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Some facts from descriptive set theory

concerning essential spectra and applications

by

Khalid Latrach (Aubière), J. Martin Paoli (Corte)
and Pierre Simonnet (Corte)

Abstract. Let X be a separable Banach space and denote by L(X) (resp. K(C))
the set of all bounded linear operators on X (resp. the set of all compact subsets of C).
We show that the maps from L(X) into K(C) which assign to each element of L(X)
its spectrum, approximate point spectrum, essential spectrum, Weyl essential spectrum,
Browder essential spectrum, respectively, are Borel maps, where L(X) (resp. K(C)) is
endowed with the strong operator topology (resp. Hausdorff topology). This enables us to
derive the topological complexity of some subsets of L(X) and to discuss the properties of
a class of strongly continuous semigroups. We close the paper by giving a characterization
of strongly continuous semigroups on hereditarily indecomposable Banach spaces.

1. Introduction. Let X be an infinite-dimensional Banach space over
the complex field and let L(X) denote the algebra of bounded linear oper-
ators on X. The subset of all finite rank (resp. compact) operators of L(X)
is designated by F0(X) (resp. K(X)). One can consider on L(X) its strong
topology which is the coarsest topology for which the maps ϕx : L(X) → X,
ϕx(T ) = Tx, are continuous for all x ∈ X. Equipped with this topology,
L(X) is a topological vector space denoted by Ls(X). For T ∈ L(X), we let
σ(T ), ̺(T ), N(A) and R(T ) denote the spectrum, resolvent set, null space
and range of T , respectively. The nullity of T , α(T ), is the dimension of
N(T ), and the deficiency of T , β(T ), is the codimension of R(T ) in X. The
set of upper semi-Fredholm operators of L(X) is defined by

Φ+(X) = {T ∈ L(X) : α(T ) <∞ and R(T ) is closed in X},

and the set of lover semi-Fredholm operators of L(X) is defined by

Φ−(X) = {T ∈ L(X) : β(T ) <∞ (and R(T ) is closed in X)}.
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Operators in Φ(X) = Φ+(X)∩Φ−(X) are called Fredholm operators of L(X).
If T ∈ Φ(X), the number i(T ) = α(T ) − β(T ) ∈ Z is called the index of T .
The Fredholm domain of T , ΦT , is the set of all complex numbers λ such
that λI − T is a Fredholm operator. Finally, we denote by Φ0(X) the set of
Weyl operators on X, that is,

Φ0(X) = {T ∈ Φ(X) : i(T ) = 0}.

Let SX denote the unit sphere of X and T ∈ L(X). The following defi-
nitions are well known: the approximate point spectrum of T is

σap(T ) = {λ ∈ C : ∃(xn)n∈N, xn ∈ SX and lim
n→∞

‖(λ− T )xn‖ = 0},

the compression spectrum of T is

σcom(T ) = {λ ∈ C : (λ− T )X is not dense in X},

the essential spectrum of T (the spectrum of T in the Calkin algebra) is

σe(T ) := {λ ∈ C : λ− T /∈ Φ(X)},

the Weyl essential spectrum of T is

σw(T ) = {λ ∈ C : λ− T /∈ Φ0(X)},

and the Browder essential spectrum is

σb(T ) =
⋂

K∈K(X)

{σ(T +K) : TK = KT}.

Let π0(T ) denote the set of isolated points of σ(T ) whose associated spectral
projections have finite-dimensional ranges. It is well known that σb(T ) =
σ(T ) \ π0(T ).

In Chapter 3 of his thesis [24], Yahdi discussed the topological complexity
of some subsets of L(X) under the hypotheses that X is a separable Banach
space and L(X) is endowed with the strong operator topology. In particular,
he showed that the families of stable, ergodic and power bounded operators
are Borel subsets of L(X) while the set of superstable operators is coanalytic.
Other results in this direction may be found in Chapter 4 of Yahdi’s work.

