A remark on extrapolation of rearrangement operators on dyadic $H^{s}, 0<s \leq 1$

by

Stefan Geiss (Jyväskylä), Paul F. X. Müller (Linz) and Veronika Pillwein (Linz)

Abstract

For an injective map τ acting on the dyadic subintervals of the unit interval $[0,1)$ we define the rearrangement operator $T_{s}, 0<s<2$, to be the linear extension of the map $$
\frac{h_{I}}{|I|^{1 / s}} \mapsto \frac{h_{\tau(I)}}{|\tau(I)|^{1 / s}},
$$ where h_{I} denotes the L^{∞}-normalized Haar function supported on the dyadic interval I. We prove the following extrapolation result: If there exists at least one $0<s_{0}<2$ such that $T_{s_{0}}$ is bounded on $H^{s_{0}}$, then for all $0<s<2$ the operator T_{s} is bounded on H^{s}.

1. Introduction. In this paper we prove extrapolation estimates for rearrangement operators of the Haar system, normalized in $H^{s}, 0<s<2$. Here H^{s} denotes the dyadic Hardy space of sequences $(g(I))_{I \in \mathcal{D}}$ for which

$$
\begin{equation*}
\left\|(g(I))_{I \in \mathcal{D}}\right\|_{H^{s}}^{s}:=\int_{0}^{1}\left(\sum_{I \in \mathcal{D}} g(I)^{2} h_{I}^{2}(x)\right)^{s / 2} d x<\infty \tag{1}
\end{equation*}
$$

In (1) we let \mathcal{D} denote the collection of all dyadic intervals $[a, b)$ in the unit interval $[0,1)$ and correspondingly $\left(h_{I}\right)_{I \in \mathcal{D}}$ denotes the L^{∞}-normalized Haar system. For an injective map $\tau: \mathcal{D} \rightarrow \mathcal{D}$ we define the rearrangement operator T_{s} to be the linear extension of

$$
T_{s}: \frac{h_{I}}{|I|^{1 / s}} \mapsto \frac{h_{\tau(I)}}{|\tau(I)|^{1 / s}} .
$$

We show that

$$
\begin{equation*}
\left\|T_{s}: H^{s} \rightarrow H^{s}\right\|^{1-\theta} \leq c\left\|T_{p}: H^{p} \rightarrow H^{p}\right\|, \quad 0<s<p<2 \tag{2}
\end{equation*}
$$

2000 Mathematics Subject Classification: 46B42, 46B70, 47B37.
The third named author is supported by the Austrian Science Foundation (FWF) Pr.Nr. P15907-N08.
where $0<\theta<1$ is chosen such that

$$
\frac{1}{p}=\frac{1-\theta}{s}+\frac{\theta}{2}
$$

$c>0$ depends at most on s and p, and

$$
\left\|T_{s}: H^{s} \rightarrow H^{s}\right\|:=\sup \left\{\left\|T_{s} g\right\|_{H^{s}}:\|g\|_{H^{s}} \leq 1\right\}
$$

The novelty of (2) lies in the range of admissible values for s. In [4] the estimate (2) was obtained for the range $1 \leq s<p<2$. The proof in [4] is based on duality and therefore strictly limited to the case $s \geq 1$. An alternative proof of (2) for $1 \leq s<p<2$ has been given by exploiting the norm devised by G. Pisier in the context of general Banach lattices [6]. For example, for $g=(g(I))_{I \in \mathcal{D}} \in H^{1}$ Pisier's result reads in our setting as

$$
\begin{equation*}
\frac{1}{d}\|g\|_{H^{1}}^{1-\theta} \leq \sup \left\{\left\|\sum_{I \in \mathcal{D}}|g(I)|^{1-\theta}|w(I)|^{\theta} h_{I}\right\|_{H^{p}}:\|w\|_{H^{2}} \leq 1\right\} \leq\|g\|_{H^{1}}^{1-\theta} \tag{3}
\end{equation*}
$$

