A remark on extrapolation of rearrangement operators on dyadic H^s , $0 < s \le 1$

by

STEFAN GEISS (Jyväskylä), PAUL F. X. MÜLLER (Linz) and VERONIKA PILLWEIN (Linz)

Abstract. For an injective map τ acting on the dyadic subintervals of the unit interval [0, 1) we define the rearrangement operator T_s , 0 < s < 2, to be the linear extension of the map

$$\frac{h_I}{|I|^{1/s}} \mapsto \frac{h_{\tau(I)}}{|\tau(I)|^{1/s}},$$

where h_I denotes the L^{∞} -normalized Haar function supported on the dyadic interval I. We prove the following extrapolation result: If there exists at least one $0 < s_0 < 2$ such that T_{s_0} is bounded on H^{s_0} , then for all 0 < s < 2 the operator T_s is bounded on H^s .

1. Introduction. In this paper we prove extrapolation estimates for rearrangement operators of the Haar system, normalized in H^s , 0 < s < 2. Here H^s denotes the dyadic Hardy space of sequences $(g(I))_{I \in \mathcal{D}}$ for which

(1)
$$\|(g(I))_{I\in\mathcal{D}}\|_{H^s}^s := \int_0^1 \left(\sum_{I\in\mathcal{D}} g(I)^2 h_I^2(x)\right)^{s/2} dx < \infty.$$

In (1) we let \mathcal{D} denote the collection of all dyadic intervals [a, b) in the unit interval [0, 1) and correspondingly $(h_I)_{I \in \mathcal{D}}$ denotes the L^{∞} -normalized Haar system. For an injective map $\tau : \mathcal{D} \to \mathcal{D}$ we define the rearrangement operator T_s to be the linear extension of

$$T_s: \frac{h_I}{|I|^{1/s}} \mapsto \frac{h_{\tau(I)}}{|\tau(I)|^{1/s}}$$

We show that

(2)
$$||T_s : H^s \to H^s||^{1-\theta} \le c ||T_p : H^p \to H^p||, \quad 0 < s < p < 2,$$

²⁰⁰⁰ Mathematics Subject Classification: 46B42, 46B70, 47B37.

The third named author is supported by the Austrian Science Foundation (FWF) Pr.Nr. P15907-N08.

where $0 < \theta < 1$ is chosen such that

$$\frac{1}{p} = \frac{1-\theta}{s} + \frac{\theta}{2},$$

c > 0 depends at most on s and p, and

$$||T_s: H^s \to H^s|| := \sup\{||T_sg||_{H^s}: ||g||_{H^s} \le 1\}.$$

The novelty of (2) lies in the range of admissible values for s. In [4] the estimate (2) was obtained for the range $1 \leq s . The proof in [4] is based on duality and therefore strictly limited to the case <math>s \geq 1$. An alternative proof of (2) for $1 \leq s has been given by exploiting the norm devised by G. Pisier in the context of general Banach lattices [6]. For example, for <math>g = (g(I))_{I \in \mathcal{D}} \in H^1$ Pisier's result reads in our setting as

(3)
$$\frac{1}{d} \|g\|_{H^1}^{1-\theta} \le \sup\left\{ \left\| \sum_{I \in \mathcal{D}} |g(I)|^{1-\theta} |w(I)|^{\theta} h_I \right\|_{H^p} : \|w\|_{H^2} \le 1 \right\} \le \|g\|_{H^1}^{1-\theta}$$

with $0 < \theta < 1$ and

$$\frac{1}{p} = 1 - \frac{\theta}{2},$$

where $d \ge 1$ depends at most on p and θ . We do not know who should be credited for finding the proof of (2), $1 \le s , using (3). A proof of (3)$ $follows by specializing the ideas of G. Pisier to the context of <math>H^1$. The work of M. Cwikel, P. G. Nilsson and G. Schechtman [1, Ch. 3] plays a crucial role in linking (3) to G. Pisier's original construction [6].