The purpose of this work is twofold: Firstly, we establish further results
in the spirit of those obtained in [24] (cf. Theorem 1.1 below). Secondly, we
apply our result to derive the topological complexity of some subsets of L(X)
equipped with the strong operator topology (Corollary 1.1) and to discuss
the properties of strongly continuous semigroups in Banach spaces under a
hypothesis (A) (cf. Section 4). To state our results, let us first introduce
some notions and notations.

Let X be a Banach space. An operator T ∈ L(X) is called a left topo-

logical divisor of zero (briefly, left TDZ) in L(X) if there exists a sequence
(xn)n∈N of vectors such that ‖xn‖ = 1 and Txn → 0 as n → ∞. Let T (X)
denote the set of all operators of L(X) which are left TDZ. It is well known
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that the approximate point spectrum and T (X) are connected in the fol-
lowing way:

σap(T ) = {λ ∈ C : λI − T ∈ T (X)}.

An operator R ∈ L(X) is called a Riesz operator if λI − R ∈ Φ(X) for
all scalars λ 6= 0, i.e. ΦR = C \ {0}. Let R(X) denote the class of all Riesz
operators. Finally, we denote by Inv(X) the subset of L(X) consisting of
all invertible operators on X. For more information about the notions and
concepts introduced above we refer, for example, to [1, 8, 12, 19, 20].

Let C be the field of complex numbers and let K(C) be the collection of
all nonempty compact subsets of C. For K and K ′ in K(C), we define the
Hausdorff distance dH(K,K ′) between K and K ′ by

dH(K,K ′) = max(δ(K,K ′), δ(K ′,K)),

where δ(K,K ′) = supx∈K d(x,K ′). In the rest of this paper K(C) will be
endowed with this metric.

We are now ready to state the main result of this paper.

Theorem 1.1. Let X be a Banach space. If X is separable, then the

maps

(1) σap : Ls(X) → K(C), T 7→ σap(T ),
(2) σ : Ls(X) → K(C), T 7→ σ(T ),

are Borel maps. If further X ′ (the dual space of X) is separable, then

(3) σw : Ls(X) → K(C), T 7→ σw(T ),
(4) σe : Ls(X) → K(C), T 7→ σe(T ),
(5) σb : Ls(X) → K(C), T 7→ σb(T ),

are Borel maps.

Evidently, in the case where L(X) is endowed with the operator norm
topology, the spectrum and essential spectrum are known to be upper semi-
continuous (hence Borel) but, in general, not continuous.

Remark 1.1. Let T denote the unit circle of the complex plane C.
Proposition IV.2.3 in Yahdi’s thesis [24, p. 86] asserts that ifX is a separable
Banach space, then the map σT : Ls(X) → K(T), A 7→ σT(A) = σ(A) ∩ T,
is Borel. An examination of its proof shows that it contains implicitly the
main steps of the proofs of items (1) and (2) of Theorem 1.1 where only
minor changes are required. For completeness we will give the proof of these
two statements. To our knowledge assertions (3)–(5) above are new.

As a consequence of Theorem 1.1 we have

Corollary 1.1. Let X be a Banach space. If X is separable, then T (X),
Inv(X) and R(X) are Borel subsets of Ls(X). If , further , X ′ is separable,
then Φ(X) and Φ0(X) are also Borel subsets of Ls(X).
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Recall that if T ∈ L(X), the compression spectrum of T may also be
defined by

σcom(T ) = {λ ∈ C : λ− T is a right divisor of zero}.

Let Z(X) denote the set of right divisors of zero in L(X) and Zc(X) =
L(X) \ Z(X). Clearly, we have

Zc(X) = {T ∈ L(X) : 0 /∈ σcom(T )}.

Corollary 1.1 asserts that if X is a separable Banach space, then T (X)
and Inv(X) are Borel subsets of Ls(X), and if X ′ is separable, Φ0(X) and
Φ(X) enjoy the same property. The following proposition gives more details
on the topological structure of these sets.

