally, for n ≥ N , µ ≤ 2n−N we similarly obtain
∑

n≥N

∑

2n−N≤µ≤2n

1

µ2+α

1

v(λn,m)
≤ C

∑

n≥N

∑

2n−N≤µ≤2n

1

v(λn,ν)
µa−α−2

≤ C ′
∑

n≥N

1

v(λn,ν)
2(−n+N)(1+α−a),

and we end up with the same bound as in (35).
Now the right hand side of (34) is a discretized version of the integralTr

0K(r, s)/v(seiθ) ds with θ := 2πiM2−N ; the same is true for (35) andT1
r K(r, s)/v(seiθ) ds, respectively. (Approximate 1/v(seiθ) by 1/v(λn,ν) if

s ∈ In, and so on, and replace the integral by a sum; notice that e2πiν2−n

is very close to e2πiM2−N
because of the definition of ν.) Hence, the sum of

(34) and (35) can be bounded by a constant times
T1
0K(r, s)/v(s) ds. The

theorem thus follows from (19).

We give one more variant of Theorem 4.

Proposition 2. If v is a continuously differentiable weight satisfying

(20) and (21) and moreover , for all 0 < r < 1 and all 0 ≤ θ ≤ 2π,

1

v(seiθ)(1 − s)
≤ C

∂

∂s

1

v(seiθ)
for all s ≤ r, and(36)

(1 − s)b

v(seiθ)
≤ −C ∂

∂s

(
(1 − s)b+1

v(seiθ)

)
for all s ≥ r,(37)

then the assumptions of Theorem 4 are satisfied , and Pα is thus bounded on

L∞
v for α > a+ b.

Notice that since C > 0, the weights satisfying (36) must thus be de-
creasing on every line segment from 0 to eiθ. We remark that condition (37)
implies

1

v(seiθ)(1 − s)
≥ C ′ ∂

∂s

1

v(seiθ)
for all s ≥ r,(38)
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where C ′ := b + 1 − C−1 ≥ 0. Conversely, if (38) holds, then also (37) is
true for every b > C ′ − 1 (with C := (b+ 1 − C ′)−1 ). These claims can be
verified by performing the differentiation on the right hand side of (37).

Proof of Proposition 2. Integrate (36) and (37) to obtain (19).

This form of the sufficient conditions is interesting, since it is stable
under products of weights:

Proposition 3. If v and w are weights satisfying the assumptions of

Proposition 2, then vw satisfies them with 2a and 2b+ 1 instead of a and b,
respectively.

Proof. Conditions (20) and (21) are clear, with 2a replacing a in (20).
Concerning the other conditions, assume that v and w satisfy (36) and (37).
Then

1

v(seiθ)w(seiθ)(1 − s)

=
1

2

1

v(seiθ)(w(seiθ)(1 − s))
+

1

2

1

w(seiθ)(v(seiθ)(1 − s))

≤ C
1

v(seiθ)

∂

∂s

1

w(seiθ)
+ C

1

w(seiθ)

∂

∂s

1

v(seiθ)

≤ C
∂

∂s

1

v(seiθ)w(seiθ)
for all s ≤ r.

Moreover, for s ≥ r we get

(1 − s)2b+1

v(seiθ)w(seiθ)
≤ −C (1 − s)b+1

v(seiθ)

∂

∂s

(
(1 − s)b+1

w(seiθ)

)

− C
(1 − s)b+1

w(seiθ)

∂

∂s

(
(1 − s)b+1

v(seiθ)

)

= −C ∂

∂s

(
(1 − s)2b+2

v(seiθ)w(seiθ)

)
.

Example 1. Assume that h : [0, 2π] → R is Lipschitz-continuous,
|h(θ) − h(τ)| ≤ C|θ − τ | for all θ and τ , and satisfies h(0) = h(2π) and
h(θ) > 0 for all θ. We claim that the weight

v(z) := (1 − |z|2)h(θ), where z := reiθ,(39)

satisfies the conditions of Theorem 4 for any a > maxθ h(θ) and b =
maxθ h(θ) − 1. Moreover, if h is continuously differentiable, we claim that
v even satisfies the conditions of Proposition 2. If h is not assumed con-

tinuous, the consequences may be quite dramatic, as shown in Example 2
below.
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Checking that v satisfies (19) as claimed is trivial, since for each fixed
angle, v is equivalent to (1 − |z|)c for some 0 < c ≤ maxθ h(θ). The same
is true for (36) and (37) in the differentiable case. Concerning (20), the
Lipschitz-continuity of h implies

v(z)

v(eiτz)
=

(1 − |z|)h(θ)