2. Extrapolation estimates. The aim of this paper is to present a proof of the following two theorems.

THEOREM 1. Let $\tau : \mathcal{D} \to \mathcal{D}$ be an injection, and let 0 < s < p < 2 and $0 < \theta < 1$ be such that

$$\frac{1}{p} = \frac{1-\theta}{s} + \frac{\theta}{2}.$$

Then there exists a constant c > 0, depending at most on s and p, such that

$$\frac{1}{c} \|T_s : H^s \to H^s \|^{1-\theta} \le \|T_p : H^p \to H^p \| \le c \|T_s : H^s \to H^s \|^{1-\theta}.$$

The point of the above theorem is the left-hand inequality which corresponds to an *extrapolation*. The right-hand one is rather standard and follows by interpolation. The proof of the extrapolation inequality is based on

THEOREM 2. For
$$0 < s < p < q \le 2$$
 and $0 < \theta < 1$ such that

$$\frac{1}{p} = \frac{1-\theta}{s} + \frac{\theta}{q}$$

198

there exists a constant c > 0, depending at most on s, p, and q, such that

(4)
$$\frac{1}{c} \|g\|_{H^s}^{1-\theta} \le \sup\left\{ \left\| \sum_{I \in \mathcal{D}} |g(I)|^{1-\theta} |w(I)|^{\theta} h_I \right\|_{H^p} : \|w\|_{H^q} \le 1 \right\} \le \|g\|_{H^s}^{1-\theta}$$

for all $g \in H^s$.

The main estimate in Theorem 2 is the left-hand inequality for which we present two approaches. One is by reduction to the case of Banach lattices and duality. The second approach is via Theorem 5 which is the desired inequality for q = 2 and $p + s \ge 2$ and which is—despite the parameter restriction—sufficient to prove the extrapolation part of Theorem 1 as well. The proof of Theorem 5 circumvents the use of duality and is based instead on the atomic decomposition; it provides additional information by finding a particular w_0 that realizes the supremum in (4) up to a multiplicative constant.

Let us start with the proof of Theorem 2 by introducing the following Banach lattices of Triebel type.

Definition 3. For $1 \leq \alpha < \infty$ we let

$$f_1^{\alpha} := \left\{ g = (g(I))_{I \in \mathcal{D}} : \|g\|_{f_1^{\alpha}} := \left\| \left(\sum_{I \in \mathcal{D}} |g(I)|^{\alpha} h_I^2 \right)^{1/\alpha} \right\|_{L^1} < \infty \right\}$$

The lattice structure of the spaces f_1^{α} is defined through the canonical lattice structure of the sequences $(g(I))_{I \in \mathcal{D}}$. The Triebel spaces f_1^{α} form an interpolation scale compatible with the Calderón product: For

$$\frac{1}{\gamma} = \frac{1-\eta}{\alpha} + \frac{\eta}{\beta},$$

 $0<\eta<1,$ and $1\leq\alpha<\gamma<\beta<\infty,$ M. Frazier and B. Jawerth [2, Theorem 8.2] $(^1)$ proved that

(5)
$$\|g\|_{f_1^{\gamma}} \le \|g\|_{(f_1^{\alpha})^{1-\eta}(f_1^{\beta})^{\eta}} \le c\|g\|_{f_1^{\gamma}}$$

with $c \ge 1$ depending at most on α , γ , and β , where the Calderón product is given by

$$\|g\|_{(f_1^{\alpha})^{1-\eta}(f_1^{\beta})^{\eta}} := \inf\{\|g_0\|_{f_1^{\alpha}}^{1-\eta}\|g_1\|_{f_1^{\beta}}^{\eta} : |g| = |g_0|^{1-\eta}|g_1|^{\eta}\}.$$

(The left-hand inequality of (5) follows by an appropriate application of Hölder's inequality.) Our main tool will be the extrapolation formula

(6)
$$\|g\|_{f_1^\beta}^\eta = \sup\left\{ \left\| |g|^\eta |w|^{1-\eta} \right\|_{(f_1^\alpha)^{1-\eta}(f_1^\beta)^\eta} : \|w\|_{f_1^\alpha} \le 1 \right\}$$

with $1 \le \alpha < \beta < \infty$ and $0 < \eta < 1$ from M. Cwikel, P. G. Nilsson and G. Schechtman [1, Theorem 3.5].

^{(&}lt;sup>1</sup>) The spaces we use are complemented subspaces of the spaces $\dot{f}_1^{-1/2,p}$ from [2, p. 38], complemented in a way that [2, Theorem 8.2] remains true.