Proposition 1.1. If X is a separable Banach space, then T (X) is a

Gδ subset of Ls(X), Z(X) is an Fσ subset of Ls(X), and Inv(X) is a Borel

subset of Ls(X) of the form Fσ \Fσ. If further X ′ is separable, then Φ0(X)
and Φ(X) are countable unions of Borel subsets of Ls(X) of the form Fσ\Fσ.

The remainder of this paper is organized as follows. In Section 2, we
recall and gather some classical facts from functional analysis and descrip-
tive set theory required later. The proofs of Theorem 1.1, Corollary 1.1 and
Proposition 1.1 are the topic of Section 3. In Section 4 we present a char-
acterization of strongly continuous semigroups (T (t))t≥0 under the assump-
tion that, for all t > 0, σe(T (t)) = {λ(t)} on Banach spaces with separable
duals. Note that semigroups satisfying this condition were already discussed
in [2, 10, 13].

The case where σe(T (t)) = {λ1(t), . . . , λn(t)} (n ≥ 2) was considered
in [14, 15] under the hypothesis that σe(T (t)) depends continuously on t.
In particular, it was proved that if λi(t) 6= 0 for all t > 0 and i = 1, . . . , n,
then (T (t))t≥0 can be embedded in a uniformly continuous group. However,
if λi(t0) = 0 for some i ∈ {1, . . . , n} and t0 > 0, then λi(t) = 0 for all
t > 0 and there is a spectral decomposition of X of the form X = X0 ⊕X1

where (T (t)|X0
)t≥0 is a strongly continuous semigroup of Riesz type on X0,

i.e. T (t)|X0
∈ R(X0) for all t > 0. Its generator A|X0

is unbounded and

(λ−A|X0
)−1 ∈ R(X0) for any λ ∈ ̺(A|X0

). Moreover, the part of (T (t))t≥0

in X1, (T (t)|X1
)t≥0, can be embedded in a uniformly continuous group. In

[2, 10, 13] we have n = 1 and λ(·) is assumed to be constant (λ(t) = 1 for
all t > 0), thus continuous.

In our context, making use of Theorem 1.1, we prove that λ(·) is a
Borel function from [0,∞) into C, which relaxes the continuity hypothesis.
Moreover, we show that either (T (t))t≥0 is a semigroup of Riesz operators
and A is unbounded and (λ − A)−1 ∈ R(X) for each λ ∈ ̺(A|X0

), or else
(T (t))t≥0 is embeddable in a uniformly continuous group and there exists
β ∈ C such that A− βI is a Riesz operator.
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In the last part of this section we prove that, on hereditarily indecom-
posable Banach spaces with separable duals (cf. [7, 4]), strongly continuous
semigroups exhibit a nice behavior. In particular, we establish that the infin-
itesimal generator of any strongly continuous group is necessarily bounded
(which seems to be a feature of this class of spaces).

2. Preliminaries. In this section we will collect some notions and tools
from functional analysis and descriptive set theory required in the rest of
the paper.

Proposition 2.1. Let X be a Banach space and let T ∈ L(X).

(1) Except the compression spectrum, all the subsets of σ(T ) defined

above are compact. In general , the compression spectrum does not

have this property because the compression spectrum of the unilateral

shift is the unit open disc (cf. [8, Problem 82]).
(2) If λ is an isolated point of σ(T ), then either λ ∈ π0(T ) or λ ∈ σw(T ).

(It suffices to consider the spectral decomposition of T associated

to {λ} and σ(T ) \ {λ}.)
(3) Let F0(X) be the ideal of finite rank operators in L(X). Then

σw(T ) =
⋂

F∈F0(X)

σ(T + F ).

This result remains valid if we replace F0(X) by any ideal of Riesz

operators (compact , strictly singular , etc.; cf. [12]).
(4) If X ′ (the topological dual of X) is separable, then F0(X) is separable

for the norm topology induced by L(X). (It suffices to write T ∈
F0(X) as a finite sum of operators of the form x′ ⊗ x with x ∈ X,
x′ ∈ X ′ and use the separability of both X and X ′.)