with $0<\theta<1$ and

$$
\frac{1}{p}=1-\frac{\theta}{2}
$$

where $d \geq 1$ depends at most on p and θ. We do not know who should be credited for finding the proof of (2), $1 \leq s<p<2$, using (3). A proof of (3) follows by specializing the ideas of G. Pisier to the context of H^{1}. The work of M. Cwikel, P. G. Nilsson and G. Schechtman [1, Ch. 3] plays a crucial role in linking (3) to G. Pisier's original construction [6].
2. Extrapolation estimates. The aim of this paper is to present a proof of the following two theorems.

Theorem 1. Let $\tau: \mathcal{D} \rightarrow \mathcal{D}$ be an injection, and let $0<s<p<2$ and $0<\theta<1$ be such that

$$
\frac{1}{p}=\frac{1-\theta}{s}+\frac{\theta}{2}
$$

Then there exists a constant $c>0$, depending at most on s and p, such that

$$
\frac{1}{c}\left\|T_{s}: H^{s} \rightarrow H^{s}\right\|^{1-\theta} \leq\left\|T_{p}: H^{p} \rightarrow H^{p}\right\| \leq c\left\|T_{s}: H^{s} \rightarrow H^{s}\right\|^{1-\theta}
$$

The point of the above theorem is the left-hand inequality which corresponds to an extrapolation. The right-hand one is rather standard and follows by interpolation. The proof of the extrapolation inequality is based on

Theorem 2. For $0<s<p<q \leq 2$ and $0<\theta<1$ such that

$$
\frac{1}{p}=\frac{1-\theta}{s}+\frac{\theta}{q}
$$

there exists a constant $c>0$, depending at most on s, p, and q, such that

$$
\begin{equation*}
\frac{1}{c}\|g\|_{H^{s}}^{1-\theta} \leq \sup \left\{\left\|\sum_{I \in \mathcal{D}}|g(I)|^{1-\theta}|w(I)|^{\theta} h_{I}\right\|_{H^{p}}:\|w\|_{H^{q}} \leq 1\right\} \leq\|g\|_{H^{s}}^{1-\theta} \tag{4}
\end{equation*}
$$

for all $g \in H^{s}$.
The main estimate in Theorem 2 is the left-hand inequality for which we present two approaches. One is by reduction to the case of Banach lattices and duality. The second approach is via Theorem 5 which is the desired inequality for $q=2$ and $p+s \geq 2$ and which is-despite the parameter restriction-sufficient to prove the extrapolation part of Theorem 1 as well. The proof of Theorem 5 circumvents the use of duality and is based instead on the atomic decomposition; it provides additional information by finding a particular w_{0} that realizes the supremum in (4) up to a multiplicative constant.

Let us start with the proof of Theorem 2 by introducing the following Banach lattices of Triebel type.

Definition 3. For $1 \leq \alpha<\infty$ we let

$$
f_{1}^{\alpha}:=\left\{g=(g(I))_{I \in \mathcal{D}}:\|g\|_{f_{1}^{\alpha}}:=\left\|\left(\sum_{I \in \mathcal{D}}|g(I)|^{\alpha} h_{I}^{2}\right)^{1 / \alpha}\right\|_{L^{1}}<\infty\right\}
$$

The lattice structure of the spaces f_{1}^{α} is defined through the canonical lattice structure of the sequences $(g(I))_{I \in \mathcal{D}}$. The Triebel spaces f_{1}^{α} form an interpolation scale compatible with the Calderón product: For

$$
\frac{1}{\gamma}=\frac{1-\eta}{\alpha}+\frac{\eta}{\beta}
$$

$0<\eta<1$, and $1 \leq \alpha<\gamma<\beta<\infty$, M. Frazier and B. Jawerth [2, Theorem 8.2] $\left(^{1}\right)$ proved that