(1 − |z|)h(θ+τ)
≤ (1 − |z|)h(θ)

(1 − |z|)h(θ)+C|τ |
= e−C|τ | log(1−|z|).(40)

If
1

2
(1 − |z|) ≤ |τ | ≤ 1

|log(1 − |z|)| ,

then the right hand side of (40) is clearly bounded. On the other hand,
|τ |/(1−|z|) in (20) is bounded from below, hence (20) follows for these τ . If

|τ | ≥ 1

|log(1 − |z|)| ,(41)

then we set ε := a− maxθ h(θ) > 0, and (41) implies

|τ |a > Cε(1 − |z|)ε.(42)

On the other hand, trivially

1

v(eiτz)
≤ C

(1 − |z|)maxh(θ)
≤ C ′

(1 − |z|)maxh(θ)

1

v(z)
.(43)

Combining (42) and (43) gives

1

v(eiτz)
≤ C

|τ |a
(1 − |z|)maxh(θ)+ε

1

v(z)
= C

|τ |a
(1 − |z|)a

1

v(z)
.

Finally, (21) is true, since for every D as in (21) we have

inf
z∈D

(1 − |z|) ≥ C sup
z∈D

(1 − |z|).

Example 2. We construct an example of a weight which fails even
the weakest of the above conditions, and moreover, for which none of the
Bergman projections Pα is bounded. To this end we define h : ]0, 2π] → R

+

by setting h(θ) := 1 if θ ∈ [π, 2π], h(2π2−n) := 2 if n ∈ N is even, and
h(2π2−n) := 1 if n is odd. We extend h piecewise linearly for other values
of θ ∈ ]0, π[. We then define ṽ as in (39), ṽ(z) := (1 − |z|)h(θ) for z = reiθ.
But since this weight is not continuous on [0, 1[ ⊂ D, we make it continuous
as follows. Define the subset Λ ⊂ D (which is otherwise unimportant for the
forthcoming calculations) by

Λ := {z = x+ iy | 0 < x < 1, 0 < y < e−1/(1−x)}.
Define v(z) := ṽ(z) if z /∈ Λ, and extend v in an arbitrary way (for example
using Tietze’s theorem) to Λ in such a way that it becomes continuous.
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Given α > −1 we show that Pα is not bounded on L∞
v . So let an arbitrary

odd n ∈ N be given, and consider z = (1−2−n)e−i2π2−n
. Define the function

fz(ζ) :=
e−iθ(z,ζ)

v(ζ)
where θ(z, ζ) := arg((1 − zζ)2+α),(44)

which belongs to L∞
v with ‖f‖v = 1. Moreover, define the set

(45) En,2 :=

{
ζ = ̺eiτ ∈ D

∣∣∣∣ 1 − 2−n ≤ ̺ ≤ 1 − 2−n−1

and
3

2
· 2−n ≤ τ

2π
≤ 2 · 2−n

}
⊂ Dn,2.

The area of En,2 is clearly at least C2−2n. For ζ ∈ En,2 we have h(τ) ≥ 3/2

(recall n is odd), hence, v(ζ) ≤ 2−3n/2. So we can estimate

|Pαfz(z)| = C

∣∣∣∣
\

Dn,m

fz(ζ)(1 − |ζ|2)α

(1 − zζ̄)2+α
dA(ζ)

∣∣∣∣(46)

≥ C ′
\

En,m

(1 − |ζ|)α

(1 − |z|)2+α

1

v(ζ)
dA(ζ)

≥ C ′′
\

En,m

2−nα

2−n(2+α)
23n/2 dA(ζ) ≥ C ′′23n/2.

On the other hand, h(arg z) = 1 by definitions, so, v(z) = 2−n. Hence,

‖Pαf‖v ≥ |Pαf(z)|v(z) ≥ C2n/2 and Pα cannot be bounded.
We remark that weights constructed using discontinuous boundary val-

ues play a central role in the space of the paper [6]. That example is com-
pletely based on the nonexistence of (any) continuous projections from an
L∞-type space onto its subspace of analytic functions.