Let Z be a topological space. For any subset A of Z, let

d(A) = {x ∈ A : x is an accumulation point of A}.

The map which assigns to each subset A of Z the set d(A) is called the
Cantor–Bendixson derivative. Obviously, d(A) is closed.

Proposition 2.2.

(1) The topology of K(C) is generated by two families of open sets

in K(C):

T 1 = {K ∈ K(C) : K ⊂ U} and T 2 = {K ∈ K(C) : K ∩ U 6= ∅}

for any open set U in C.

(2) The Borel structure of K(C) is generated by each of these two fam-

ilies.

(3) The Cantor–Bendixson derivative d : K(C) → K(C) is a Borel map.
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A topological space is said to be Polish if it is separable and there is a
complete metric determining its topology. Note that R, C, R

n and C
n are

Polish spaces. For other examples and the properties of this class of spaces
see, for example, [11]. For later use we recall that if a topological space X
is Polish, then K(X) is also Polish (see Theorem 4.25 in [11]). Accordingly,
K(C) is a Polish space.

We say that a topological space is a standard Borel space if it is a topolog-
ical space whose Borel structure (but not necessarily the topological struc-
ture) is the same as that of a Polish space. We will make use of the next
result (cf. [11, p. 80]).

Proposition 2.3. If X is a separable Banach space, then Ls(X) is a

standard Borel space.

We close this section by recalling the following result due to Saint Ray-
mond [18].

Proposition 2.4. Let X be a standard Borel space and Y a Polish

space. If Ω ⊆ X × Y is a Borel set for the product structure and , for every

x ∈ X, Cx = {y ∈ Y : (x, y) ∈ Ω} is a Kσ set (a countable union of compact

sets) in Y , then PX(Ω) (the range of the first projection of Ω) is a Borel

set in X.

3. Proofs. The proof of Theorem 1.1 requires the following two lemmas.

Lemma 3.1. Let ψ :Ls(X)→K(C). Then ψ is a Borel map if and only if

△ψ = {(T, λ) ∈ L(X) × C : λ ∈ ψ(T )}

is a Borel set in Ls(X) × C.

Proof. Let us first remark that △ = {(K,λ) ∈ K(C) × C : λ ∈ K}
is closed in K(C) × C. To see this, take (K0, λ0) /∈ △. Then there exist
two open sets U , V such that K0 ⊂ U , λ0 ∈ V and U ∩ V = ∅. Hence,
{K ∈ K(C) : K ⊂ U} × V is open in K(C) × C, contains (K0, λ0) and does
not intersect △ (because

⋃

{K ∈ K(C) : K ⊂ U}∩V = ∅). So, (K(C)×C)\△
is open and therefore △ is closed.

Let ψ : Ls(X) → K(C) be a Borel map. Then ψ × I : Ls(X) × C →
K(C) × C, (ψ × I)(T, λ) = (ψ(T ), λ), is also a Borel map and we have
△ψ = (ψ × I)−1(△). Accordingly, ψ being Borel implies △ψ is a Borel set.

To prove the converse, it is sufficient, by Proposition 2.2(2), to show
that ψ−1({K ∈ K(C) : K ∩ U 6= ∅}) is a Borel set in Ls(X) for every open
set U in C. Let PLs(X) : Ls(X) × U → Ls(X) be the projection and let
ΩU,ψ := {(T, λ) ∈ L(X) × U : λ ∈ ψ(T )}. Note that

{T ∈ L(X) : ψ(T ) ∩ U 6= ∅}

= {T ∈ L(X) : ∃λ ∈ U such that λ ∈ ψ(T )} = PL(X)(ΩU,ψ).
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For every T ∈ L(X),

CT (ΩU,ψ) := {λ ∈ U : (T, λ) ∈ ΩU,ψ} = {λ ∈ U : λ ∈ ψ(T )}

= ψ(T ) ∩ U.