S. Geiss et al.

Proof of Theorem 2. For $0 < t \leq 2$ and $g = (g(I))_{I \in \mathcal{D}}$ we get

(7)
$$||g||_{H^{t}}^{t} = \int_{0}^{1} \left(\sum_{I \in \mathcal{D}} g(I)^{2} h_{I}^{2}(x)\right)^{t/2} dx$$
$$= \int_{0}^{1} \left(\sum_{I \in \mathcal{D}} (|g(I)|^{t})^{2/t} h_{I}^{2}(x)\right)^{t/2} dx = \left\||g|^{t}\right\|_{f_{1}^{2/t}}.$$

Consequently, rewriting (4) we need to prove that

$$\frac{1}{c} \left\| |g|^{s} \right\|_{f_{1}^{2/s}}^{(1-\theta)/s} \\
\leq \sup \left\{ \| (|g(I)|^{p(1-\theta)} |w(I)|^{p\theta})_{I \in \mathcal{D}} \|_{f_{1}^{2/p}}^{1/p} : \left\| |w|^{q} \right\|_{f_{1}^{2/q}}^{1/q} \leq 1 \right\} \leq \left\| |g|^{s} \right\|_{f_{1}^{2/s}}^{(1-\theta)/s}.$$

Replacing in the above estimates g by $|g|^{1/s}$ and w by $|w|^{1/q}$ we obtain

(8)
$$\frac{1}{c^{p}} \|g\|_{f_{1}^{2/s}}^{p(1-\theta)/s} \leq \sup\{\|(|g(I)|^{p(1-\theta)/s}|w(I)|^{p\theta/q})_{I\in\mathcal{D}}\|_{f_{1}^{2/p}} : \|w\|_{f_{1}^{2/q}} \leq 1\} \leq \|g\|_{f_{1}^{2/s}}^{p(1-\theta)/s}.$$
With $\alpha := 2/q, \ \beta := 2/s, \ \gamma := 2/p, \ \text{and} \ \eta := (q-p)/(q-s) \in (0,1) \ \text{so that}$

$$1 \le \alpha < \gamma < \beta, \quad \frac{1}{\gamma} = \frac{1-\eta}{\alpha} + \frac{\eta}{\beta},$$

the estimates (8) are equivalent to

$$\frac{1}{c^p} \|g\|_{f_1^{\beta}}^{\eta} \le \sup\{\|(|g(I)|^{\eta}|w(I)|^{1-\eta})_{I\in\mathcal{D}}\|_{f_1^{\gamma}} : \|w\|_{f_1^{\alpha}} \le 1\} \le \|g\|_{f_1^{\beta}}^{\eta},$$

which follows immediately from (5) and (6). \blacksquare

Proof of Theorem 1. (a) First we prove the left-hand inequality. Assume that $||T_p : H^p \to H^p|| < \infty$ (otherwise there is nothing to prove). Fix $g = (g(I))_{I \in \mathcal{D}} \in H^s$ and $w = (w(I))_{I \in \mathcal{D}} \in H^2$. Define

$$u := \sum_{I \in \mathcal{D}} |g(I)|^{1-\theta} |w(I)|^{\theta} h_I.$$

As $1/p = (1 - \theta)/s + \theta/2$ we have

$$(T_p u)(J) = |(T_s g)(J)|^{1-\theta} |(T_2 w)(J)|^{\theta}$$

for the corresponding Haar coefficients. By Theorem 2 we get

$$\frac{1}{c} \|T_s g\|_{H^s}^{1-\theta} \le \sup \Big\{ \Big\| \sum_{J \in \mathcal{D}} |(T_s g)(J)|^{1-\theta} |w(J)|^{\theta} h_J \Big\|_{H^p} : \|w\|_{H^2} \le 1 \Big\}.$$

Since T_2 preserves the H^2 -norm and the supremum in the above expression can be restricted to those w such that w(J) = 0 whenever $J \notin \tau(\mathcal{D})$, we can

200

rewrite the above inequality as

$$\frac{1}{c} \|T_s g\|_{H^s}^{1-\theta} \le \sup\left\{ \left\| \sum_{J \in \mathcal{D}} |(T_s g)(J)|^{1-\theta} |(T_2 w)(J)|^{\theta} h_J \right\|_{H^p} : \|T_2 w\|_{H^2} \le 1 \right\}$$
$$= \sup\left\{ \left\| T_p \Big(\sum_{I \in \mathcal{D}} |g(I)|^{1-\theta} |w(I)|^{\theta} h_I \Big) \right\|_{H^p} : \|w\|_{H^2} \le 1 \right\}.$$

As T_p is bounded on H^p ,

$$\sup \left\{ \left\| T_p \Big(\sum_{I \in \mathcal{D}} |g(I)|^{1-\theta} |w(I)|^{\theta} h_I \Big) \right\|_{H^p} : \|w\|_{H^2} \le 1 \right\}$$

$$\le \|T_p : H^p \to H^p \| \sup \left\{ \left\| \sum_{I \in \mathcal{D}} |g(I)|^{1-\theta} |w(I)|^{\theta} h_I \right\|_{H^p} : \|w\|_{H^2} \le 1 \right\}.$$

By Theorem 2 the supremum above is bounded by $||g||_{H^s}^{1-\theta}$ so that

$$\frac{1}{c} \|T_s g\|_{H^s}^{1-\theta} \le \|T_p : H^p \to H^p\| \, \|g\|_{H^s}^{1-\theta}$$

and the claim follows.