Example 3. Consider weights of the form

v(z) := (1 − |z|2)α(1 − x2)β(47)

where α and β are constants, α > 0, β ≥ 0 and z := x+iy ∈ D. To check that
they satisfy the conditions (36) and (37) of Proposition 2 we may assume
s ∈ [1/2, 1[. After elementary calculations we find that

(48)
∂

∂s

1

v(seiθ)
=

1

v(seiθ)

1

1 − s2
1

1 − (s cos θ)2

· (2s)(β(1 − s2)(cos θ)2 + α(1 − (s cos θ)2))
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≥ 1

v(seiθ)

1

1 − s2
1

1 − (s cos θ)2
· (2s)(α(1 − (s cos θ)2))

≥ C
1

v(seiθ)

1

1 − s
.

One can prove (37) in the same way using (38). Checking (21) is left to the
reader. As for (20), write z = reiθ with θ ∈ [−π, π]. Then (20) is equivalent to

1 − r cos(τ + θ) ≥ 1

C1/β

(
1 − r

|τ |

)a/β

(1 − r cos θ).(49)

Notice that the factor

1

C1/β

(
1 − r

|τ |

)a/β

(50)

can always be chosen smaller than any fixed positive constant. Moreover,
we use the existence of a constant c > 1 such that

1 − cs2 ≤ cos s ≤ 1 − s2/c(51)

for every s ∈ [−3π/2, 3π/2].
(i) Assume that |τ | ≤ |θ|/2. Then |θ|/2 ≤ |τ + θ| ≤ 3|θ|/2, so by (51),

the left hand side of (49) is at least

min
|θ|/2≤t≤3|θ|/2

(1 − r cos t) ≥ min
|θ|/2≤t≤3|θ|/2

(
1 − r

(
1 − t2

c

))
(52)

= 1 − r +
rθ2

4c
.

On the right hand side we have 1− r cos θ ≤ 1− r+ rcθ2. Hence (49) follows
from the remark on (50).

(ii) Assume |θ|/2 ≤ |τ |, and set t := τ/(1 − r). For the left hand side of
(49) we simply use the lower bound 1−r. The right hand side is bounded by

(53)
1

C1/β
t−a/β(1 − r cos θ) ≤ 1

C1/β
t−a/β(1 − r(1 − 4ct2(1 − r)2))

≤ 1

C1/β
t−a/β(1 − r + 4ct2(1 − r)2)

=
1

C1/β
t−a/β(1 − r) +

4c

C1/β
t−a/β+2(1 − r)2.

Both terms in the last line can be bounded by (1− r)/3 by choosing a ≥ 2β
and C large enough.

Because of the rotation invariance of the conditions involved, also weights
of the form

v(z) := (1 − |z|2)α(1 − (Re(ei̺z))2)β, ̺ ∈ [−π, π],
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satisfy the conditions of Proposition 2. One can then go on by multiplying
weights corresponding to different ̺’s (see Proposition 3).

Example 4. Wolfgang Lusky proved in [8] that the Riesz projection
(i.e. Szegő projection) is bounded from

h∞v := {f : D → C harmonic | ‖f‖v <∞}
onto H∞

v if the radial weight v is decreasing as |z| increases and satisfies

sup
N∈N

∞∑

k=1

(
1 − 1

2N+1

)2N+k

v(1 − 2−N )

v(1 − 2−N−k)
<∞(54)

and

inf
k∈N

lim sup
N→∞

v(1 − 2−N−k)

v(1 − 2−N )
< 1.(55)

Let us show that such a weight v satisfies (25) and (26). Actually (25)
follows from the facts that v is radial and decreasing, since (54) implies
v(1 − 2−N ) ≤ Cv(1 − 2−N−1).