Since every open set in C is a Kσ set, so is CT (ΩU,ψ). On the other hand,
for every open set U in C, we have ΩU,ψ = △ψ ∩ (Ls(X) × U). Since △ψ is
a Borel set (by hypothesis) and Ls(X) × U is open, it follows that ΩU,ψ is
Borel. Now the use of Proposition 2.4 finishes the proof.

Let n ∈ Z and set

Φn(X) = {U ∈ Φ(X) : ind(U) = n}.

Lemma 3.2. Let A ∈ L(X) be a fixed operator satisfying ind(A) = −n
where n ∈ Z. Then

Φn(X) = {T ∈ L(X) : AT ∈ Φ0(X)}.

Proof. To see this, first observe that, by the Atkinson theorem, we have
Φn(X) ⊆ {T ∈ L(X) : AT ∈ Φ0(X)}. Now let T ∈ L(X) be such that AT ∈
Φ0(T ) and consider B ∈ L(X) such that BA = I+F where F ∈ F0(X) with
ind(B) = − ind(A) = n and BAT = T + FT (B exists because A ∈ Φ(X)).
Since AT ∈ Φ0(X) and B ∈ Φ(X), we have T ∈ Φ(X) and

ind(T ) = ind(BAT ) = ind(B) + ind(AT ) = n.

This shows that T ∈ Φn(X).

We are finally prepared for

Proof of Theorem 1.1. (1) By definition,

σap(T ) = {λ ∈ C : ∃(xn) ⊂ SX with lim
n→∞

‖(λ− T )xn‖ = 0}

= {λ ∈ C : ∀n ∈ N, ∃x ∈ SX such that ‖(λ− T )x‖ < 1/n}.

Let D be a countable dense subset of SX (which exists by separability).
Clearly, there exists x ∈ SX such that ‖(λ−T )x‖ < 1/n if and only if there
exists x ∈ D such that ‖(λ− T )x‖ < 1/n. This leads to

σap(T ) = {λ ∈ C : ∀n ∈ N, ∃x ∈ D such that ‖(λ− T )x‖ < 1/n}.

Following the notations of Lemma 3.1 we may write

∆σap
= {(T, λ) ∈ L(X) × C : λ ∈ σap(T )}

= {(T, λ) ∈ L(X) × C : ∀n ∈ N, ∃x∈D such that ‖(λ−T )x‖ < 1/n}

=
⋂

n∈N

⋃

x∈D

Ax,n

where Ax,n = {(T, λ) ∈ L(X)× C : ‖(λ− T )x‖ < 1/n}. By the definition of
the strong operator topology, (T, λ) 7→ (λ−T )x is continuous from Ls(X)×C
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into X. Thus Ax,n is an open set in Ls(X) × C (for every x ∈ D, n ∈ N)
and therefore ∆σap

is a Borel set in Ls(X)×C. Now the result follows from
Lemma 3.1.

(2) First recall that σ(T ) = σap(T )∪σcom(T ). So, ∆σ = ∆σap
∪C, where

C = {(T, λ) ∈ L(X) × C : λ ∈ σcom(T )}.

Hence, in order to prove that the map T 7→ σ(T ) is Borel, it suffices to
establish that C is a Borel set. To do so, observe that, by definition,

C = {(T, λ) ∈ L(X) × C : (T − λ)X is not dense in X}

= {(T, λ) ∈ L(X) × C : ∃n ∈ N and y ∈ X with

‖y − (T − λ)x‖ > 1/n for all x ∈ X}.

Let D be a countable dense subset of X. We can see that

C = {(T, λ) ∈ L(X) × C : ∃n ∈ N and y ∈ D with

‖y − (T − λ)x‖ > 1/n for all x ∈ D}.

Hence, we can write

C =
⋃

n∈N

⋃

y∈D

⋂

x∈D

{(T, λ) ∈ L(X) × C : ‖y − (T − λ)x‖ > 1/n}.