$$
\begin{equation*}
\|g\|_{f_{1}^{\gamma}} \leq\|g\|_{\left(f_{1}^{\alpha}\right)^{1-\eta}\left(f_{1}^{\beta}\right)^{\eta}} \leq c\|g\|_{f_{1}^{\gamma}} \tag{5}
\end{equation*}
$$

with $c \geq 1$ depending at most on α, γ, and β, where the Calderón product is given by

$$
\|g\|_{\left(f_{1}^{\alpha}\right)^{1-\eta}\left(f_{1}^{\beta}\right)^{\eta}}:=\inf \left\{\left\|g_{0}\right\|_{f_{1}^{\alpha}}^{1-\eta}\left\|g_{1}\right\|_{f_{1}^{\beta}}^{\eta}:|g|=\left|g_{0}\right|^{1-\eta}\left|g_{1}\right|^{\eta}\right\}
$$

(The left-hand inequality of (5) follows by an appropriate application of Hölder's inequality.) Our main tool will be the extrapolation formula

$$
\begin{equation*}
\|g\|_{f_{1}^{\beta}}^{\eta}=\sup \left\{\left\||g|^{\eta}|w|^{1-\eta}\right\|_{\left(f_{1}^{\alpha}\right)^{1-\eta}\left(f_{1}^{\beta}\right)^{\eta}}:\|w\|_{f_{1}^{\alpha}} \leq 1\right\} \tag{6}
\end{equation*}
$$

with $1 \leq \alpha<\beta<\infty$ and $0<\eta<1$ from M. Cwikel, P. G. Nilsson and G. Schechtman [1, Theorem 3.5].

[^0]Proof of Theorem 2. For $0<t \leq 2$ and $g=(g(I))_{I \in \mathcal{D}}$ we get

$$
\begin{align*}
\|g\|_{H^{t}}^{t} & =\int_{0}^{1}\left(\sum_{I \in \mathcal{D}} g(I)^{2} h_{I}^{2}(x)\right)^{t / 2} d x \tag{7}\\
& =\int_{0}^{1}\left(\sum_{I \in \mathcal{D}}\left(|g(I)|^{t}\right)^{2 / t} h_{I}^{2}(x)\right)^{t / 2} d x=\left\||g|^{t}\right\|_{f_{1}^{2 / t}}
\end{align*}
$$

Consequently, rewriting (4) we need to prove that

$$
\begin{aligned}
& \frac{1}{c}\left\||g|^{s}\right\|_{f_{1}^{2 / s}}^{(1-\theta) / s} \\
& \quad \leq \sup \left\{\left\|\left(|g(I)|^{p(1-\theta)}|w(I)|^{p \theta}\right)_{I \in \mathcal{D}}\right\|_{f_{1}^{2 / p}}^{1 / p}:\left\||w|^{q}\right\|_{f_{1}^{2 / q}}^{1 / q} \leq 1\right\} \leq\left\||g|^{s}\right\|_{f_{1}^{2 / s}}^{(1-\theta) / s}
\end{aligned}
$$

Replacing in the above estimates g by $|g|^{1 / s}$ and w by $|w|^{1 / q}$ we obtain

$$
\begin{align*}
& \quad \frac{1}{c^{p}}\|g\|_{f_{1}^{2 / s}}^{p(1-\theta) / s} \tag{8}\\
& \leq \sup \left\{\left\|\left(|g(I)|^{p(1-\theta) / s}|w(I)|^{p \theta / q}\right)_{I \in \mathcal{D}}\right\|_{f_{1}^{2 / p}}:\|w\|_{f_{1}^{2 / q}} \leq 1\right\} \leq\|g\|_{f_{1}^{2 / s}}^{p(1-\theta) / s}
\end{align*}
$$