(b) Because $||T_2g||_{H^2} = ||g||_{H^2}$ the right-hand inequality follows from a general interpolation property of the operators T_p : for $0 < s < p < q \le 2$ and $0 < \theta' < 1$ with $1/p = (1 - \theta')/s + \theta'/q$ one has

(9)
$$||T_p: H^p \to H^p|| \le c||T_s: H^s \to H^s||^{1-\theta'}||T_q: H^q \to H^q||^{\theta'}$$

where c > 0 depends at most on s, p, and q. There are different ways to deduce (9). We reduce the family of operators $(T_p)_{0 to a$ *single*operator <math>T and exploit the interpolation property of the Calderón product. The map T is given by $T((a(I))_{I \in \mathcal{D}}) := (g(J))_{J \in \mathcal{D}}$ with

$$g(J) := \begin{cases} a(\tau^{-1}(J)) \frac{|\tau^{-1}(J)|}{|J|}, & J \in \tau(\mathcal{D}), \\ 0, & J \notin \tau(\mathcal{D}), \end{cases}$$

so that, for $0 < t \leq 2$,

$$\begin{aligned} ||T_tg||_{H^t}^t &= \int_0^1 \left(\sum_{I \in \mathcal{D}} \left[g(I) \left(\frac{|I|}{|\tau(I)|}\right)^{1/t}\right]^2 h_{\tau(I)}^2(x)\right)^{t/2} dx \\ &= \int_0^1 \left(\sum_{I \in \mathcal{D}} \left[|g(I)|^t \frac{|I|}{|\tau(I)|}\right]^{2/t} h_{\tau(I)}^2(x)\right)^{t/2} dx \\ &= \int_0^1 \left(\sum_{J \in \tau(\mathcal{D})} \left[|g(\tau^{-1}(J))|^t \frac{|\tau^{-1}(J)|}{|J|}\right]^{2/t} h_J^2(x)\right)^{t/2} dx = ||T(|g|^t)||_{f_1^{2/t}}.\end{aligned}$$

Together with (7) this implies

(10)
$$||T_t: H^t \to H^t||^t = ||T: f_1^{2/t} \to f_1^{2/t}||.$$

S. Geiss et al.

Now, from (5), [2, Proposition 8.1], and the positivity of T we obtain

$$\|T:f_1^\gamma \to f_1^\gamma\| \leq c \|T:f_1^\alpha \to f_1^\alpha\|^{1-\eta} \|T:f_1^\beta \to f_1^\beta\|^\eta$$

for $1 \leq \alpha < \gamma < \beta < \infty$ and $0 < \eta < 1$ such that $1/\gamma = (1 - \eta)/\alpha + \eta/\beta$, where c > 0 depends at most on α , β , and γ . Together with (10) we end up with (9) by letting $\alpha = 2/q$, $\beta = 2/s$, and $\gamma = 2/p$.

3. A constructive aspect of Theorem 2. Given $g \in H^s$ it follows from Theorem 2 that there exists a $w_0 \in H^2$ with $||w_0||_{H^2} = 1$ such that

$$||g||_{H^s}^{1-\theta} \sim \left\| \sum_{I \in \mathcal{D}} |g(I)|^{1-\theta} |w_0(I)|^{\theta} h_I \right\|_{H^p}$$

whenever 0 < s < p < 2, $0 < \theta < 1$, and $1/p = (1 - \theta)/s + \theta/2$. The duality proof of Theorem 2 yields just the existence of such a $w_0 \in H^2$. In order to get an explicit formula for $w_0 \in H^2$ we exploit an atomic decomposition for $g \in H^s$ in this section. To simplify the notion we use the square function

$$S(g)(x) := \left(\sum_{I \in \mathcal{D}} g(I)^2 h_I^2(x)\right)^{1/2} \quad \text{for } g = (g(I))_{I \in \mathcal{D}} \in H^s.$$

The following lemma summarizes the properties of the stopping time decomposition originating with the work of S. Janson and P. W. Jones [3].