Concerning the latter condition, since v is radial, we have v(λn,m) =
v(λn,2n) = v(1− 2−n), by the choice of λn,m (see (23)). Hence, the left hand
side of (26) equals

∑

n<N, m∈Mn

1

µ2+α

1

v(1 − 2−n)
+

∑

n≥N

∑

m: µ≤2n−N

1

v(1 − 2−n)
2(−n+N)(2+α)

+
∑

n≥N

∑

m: 2n−N≤µ≤2n

1

µ2+α

1

v(1 − 2−n)

≤
∑

n<N

1

v(1 − 2−n)
+

∑

n≥N

1

v(1 − 2−n)
2(−n+N)(2+α)+n−N

+
∑

n≥N

1

v(1 − 2−n)
2(α+1)(−n+N)

= I + II + III,

where in the last term we used
∑

m:µ≥2n−N µ−2−α ≤ C2(α+1)(−n+N). Clearly,

II = III. Now (55) implies that there exists a c, 0 < c < 1, such that for
all n < N ,

v(1 − 2−n) ≤ CcN−nv(1 − 2−N ).

Hence the term I is bounded by

∑

n<N

1

v(1 − 2−n)
≤

∑

n<N

Ccn−N

v(1 − 2−N )
≤ C ′

v(1 − 2−N )
.(56)
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Moreover, (54) implies

∞∑

k=1

(
1 − 1

2N+1

)2N+k

1

v(1 − 2−N−k)
≤ C

v(1 − 2−N )
,

yielding
∑

n>N

((1 + ε)e)−n+N 1

v(1 − 2−n)
≤ Cε

v(1 − 2−N )
(57)

for any ε > 0. So, if α is so large that 2α+1 ≥ e, then (57) implies II ≤
Cv(1 − 2−N ), completing the proof of (26).

4. Logarithmic case. If the radial weight v approaches 0 only at
logarithmic speed, there do not exist any bounded projections from L∞

v

onto H∞
v . See for example [10]. If any projection operator P on such an

L∞
v is given, one can find f belonging to the unit ball of L∞

v such that
sup|z|=r |Pf(z)| behaves, heuristically speaking, like |log(1 − r)|/v(r) (or

worse) as r → 1, i.e. P makes the function f worse by a logarithmic factor.
Something can still be done for the projective description problem for

holomorphic inductive limits. For the sake of comparison, cut-off arguments

form a basic tool for that problem in the case of continuous functions. Of
course, for analytic functions such methods are excluded. One can however
try to use a cut-off argument inside the Bergman projection, i.e. apply a
cut-off to an analytic function and then operate by Bergman projection.
So let us look at that. Given an analytic f we make a formal calculation
using a nonsmooth partition of unity

∑
n ϕn with ϕn(z) = 1 if and only if

rn < |z| ≤ rn+1 for some numbers rn ∈ ]0, 1[:

(58) f(z) =
\
D

∑
n ϕn(ζ)f(ζ)

(1 − zζ)2
dA(ζ) =

∞∑

n=1

rn+1\
rn

2π\
0

f(reiθ)

(1 − zre−iθ)2
r dr dθ

=
∞∑

n=1

rn+1\
rn

( 2π\
0

eiθf(reiθ)

(eiθ − zr)2
eiθ dθ

)
r dr

= C

∞∑

n=1

rn+1\
rn

[
∂

∂w
(rwf(rw))

]

w=rz

dr

(by the Cauchy integral formula)

= C
1

z

∞∑

n=1

zrn+1\
zrn

∂

∂w

(
w2

z
f

(
w2

z

))
dw

= C
∞∑

n=1

r2n+1f(r2n+1z) − r2nf(r2nz).
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It turns out that the representation (58) is useful if the weights tend
to zero logarithmically on the boundary and the points rn are properly
chosen. We will actually use a simplified representation, omitting the extra
coefficients r2n. We will not explicitly use the Bergman projection, but the
hidden connection with it is explained in (58). For every n ∈ N we set

rn := 1 − 2−2n

, r0 = 0, In := [rn, rn+1].(59)

In this section we only consider the case of radial weights which approach

monotonically 0 as r → 1−.

Definition 1. We say that the weight sequence V satisfies the condition
(LOG) if there exist constants 0 < a < 1 < A such that

Avk(rn+1) ≥ vk(rn)(60)

and

vk(rn+1) ≤ avk(rn)(61)

for all k and n.

The first condition is an upper bound for the speed with which the
weights approach zero on the boundary, and the second condition is a lower
bound.