With $\alpha:=2 / q, \beta:=2 / s, \gamma:=2 / p$, and $\eta:=(q-p) /(q-s) \in(0,1)$ so that

$$
1 \leq \alpha<\gamma<\beta, \quad \frac{1}{\gamma}=\frac{1-\eta}{\alpha}+\frac{\eta}{\beta},
$$

the estimates (8) are equivalent to

$$
\frac{1}{c^{p}}\|g\|_{f_{1}^{\beta}}^{\eta} \leq \sup \left\{\left\|\left(|g(I)|^{\eta}|w(I)|^{1-\eta}\right)_{I \in \mathcal{D}}\right\|_{f_{1}^{\gamma}}:\|w\|_{f_{1}^{\alpha}} \leq 1\right\} \leq\|g\|_{f_{1}^{\beta}}^{\eta},
$$

which follows immediately from (5) and (6).
Proof of Theorem 1. (a) First we prove the left-hand inequality. Assume that $\left\|T_{p}: H^{p} \rightarrow H^{p}\right\|<\infty$ (otherwise there is nothing to prove). Fix $g=(g(I))_{I \in \mathcal{D}} \in H^{s}$ and $w=(w(I))_{I \in \mathcal{D}} \in H^{2}$. Define

$$
u:=\sum_{I \in \mathcal{D}}|g(I)|^{1-\theta}|w(I)|^{\theta} h_{I}
$$

As $1 / p=(1-\theta) / s+\theta / 2$ we have

$$
\left(T_{p} u\right)(J)=\left|\left(T_{s} g\right)(J)\right|^{1-\theta}\left|\left(T_{2} w\right)(J)\right|^{\theta}
$$

for the corresponding Haar coefficients. By Theorem 2 we get

$$
\frac{1}{c}\left\|T_{s} g\right\|_{H^{s}}^{1-\theta} \leq \sup \left\{\left\|\sum_{J \in \mathcal{D}}\left|\left(T_{s} g\right)(J)\right|^{1-\theta}|w(J)|^{\theta} h_{J}\right\|_{H^{p}}:\|w\|_{H^{2}} \leq 1\right\}
$$

Since T_{2} preserves the H^{2}-norm and the supremum in the above expression can be restricted to those w such that $w(J)=0$ whenever $J \notin \tau(\mathcal{D})$, we can
rewrite the above inequality as

$$
\begin{aligned}
\frac{1}{c}\left\|T_{s} g\right\|_{H^{s}}^{1-\theta} & \leq \sup \left\{\left\|\sum_{J \in \mathcal{D}}\left|\left(T_{s} g\right)(J)\right|^{1-\theta}\left|\left(T_{2} w\right)(J)\right|^{\theta} h_{J}\right\|_{H^{p}}:\left\|T_{2} w\right\|_{H^{2}} \leq 1\right\} \\
& =\sup \left\{\left\|T_{p}\left(\sum_{I \in \mathcal{D}}|g(I)|^{1-\theta}|w(I)|^{\theta} h_{I}\right)\right\|_{H^{p}}:\|w\|_{H^{2}} \leq 1\right\}
\end{aligned}
$$

As T_{p} is bounded on H^{p},

$$
\begin{aligned}
& \sup \left\{\left\|T_{p}\left(\sum_{I \in \mathcal{D}}|g(I)|^{1-\theta}|w(I)|^{\theta} h_{I}\right)\right\|_{H^{p}}:\|w\|_{H^{2}} \leq 1\right\} \\
& \quad \leq\left\|T_{p}: H^{p} \rightarrow H^{p}\right\| \sup \left\{\left\|\sum_{I \in \mathcal{D}}|g(I)|^{1-\theta}|w(I)|^{\theta} h_{I}\right\|_{H^{p}}:\|w\|_{H^{2}} \leq 1\right\}
\end{aligned}
$$