LEMMA 4. Let $0 < s, p < \infty$ and $g = (g(I))_{I \in \mathcal{D}} \in H^s$. Then there exists a system $\mathcal{E} \subseteq \mathcal{D}$ of dyadic intervals and $\mathcal{T}(K) \subseteq \mathcal{D}$ for $K \in \mathcal{E}$ such that, for

$$g_K := \sum_{I \in \mathcal{T}(K)} g(I) h_I,$$

one has the following:

- (i) $(\mathcal{T}(K))_{K\in\mathcal{E}}$ is a disjoint partition of \mathcal{D} ,
- (ii) $\operatorname{supp}(S(g_K)) \subseteq K$,

(iii) there is a constant c > 0, depending on s only, such that

(11)
$$\sum_{K\in\mathcal{E}} \|S(g_K)\|_{\infty}^s |K| \le c \|g\|_{H^s}^s,$$

(iv) there is an absolute constant $d \ge 1$ such that

(12)
$$\sum_{K \in \mathcal{E}} |\alpha(K)|^p ||g_K||_{H^p}^p \le d \Big\| \sum_{K \in \mathcal{E}} \alpha(K) g_K \Big\|_{H^p}^p$$

for any sequence of scalars $(\alpha_K)_{K \in \mathcal{E}}$ where the sides might be infinite.

The above decomposition is obtained by applying a stopping time procedure based on the size of the square function S(g). This argument is due to S. Janson and P. W. Jones [3]; it is reproduced in many places, for instance in [5] (cf. Theorem 2.3.3 and Proposition 3.1.5). By renumbering we replace $(g_K, K)_{K \in \mathcal{E}}$ by $(g_i, I_i)_{i \in \mathcal{N}}$ with $\mathcal{N} \subseteq \{1, 2, \ldots\}$. The family (g_i, I_i) is called an *atomic decomposition* of g where we may assume without loss of generality that $\|g_i\|_{H^2} = \|S(g_i)\|_2 > 0$ for all i by leaving out those elements g_K with $\|g_K\|_{H^2} = 0$.

THEOREM 5. Let 0 < s < p < 2 and $p + s \ge 2$, and let $0 < \theta < 1$ be such that

$$\frac{1}{p} = \frac{1-\theta}{s} + \frac{\theta}{2}.$$

For $g \in H^s$ with $||g||_{H^s} > 0$ and atomic decomposition (g_i, I_i) define

$$w_0 := \|g\|_{H^s}^{-s/2} \sum_i Y_i^{1/2} g_i \quad where \quad Y_i := \frac{\|S(g_i)\|_{\infty}^s |I_i|}{\|S(g_i)\|_2^2}.$$

Then $w_0 \in H^2$ with $||w_0||_{H^2} \leq c$ with c > 0 depending on s only, and

$$||g||_{H^s}^{1-\theta} \le d \Big\| \sum_{I \in \mathcal{D}} |g(I)|^{1-\theta} |w_0(I)|^{\theta} h_I \Big\|_{H^p}$$

where d > 0 is an absolute constant.

Proof. We may assume that $||g||_{H^s} = 1$ in the following. As the sequence (g_i) is disjointly supported over the Haar system, we have $S^2(w_0) = \sum_i Y_i S(g_i)^2$. Inserting the definition of Y_i and using the estimate (11) yields

$$||w_0||_{H^2} = \left(\sum_i ||S(g_i)||_{\infty}^s |I_i|\right)^{1/2} \le c^{1/2} ||g||_{H^s}^{s/2} = c^{1/2} < \infty.$$

Let $(g_i(I))_{I \in \mathcal{D}}$ denote the Haar coefficients of g_i . Because

$$\sum_{I \in \mathcal{D}} |g(I)|^{1-\theta} |w_0(I)|^{\theta} h_I = \sum_i Y_i^{\theta/2} |g_i|,$$

from (12) we get

$$\sum_{i} Y_{i}^{\theta p/2} \|g_{i}\|_{H^{p}}^{p} \leq d \left\| \sum_{I \in \mathcal{D}} |g(I)|^{1-\theta} |w_{0}(I)|^{\theta} h_{I} \right\|_{H^{p}}^{p}$$

where the right-hand side is finite because $g \in H^s$, $w_0 \in H^2$, and by the right-hand inequality of (4) (we are interested in an alternative proof for the left-hand side). As $s \leq 2$ we have

$$S(g)^{s} = \left(\sum_{i} S(g_{i})^{2}\right)^{s/2} \le \sum_{i} S(g_{i})^{s}$$

so that $1 = ||g||_{H^s}^s \leq \sum_i ||g_i||_{H^s}^s$. Thus in order to prove

$$1 \le d \left\| \sum_{I \in \mathcal{D}} |g(I)|^{1-\theta} |w_0(I)|^{\theta} h_I \right\|_{H^p}^p$$