Example 5. It is clear that a weight v(z) := (−1/log(1 − |z|))α, where
α > 0, satisfies both (60) and (61). Interesting weight families V satisfying
(LOG) are those of the type

vk(z) = (−1/log(1 − |z|))α(k,|z|),(62)

where 0 < c ≤ α(k, |z|) ≤ C for all k and z. For any fixed k, the function
α(k, r) must not vary too quickly with respect to r in order that (LOG) be
satisfied. We leave the details to the reader.

Example 6. Let us describe another way of finding many interesting
weight systems satisfying (LOG).

Suppose that W = (wk)
∞
k=1 is an arbitrary decreasing sequence of weights

on D. We only assume that there exists a strictly increasing sequence (sn)∞n=1

⊂ ]0, 1[ such that, for some C > 1,

Cwk(sn+1) ≥ wk(sn)(63)

for all k and n. (Notice that this condition does not restrict the behaviour of
a single weight; it is just a very mild restriction on the whole weight family.)

We claim that one can define a weight sequence V = (vk)
∞
k=1 satisfying

(LOG) such that vk is just of the form

vk(z) := ψ(|z|)wk(ϕ(|z|)),(64)
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where ψ : [0, 1[ → R
+ and ϕ : [0, 1[ → [0, 1[ are chosen suitably. It is clear

from the definition (64) that V satisfies for example the condition (D), (RD)
etc. (for definitions, see [3]) if and only if the original sequence W does. As
a consequence (of Theorem 5 below) we find that these conditions are not
relevant (not needed) for the projective description in the case of spaces
with 0-subindex (o-growth conditions).

To find the functions ψ and ϕ, let rn be as above, and choose ϕ(rn) := sn

for every n. Extend ϕ piecewise linearly to [0, 1[. Finally, take ψ(r) :=
(−1/log(1 − r)). Define every vk by (64).

We have 2ψ(rn+1) = ψ(rn) for every n, hence (60) follows for every vk

from (63). Moreover,

vk(rn+1) = ψ(rn+1)wk(sn+1) ≤
1

2
ψ(rn)wk(sn) =

1

2
vk(rn),

hence also (61) is satisfied.

Theorem 5. If the weight system V satisfies the condition (LOG), then

V0H(D) is a topological subspace of HV 0(D).

Proof. For every k ∈ N, denote by Uk the set of those functions f ∈
H(vk)0(D) for which ‖f‖vk

≤ 1. Let a 0-neighbourhood B := Γ (
⋃∞

k=1 bkUk)
in V0H be given, where Γ stands for the absolutely convex hull and bk > 0
for every k. Let us define the decreasing weight

v(z) := inf
k∈N

a−1
k vk(z),(65)

with ak < 2−k−1A−2bk, with A as in (60), and such that v is radial, continu-
ous, nonincreasing and the infimum is a minimum on compact subsets of D;
see [5]. Assuming that f ∈ V0H satisfies ‖f‖v ≤ 1, we show that f ∈ B,
closure taken in V0H. It is known that any g ∈ V0H can be approximated
arbitrarily well in V0H by the functions grn(z) := g(rnz) for large n. (Taking
a k such that g ∈ (Hvk)0 we have lim|z|→1− |g(z)|vk(z) = 0. This implies
grn → g in (Hvk)0 as n→ ∞. The topology of the inductive limit is coarser,
hence, grn → g also there.) Hence, it suffices to show frν ∈ B for every large
enough ν ∈ N.

By (60), since the weight v is nonincreasing, we get

inf
|z|∈In

v(z) = v(rn+1) ≥ v(rn+2) = inf
|z|∈In+1

v(z) ≥ A−2v(rn).(66)

For every n we can thus pick a k(n) ∈ N such that

v(rn) = a−1
k(n)vk(n)(rn) = a−1

k(n) sup
|z|∈In

vk(n)(z).(67)

Fix ν ∈ N, and for every m, let Nm ⊂ N be Nm := {n ≤ ν | k(n) = m}.
Hence, the set {n ≤ ν | n ∈ N} is a disjoint union of the sets Nm; some
of them may be empty sets. Let us define, for all n, the function gn(z) :=
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f(rn+1z) − f(rnz), and g0(z) := f(0), and, for all m,

hm :=
∑

n∈Nm

gn,(68)

and hm := 0 if Nm = ∅. Clearly frν =
∑

m∈N
hm +g0. The constant function

g0 belongs to H(vk(0))0, and |f(0)| ≤ ak(0)vk(0)(0)−1, hence g0 ∈ (bm/2
m)Um

for m = k(0). The main part of the proof is to show the following

Lemma 2. If C > 0 satisfies C >
∑

k∈N
ak with 0 < a < 1 as in (61)

and C > (2At2n−t)/22n
if n > t, then hm ∈ C2−mbmUm for all m.