By Theorem 2 the supremum above is bounded by $\|g\|_{H^{s}}^{1-\theta}$ so that

$$
\frac{1}{c}\left\|T_{s} g\right\|_{H^{s}}^{1-\theta} \leq\left\|T_{p}: H^{p} \rightarrow H^{p}\right\|\|g\|_{H^{s}}^{1-\theta}
$$

and the claim follows.
(b) Because $\left\|T_{2} g\right\|_{H^{2}}=\|g\|_{H^{2}}$ the right-hand inequality follows from a general interpolation property of the operators T_{p} : for $0<s<p<q \leq 2$ and $0<\theta^{\prime}<1$ with $1 / p=\left(1-\theta^{\prime}\right) / s+\theta^{\prime} / q$ one has

$$
\begin{equation*}
\left\|T_{p}: H^{p} \rightarrow H^{p}\right\| \leq c\left\|T_{s}: H^{s} \rightarrow H^{s}\right\|^{1-\theta^{\prime}}\left\|T_{q}: H^{q} \rightarrow H^{q}\right\|^{\theta^{\prime}} \tag{9}
\end{equation*}
$$

where $c>0$ depends at most on s, p, and q. There are different ways to deduce (9). We reduce the family of operators $\left(T_{p}\right)_{0<p \leq 2}$ to a single operator T and exploit the interpolation property of the Calderón product. The map T is given by $T\left((a(I))_{I \in \mathcal{D}}\right):=(g(J))_{J \in \mathcal{D}}$ with

$$
g(J):= \begin{cases}a\left(\tau^{-1}(J)\right) \frac{\left|\tau^{-1}(J)\right|}{|J|}, & J \in \tau(\mathcal{D}) \\ 0, & J \notin \tau(\mathcal{D})\end{cases}
$$

so that, for $0<t \leq 2$,

$$
\begin{aligned}
\left\|T_{t} g\right\|_{H^{t}}^{t} & =\int_{0}^{1}\left(\sum_{I \in \mathcal{D}}\left[g(I)\left(\frac{|I|}{|\tau(I)|}\right)^{1 / t}\right]^{2} h_{\tau(I)}^{2}(x)\right)^{t / 2} d x \\
& =\int_{0}^{1}\left(\sum_{I \in \mathcal{D}}\left[|g(I)|^{t} \frac{|I|}{|\tau(I)|}\right]^{2 / t} h_{\tau(I)}^{2}(x)\right)^{t / 2} d x \\
& =\int_{0}^{1}\left(\sum_{J \in \tau(\mathcal{D})}\left[\left|g\left(\tau^{-1}(J)\right)\right|^{t} \frac{\left|\tau^{-1}(J)\right|}{|J|}\right]^{2 / t} h_{J}^{2}(x)\right)^{t / 2} d x=\left\|T\left(|g|^{t}\right)\right\|_{f_{1}^{2 / t}} .
\end{aligned}
$$

Together with (7) this implies

$$
\begin{equation*}
\left\|T_{t}: H^{t} \rightarrow H^{t}\right\|^{t}=\left\|T: f_{1}^{2 / t} \rightarrow f_{1}^{2 / t}\right\| \tag{10}
\end{equation*}
$$

Now, from (5), [2, Proposition 8.1], and the positivity of T we obtain

$$
\left\|T: f_{1}^{\gamma} \rightarrow f_{1}^{\gamma}\right\| \leq c\left\|T: f_{1}^{\alpha} \rightarrow f_{1}^{\alpha}\right\|^{1-\eta}\left\|T: f_{1}^{\beta} \rightarrow f_{1}^{\beta}\right\|^{\eta}
$$

for $1 \leq \alpha<\gamma<\beta<\infty$ and $0<\eta<1$ such that $1 / \gamma=(1-\eta) / \alpha+\eta / \beta$, where $c>0$ depends at most on α, β, and γ. Together with (10) we end up with (9) by letting $\alpha=2 / q, \beta=2 / s$, and $\gamma=2 / p$.
3. A constructive aspect of Theorem 2. Given $g \in H^{s}$ it follows from Theorem 2 that there exists a $w_{0} \in H^{2}$ with $\left\|w_{0}\right\|_{H^{2}}=1$ such that

$$
\|g\|_{H^{s}}^{1-\theta} \sim\left\|\sum_{I \in \mathcal{D}}|g(I)|^{1-\theta}\left|w_{0}(I)\right|^{\theta} h_{I}\right\|_{H^{p}}
$$