As in (1), using the continuity for the strong operator topology, we conclude
that C is a Borel set. The result follows from Lemma 3.1.

(3) Let D be a countable dense subset of F0(X) (the set of finite rank
operators on X with its norm topology). One can easily see that

σw(T ) =
⋂

F∈F0(X)

σ(T + F ) =
⋂

F∈D

σ(T + F )

and
∆σw

= {(T, λ) ∈ L(X) × C : λ ∈ σw(T )}

=
{

(T, λ) ∈ L(X) × C : λ ∈
⋂

F∈D

σ(T + F )
}

=
⋂

F∈D

{(T, λ) ∈ L(X) × C : λ ∈ σ(T + F )}

=
⋂

F∈D

{(T ′ − F, λ) ∈ L(X) × C : λ ∈ σ(T ′)}

where T ′ = T + F . So,

∆σw
=

⋂

F∈D

(∆σ − (F, 0)).
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Clearly, for every F ∈ D, the translation by (−F, 0) of the Borel set ∆σ is
a Borel set in Ls(X) × C. Consequently, ∆σw

is a Borel set and therefore
σw(·) is a Borel map.

(4) Let A ∈ L(X) and set σA(T ) = {λ ∈ C : λA−T is not invertible}. In
general σA(T ) is not compact but only closed. Let q ∈ N, and set σAq (T ) :=

σA(T ) ∩ B(0, q) (where B(0, q) = {λ ∈ C : |λ| ≤ q}). Then T 7→ σAq (T )
defines a map from L(X) into K(C). Note that

∆σA
q (T ) = {(T, λ) ∈ L(X) × C : λ ∈ σAq (T )}

= {(T, λ) ∈ L(X) × C : |λ| ≤ q and ∃(xk) ⊆ SX with

limk→∞ ‖(λA− T )xk‖ = 0}

∪ {(T, λ) ∈ L(X) × C : |λ| ≤ q and (λA− T )X 6= X}

= {(T, λ) ∈ L(X) ×B(0, q) : ∀r ∈ N, ∃x ∈ SX such that

‖(λA− T )x‖ < 1/r}

∪ {(T, λ) ∈ L(X) ×B(0, q) : ∃y ∈ X, ∃r ∈ N such that ∀x ∈ X,

‖y − (λA− T )x‖ ≥ 1/r}.

Note that

Ω1 := {(T, λ) ∈ L(X) ×B(0, q) : ∀r ∈ N, ∃x ∈ SX such that

‖(λA− T )x‖ < 1/r}

= {(T, λ) ∈ L(X)×C : ∀r ∈ N, ∃x ∈ SX such that ‖(λA−T )x‖ < 1/r}

∩ (L(X) ×B(0, q))

=
(

⋂

r∈N

⋃

x∈X

OA,x,r

)

∩ (L(X) ×B(0, q)),

where

OA,x,r = {(T, λ) ∈ L(X) × C : ‖(λA− T )x‖ < 1/r},

which is an open subset of Ls(X) × C. Hence Ω1 is a Borel set.
Similarly,

Ω2 := {(T, λ) ∈ L(X) ×B(0, q) : ∀y ∈ D, ∃r ∈ N such that ∀x ∈ X,

‖y − (λA− T )x‖ ≥ 1/r}

=
(

⋂

y∈D

⋃

r∈N

⋂

x∈X

FA,x,y,r

)

∩ (Ls(X) ×B(0, q)),

where

FA,x,y,r = {(T, λ) ∈ L(X) × C : ‖(λA− T )x− y‖ ≥ 1/r}

is a closed subset of Ls(X)×C and D is a countable dense subset of X. So,
Ω2 is then a Borel set of Ls(X)×C. Accordingly, ∆σA

q
= Ω1 ∪Ω2 is a Borel
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set. Hence, for all q ∈ N and A ∈ Ls(X) fixed, T 7→ σAq (T ) is a Borel map
from Ls(X) into K(C). Set

σA0,q(T ) = {λ ∈ C : λA− T /∈ Φ0(X)} ∩B(0, q)

(σA0,q(T ) is a compact subset of C). Then

σA0,q(T ) =
⋂

F∈F0(X)

σAq (T + F ) =
⋂

F∈Fd
0 (X)

σAq (T + F ),

where Fd
0 (X) is a countable dense subset of F0(X). So, T 7→ σA0,q(T ) is a

Borel map.