This implies the theorem: since hm ∈ C2−mbmUm, we have

frν =
∑

m∈N

hm + g0 ∈ 2CΓ
( ⋃

m∈N

bmUm

)
.

Proof of Lemma 2. Fix an m ∈ N. We pick an n ∈ Nm and estimate
|gn(z)| for different z.

1◦. Assume first |z| ≥ rn−1. Then

|rnz| ≥ (1 − 2−2n

)(1 − 2−2n−1

) ≥ (1 − 2 · 2−2n−1

) ∈ In−2,

and similarly for |rn+1z|; hence

rn−2 ≤ |rnz| ≤ |rn+1z| ≤ rn+1.(69)

Since ‖f‖v ≤ 1, we have for these z, by (66),

|gn(z) ≤ |f(rnz)| + |f(rn+1z)| ≤ 2 sup
rn−2≤r≤rn+1

v(r)−1 = 2v(rn+1)
−1.(70)

Now (70) can still be estimated using (67) by

2A2v(rn)−1 = 2A2amvk(n)(rn)−1 ≤ 2−mbmvm(rn)−1,(71)

by the choice of ak(n) = am.
2◦. Assume 2 ≤ t ≤ n and |z| ∈ In−t. We have

|gn(z)| = |f(rnz) − f(rn+1z)|(72)

≤ sup
ζ∈In−t∪In−t−1

|f ′(ζ)| |rn+1 − rn| ≤ sup
ζ∈In−t∪In−t−1

|f ′(ζ)|2−2n

.

We estimate |f ′(ζ)| using the Cauchy formula:

|f ′(ζ)| ≤
\

|η|=rn

|f(η)|
|η − ζ|2 dη ≤ v(rn)−122n−t+1

,(73)

since |η− ζ| ≥ 2−2n−t+1 − 2−2n ≥ 2−1 · 2−2n−t+1

. We use 2n − 2n−t+1 ≥ 2n−1,
and from (72) and (73) we obtain

|gn(z)| ≤ 2−2n−1 · v(rn)−1 ≤ 2−2n−1 · ak(n)vk(n)(rn)−1(74)
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Here we used (67). Moreover, using (60) t times, we can continue the estimate
by

≤ 2−2n−1 ·A2ak(n)vk(n)(z)
−1.(75)

Since n > t, we have 2−2n
At ≤ C2−(n−t) (for all n and t), hence, (75) is

bounded by

C2−(n−t)−k(n)bk(n)vk(n)(z)
−1 = C2−(n−t)−mbmvm(z)−1.

So altogether,

|gn(z)| ≤ C2−(n−t)−mbmvm(z)−1.(76)

To complete the proof of the lemma, let now z ∈ D; we want to show
that

|hm(z)| ≤ C2−mbmvm(z)−1.(77)

Let t ∈ N be such that |z| ∈ It; then

|hm(z)| ≤
∑

n∈Nm

n≤t+1

|gn(z)| +
∑

n∈Nm

n>t+1

|gn(z)| =: Gm(z) +Hm(z).(78)

(a) Consider Gm(z). In this case (71) of 1◦ implies

Gm(z) ≤
∑

n∈Nm

n≤t+1

2−mbmvm(rn)−1.

By using (61) t− n times, we see that this is bounded by a constant times
∑

n≤t+1

2−mbmvm(rt)
−1a−t+n ≤ C2−mbmvm(z)−1.(79)

Remember that a < 1 and C >
∑

k∈N
ak.

(b) Consider Hm(z). Then (76) implies

Hm(z) ≤
∑

n∈Nm

n>t+1

Cbmvm(z)−12−m2−n+t ≤ Cbmvm(z)−12−m.(80)

We get (77), and thus the lemma, from (79) and (80).
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