whenever $0<s<p<2,0<\theta<1$, and $1 / p=(1-\theta) / s+\theta / 2$. The duality proof of Theorem 2 yields just the existence of such a $w_{0} \in H^{2}$. In order to get an explicit formula for $w_{0} \in H^{2}$ we exploit an atomic decomposition for $g \in H^{s}$ in this section. To simplify the notion we use the square function

$$
S(g)(x):=\left(\sum_{I \in \mathcal{D}} g(I)^{2} h_{I}^{2}(x)\right)^{1 / 2} \quad \text { for } g=(g(I))_{I \in \mathcal{D}} \in H^{s}
$$

The following lemma summarizes the properties of the stopping time decomposition originating with the work of S. Janson and P. W. Jones [3].

Lemma 4. Let $0<s, p<\infty$ and $g=(g(I))_{I \in \mathcal{D}} \in H^{s}$. Then there exists a system $\mathcal{E} \subseteq \mathcal{D}$ of dyadic intervals and $\mathcal{T}(K) \subseteq \mathcal{D}$ for $K \in \mathcal{E}$ such that, for

$$
g_{K}:=\sum_{I \in \mathcal{T}(K)} g(I) h_{I}
$$

one has the following:
(i) $(\mathcal{T}(K))_{K \in \mathcal{E}}$ is a disjoint partition of \mathcal{D},
(ii) $\operatorname{supp}\left(S\left(g_{K}\right)\right) \subseteq K$,
(iii) there is a constant $c>0$, depending on s only, such that

$$
\begin{equation*}
\sum_{K \in \mathcal{E}}\left\|S\left(g_{K}\right)\right\|_{\infty}^{s}|K| \leq c\|g\|_{H^{s}}^{s} \tag{11}
\end{equation*}
$$

(iv) there is an absolute constant $d \geq 1$ such that

$$
\begin{equation*}
\sum_{K \in \mathcal{E}}|\alpha(K)|^{p}\left\|g_{K}\right\|_{H^{p}}^{p} \leq d\left\|\sum_{K \in \mathcal{E}} \alpha(K) g_{K}\right\|_{H^{p}}^{p} \tag{12}
\end{equation*}
$$

for any sequence of scalars $\left(\alpha_{K}\right)_{K \in \mathcal{E}}$ where the sides might be infinite.

The above decomposition is obtained by applying a stopping time procedure based on the size of the square function $S(g)$. This argument is due to S. Janson and P. W. Jones [3]; it is reproduced in many places, for instance in [5] (cf. Theorem 2.3.3 and Proposition 3.1.5). By renumbering we
replace $\left(g_{K}, K\right)_{K \in \mathcal{E}}$ by $\left(g_{i}, I_{i}\right)_{i \in \mathcal{N}}$ with $\mathcal{N} \subseteq\{1,2, \ldots\}$. The family $\left(g_{i}, I_{i}\right)$ is called an atomic decomposition of g where we may assume without loss of generality that $\left\|g_{i}\right\|_{H^{2}}=\left\|S\left(g_{i}\right)\right\|_{2}>0$ for all i by leaving out those elements g_{K} with $\left\|g_{K}\right\|_{H^{2}}=0$.

Theorem 5. Let $0<s<p<2$ and $p+s \geq 2$, and let $0<\theta<1$ be such that

$$
\frac{1}{p}=\frac{1-\theta}{s}+\frac{\theta}{2}
$$

For $g \in H^{s}$ with $\|g\|_{H^{s}}>0$ and atomic decomposition $\left(g_{i}, I_{i}\right)$ define

$$
w_{0}:=\|g\|_{H^{s}}^{-s / 2} \sum_{i} Y_{i}^{1 / 2} g_{i} \quad \text { where } \quad Y_{i}:=\frac{\left\|S\left(g_{i}\right)\right\|_{\infty}^{s}\left|I_{i}\right|}{\left\|S\left(g_{i}\right)\right\|_{2}^{2}}
$$