Recall that σe(T ) = C \ ΦT and Φ(X) =
⋃

k∈Z
Φk(X) (for some k ∈ Z,

Φk(X) may be empty). Then

σe(T ) =
⋂

k∈Z

{λ ∈ C : λ− T /∈ Φk(X)}.

Making use of Lemma 3.2 we may write

σe(T ) =
⋂

k∈Z

{λ ∈ C : Ak(λ− T ) /∈ Φ0(X)},

where, for all k, Ak is a fixed operator with ind(Ak) = −k. Hence,

σe(T ) ∩B(0, q) =
⋂

k∈Z

({λ ∈ C : λAk −AkT /∈ Φ0(X)} ∩B(0, q))

=
⋂

k∈Z

σAk

0,q (AkT ).

Put

σe,q(T ) = σe(T ) ∩B(0, q).

Then

σe,q(T ) =
⋂

k∈Z

σAk

0,q (AkT ).

Since the map T 7→ AkT is continuous from Ls(X) into Ls(X) and T 7→

σAk

0,q (T ) defines a Borel map for all q and k in N, it follows that T 7→ σe,q(T )

is a Borel map. This shows that ∆σe
=

⋃

q∈N
∆σe,q , which is Borel. Now the

use of Lemma 3.1 gives the result.
(5) First observe that, by Proposition 2.1(2), we may write σb(T ) =

σe(T ) ∪ d(σ(T )) where d is the Cantor–Bendixson derivative. Hence,

∆σb
= ∆σe

∪∆d◦σ.

We know, by item (4) of the theorem, that ∆σe
is a Borel set. On the other

hand, applying Lemma 3.1 and Proposition 2.2(3) one sees that ∆d◦σ is a
Borel set in Ls(X) × C, so ∆σb

is Borel. This gives the desired result and
completes the proof of the theorem.
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Proof of Corollary 1.1. Consider the set T (X). Since the set of Borel
sets is closed under complementation, it suffices to prove that T c(X), the
complement of T (X) in Ls(X), is Borel. To do so, let us observe that
T c(X) = {T ∈ L(X) : 0 /∈ σap(T )}. This may be written as

T c(X) = σ−1
ap ({K ∈ K(C) : 0 /∈ K}).

But the set {K ∈ K(C) : 0 /∈ K} is open in K(C), so applying Theo-
rem 1.1(1) one concludes that T c(X) is Borel. Similarly, the sets Inv(X),
Φ(X) and Φ0(X) may be written, respectively, in the form

Inv(X) = {T ∈ L(X) : 0 /∈ σ(T )} = σ−1({K ∈ K(C) : 0 /∈ K}),

Φ(X) = {T ∈ L(X) : 0 /∈ σe(T )} = σ−1
e ({K ∈ K(C) : 0 /∈ K}),

Φ0(X) = {T ∈ L(X) : 0 /∈ σw(T )} = σ−1
w ({K ∈ K(C) : 0 /∈ K}).

Arguing as above and using statements (2)–(4) of Theorem 1.1 we infer that
Inv(X), Φ(X) and Φ0(X) are Borel subsets of Ls(X).

Next to prove that R(X) is a Borel subset of Ls(X) it suffices to observe
that R(X) = (σ◦d)−1({0}) where d is the Cantor–Bendixson derivative and
invoke the Borel character of the functions σ(·) and d(·) (cf. Theorem 1.1(2)
and Proposition 2.2(3)).