S. Geiss et al.

it suffices to show

$$\sum_{i} \|g_{i}\|_{H^{s}}^{s} \leq \sum_{i} Y_{i}^{\theta p/2} \|g_{i}\|_{H^{p}}^{p}.$$

Since

$$Y_i^{\theta p/2} \|g_i\|_{H^p}^p = \|S(g_i)\|_{\infty}^{\theta ps/2} |I_i|^{\theta p/2} \|S(g_i)\|_2^{-\theta p} \|g_i\|_{H^p}^p$$

we will prove that

$$\Big(\int_{0}^{1} S(g_i)^s(x) \, dx\Big)\Big(\int_{0}^{1} S(g_i)^2(x) \, dx\Big)^{\theta p/2} \le \|S(g_i)\|_{\infty}^{\theta ps/2} |I_i|^{\theta p/2} \Big(\int_{0}^{1} S(g_i)^p(x) \, dx\Big).$$

Replacing dx by dx/|I| and taking into the account that the support of $S(g_i)$ is contained in I_i we only need to prove for a non-negative random variable Z that

$$(EZ^s)(EZ^2)^{\theta p/2} \le ||Z||_{\infty}^{\theta ps/2} EZ^p,$$

which follows from

$$(EZ^{s})(EZ^{2})^{\theta p/2} \leq (EZ^{s})(EZ^{2-s})^{\theta p/2} ||Z||_{\infty}^{\theta ps/2} \\ \leq (EZ^{p})^{s/p}(EZ^{p})^{(2-s)\theta p/(2p)} ||Z||_{\infty}^{\theta ps/2}$$

and

$$\frac{s}{p} + \frac{2-s}{p}\frac{\theta p}{2} = 1. \blacksquare$$

Second proof of the left-hand inequality of Theorem 1. For 0 < s < p < 2we find $p \le p' < 2$ such that $s + p' \ge 2$. Then we get

$$||T_s : H^s \to H^s|| \le c_1 ||T_{p'} : H^{p'} \to H^{p'} ||^{(1-\theta_1)^{-1}} \le c_2 ||T_p : H^p \to H^p ||^{(1-\theta_1)^{-1}(1-\theta_2)}$$

where

$$\frac{1}{p'} = \frac{1-\theta_1}{s} + \frac{\theta_1}{2}$$
 and $\frac{1}{p'} = \frac{1-\theta_2}{p} + \frac{\theta_2}{2}$

with $c_1, c_2 > 0$ depending at most on s, p, and p' and where we used in the first step Theorem 5 together with the arguments of part (a) of the proof of Theorem 1, and in the second one formula (9) for q = 2 (note that T_2 preserves the H^2 -norm). Because

$$(1 - \theta_1)^{-1}(1 - \theta_2) = (1 - \theta)^{-1}$$

with θ defined in Theorem 1, we are done.

References

 M. Cwikel, P. G. Nilsson and G. Schechtman, Interpolation of weighted Banach lattices. A characterization of relatively decomposable Banach lattices, Mem. Amer. Math. Soc. 165 (2003), no. 787.

204

- M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), 34–170.
- S. Janson and P. W. Jones, Interpolation between H^p spaces: the complex method, ibid. 48 (1982), 58–80.
- [4] P. F. X. Müller, Rearrangements of the Haar system that preserve BMO, Proc. London Math. Soc. 75 (1997), 600–618.
- [5] —, Isomorphisms between H^1 Spaces, Monograf. Mat. 66, Birkhäuser, Basel, 2005.
- G. Pisier, Some applications of the complex interpolation method to Banach lattices, J. Anal. Math. 115 (1982), 375–392.

Department of Mathematics and Statistics	Department of Analysis
P.O. Box 35 (MaD)	J. Kepler University
FIN-40014 University of Jyväskylä, Finland	A-4040 Linz, Austria
E-mail: geiss@maths.jyu.fi	E-mail: pfxm@bayou.uni-linz.ac.at

Received May 26, 2005

(5632)