Then $w_{0} \in H^{2}$ with $\left\|w_{0}\right\|_{H^{2}} \leq c$ with $c>0$ depending on s only, and

$$
\|g\|_{H^{s}}^{1-\theta} \leq d\left\|\sum_{I \in \mathcal{D}}|g(I)|^{1-\theta}\left|w_{0}(I)\right|^{\theta} h_{I}\right\|_{H^{p}}
$$

where $d>0$ is an absolute constant.
Proof. We may assume that $\|g\|_{H^{s}}=1$ in the following. As the sequence $\left(g_{i}\right)$ is disjointly supported over the Haar system, we have $S^{2}\left(w_{0}\right)=$ $\sum_{i} Y_{i} S\left(g_{i}\right)^{2}$. Inserting the definition of Y_{i} and using the estimate (11) yields

$$
\left\|w_{0}\right\|_{H^{2}}=\left(\sum_{i}\left\|S\left(g_{i}\right)\right\|_{\infty}^{s}\left|I_{i}\right|\right)^{1 / 2} \leq c^{1 / 2}\|g\|_{H^{s}}^{s / 2}=c^{1 / 2}<\infty
$$

Let $\left(g_{i}(I)\right)_{I \in \mathcal{D}}$ denote the Haar coefficients of g_{i}. Because

$$
\sum_{I \in \mathcal{D}}|g(I)|^{1-\theta}\left|w_{0}(I)\right|^{\theta} h_{I}=\sum_{i} Y_{i}^{\theta / 2}\left|g_{i}\right|
$$

from (12) we get

$$
\sum_{i} Y_{i}^{\theta p / 2}\left\|g_{i}\right\|_{H^{p}}^{p} \leq d\left\|\sum_{I \in \mathcal{D}}|g(I)|^{1-\theta}\left|w_{0}(I)\right|^{\theta} h_{I}\right\|_{H^{p}}^{p}
$$

where the right-hand side is finite because $g \in H^{s}, w_{0} \in H^{2}$, and by the right-hand inequality of (4) (we are interested in an alternative proof for the left-hand side). As $s \leq 2$ we have

$$
S(g)^{s}=\left(\sum_{i} S\left(g_{i}\right)^{2}\right)^{s / 2} \leq \sum_{i} S\left(g_{i}\right)^{s}
$$

so that $1=\|g\|_{H^{s}}^{s} \leq \sum_{i}\left\|g_{i}\right\|_{H^{s}}^{s}$. Thus in order to prove

$$
1 \leq d\left\|\sum_{I \in \mathcal{D}}|g(I)|^{1-\theta}\left|w_{0}(I)\right|^{\theta} h_{I}\right\|_{H^{p}}^{p}
$$

it suffices to show

$$
\sum_{i}\left\|g_{i}\right\|_{H^{s}}^{s} \leq \sum_{i} Y_{i}^{\theta p / 2}\left\|g_{i}\right\|_{H^{p}}^{p}
$$

Since

$$
Y_{i}^{\theta p / 2}\left\|g_{i}\right\|_{H^{p}}^{p}=\left\|S\left(g_{i}\right)\right\|_{\infty}^{\theta p s / 2}\left|I_{i}\right|^{\theta p / 2}\left\|S\left(g_{i}\right)\right\|_{2}^{-\theta p}\left\|g_{i}\right\|_{H^{p}}^{p}
$$

we will prove that

$$
\left(\int_{0}^{1} S\left(g_{i}\right)^{s}(x) d x\right)\left(\int_{0}^{1} S\left(g_{i}\right)^{2}(x) d x\right)^{\theta p / 2} \leq\left\|S\left(g_{i}\right)\right\|_{\infty}^{\theta p s / 2}\left|I_{i}\right|^{\theta p / 2}\left(\int_{0}^{1} S\left(g_{i}\right)^{p}(x) d x\right)
$$

Replacing $d x$ by $d x /|I|$ and taking into the account that the support of $S\left(g_{i}\right)$ is contained in I_{i} we only need to prove for a non-negative random variable Z that

$$
\left(E Z^{s}\right)\left(E Z^{2}\right)^{\theta p / 2} \leq\|Z\|_{\infty}^{\theta p s / 2} E Z^{p}
$$

which follows from

$$
\begin{aligned}
\left(E Z^{s}\right)\left(E Z^{2}\right)^{\theta p / 2} & \leq\left(E Z^{s}\right)\left(E Z^{2-s}\right)^{\theta p / 2}\|Z\|_{\infty}^{\theta p s / 2} \\
& \leq\left(E Z^{p}\right)^{s / p}\left(E Z^{p}\right)^{(2-s) \theta p /(2 p)}\|Z\|_{\infty}^{\theta p s / 2}
\end{aligned}
$$

and

$$
\frac{s}{p}+\frac{2-s}{p} \frac{\theta p}{2}=1
$$

Second proof of the left-hand inequality of Theorem 1. For $0<s<p<2$ we find $p \leq p^{\prime}<2$ such that $s+p^{\prime} \geq 2$. Then we get

$$
\begin{aligned}
\left\|T_{s}: H^{s} \rightarrow H^{s}\right\| & \leq c_{1}\left\|T_{p^{\prime}}: H^{p^{\prime}} \rightarrow H^{p^{\prime}}\right\|^{\left(1-\theta_{1}\right)^{-1}} \\
& \leq c_{2}\left\|T_{p}: H^{p} \rightarrow H^{p}\right\|^{\left(1-\theta_{1}\right)^{-1}\left(1-\theta_{2}\right)}
\end{aligned}
$$

where

$$
\frac{1}{p^{\prime}}=\frac{1-\theta_{1}}{s}+\frac{\theta_{1}}{2} \quad \text { and } \quad \frac{1}{p^{\prime}}=\frac{1-\theta_{2}}{p}+\frac{\theta_{2}}{2}
$$

with $c_{1}, c_{2}>0$ depending at most on s, p, and p^{\prime} and where we used in the first step Theorem 5 together with the arguments of part (a) of the proof of Theorem 1, and in the second one formula (9) for $q=2$ (note that T_{2} preserves the H^{2}-norm). Because

$$
\left(1-\theta_{1}\right)^{-1}\left(1-\theta_{2}\right)=(1-\theta)^{-1}
$$

with θ defined in Theorem 1 , we are done.

References

[1] M. Cwikel, P. G. Nilsson and G. Schechtman, Interpolation of weighted Banach lattices. A characterization of relatively decomposable Banach lattices, Mem. Amer. Math. Soc. 165 (2003), no. 787.
[2] M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), 34-170.
[3] S. Janson and P. W. Jones, Interpolation between H^{p} spaces: the complex method, ibid. 48 (1982), 58-80.
[4] P. F. X. Müller, Rearrangements of the Haar system that preserve BMO, Proc. London Math. Soc. 75 (1997), 600-618.
[5] -, Isomorphisms between H^{1} Spaces, Monograf. Mat. 66, Birkhäuser, Basel, 2005.
[6] G. Pisier, Some applications of the complex interpolation method to Banach lattices, J. Anal. Math. 115 (1982), 375-392.

Department of Mathematics and Statistics P.O. Box 35 (MaD)

FIN-40014 University of Jyväskylä, Finland E-mail: geiss@maths.jyu.fi

Department of Analysis
J. Kepler University A-4040 Linz, Austria
E-mail: pfxm@bayou.uni-linz.ac.at

[^0]: $\left.{ }^{(}{ }^{1}\right)$ The spaces we use are complemented subspaces of the spaces $\dot{f}_{1}^{-1 / 2, p}$ from $[2$, p. 38], complemented in a way that [2, Theorem 8.2] remains true.