Proof of Proposition 1.1. Let DX denote a countable dense subset of X.
If T ∈ L(X), then 0 /∈ σcom(T ) is equivalent to the fact that for all n ∈ N

∗

and x ∈ DX there is y ∈ X such that ‖Ty − x‖ < 1/n. So,

{T ∈ L(X) : 0 /∈ σcom(T )} =
⋂

n∈N∗

⋂

x∈DX

⋃

y∈X

{T ∈ L(X) : ‖Ty − x‖ < 1/n}.

This shows that Zc(X) is a countable intersection of open subsets of Ls(X).
Therefore Zc(X) is a Gδ subset of Ls(X), which proves the assertion
for Z(X).

We have already mentioned in the proof of Theorem 1.1(1) that the set
T c(X) equals {T ∈ L(X) : 0 /∈ σap(T )}. Let SX denote the unit sphere
of X. It is not difficult to see that T ∈ {U ∈ L(X) : 0 /∈ σap(U)} if and only
if T ∈

⋃

n∈N∗{U ∈ L(X) : ∀x ∈ SX ‖Ux‖ ≥ 1/n} or equivalently

T ∈
⋃

n∈N∗

⋂

x∈SX

{U ∈ L(X) : ‖Ux‖ ≥ 1/n}.

Accordingly, T c(X) is a countable union of closed sets, that is, an Fσ subset
of Ls(X). This proves the statement for T (X).

Now observe that

Inv(X) = {T ∈ L(X) : 0 /∈ σap(T )} ∩ {T ∈ L(X) : 0 /∈ σcom(T )}.

Consequently, Inv(X) = T c(X) ∩ Zc(X) = T c(X) \ Z(X), which gives the
desired result.
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Consider now the set of Weyl operators. It is not difficult to see that
T ∈ Φ0(X) if and only if 0 /∈ σw(T ) if and only if 0 /∈

⋂

F∈F0(X) σ(T + F ).
So,

Φ0(X) =
{

T ∈ L(X) : 0 /∈
⋂

F∈F0(X)

σ(T + F )
}

.

Let D be a countable dense subset of F0(X). Arguing as in the proof of
Theorem 1.1(3) one sees that

Φ0(X) =
{

T ∈ L(X) : 0 /∈
⋂

F∈D

σ(T + F )
}

= {T ∈ L(X) : ∃Fn ∈ D such that 0 ∈ ̺(T + Fn)}

= {T ∈ L(X) : ∃Fn ∈ D such that T + Fn is invertible}

=
⋃

F∈D

{T ∈ L(X) : T + F ∈ Inv(X)}.

Denote by TF the translation from L(X) into itself which assigns to each T
the operator T +F . Then we may write Φ0(X) =

⋃

F∈D T −1
F (Inv(X)). Now

using the continuity of TF and the fact that Inv(X) = T c(X) \ Z(X), we
get

Φ0(X) =
⋃

F∈D

T −1
F (T c(X)) \ T −1

F (Z(X)),

which ends the proof for Φ0(X).
When dealing with the set of Fredholm operators one can write Φ(X) =

⋃

n∈Z
Φn(X) where Φn(X) = {T ∈ Φ(X) : i(T ) = n}. According to Lem-

ma 3.2, Φn(X) = {T ∈ L(X) : AnT ∈ Φ0(X)} for each n ∈ Z, where An is
a fixed operator satisfying i(A) = −n. Let CA (with A ∈ L(X)) denote the
map from L(X) into itself defined by CA(T ) = AT . Using the continuity of
CA and the fact that Φn(X) = C−1

An
(Φ0(X)) for each n ∈ Z, we infer that

Φ(X) =
⋃

n∈Z

C−1
An

(Φ0(X)),

which completes the proof.

4. Application to strongly continuous semigroups of operators.

In this section we are interested in strongly continuous semigroups (T (t))t≥0

defined on complex infinite-dimensional Banach spaces X satisfying the con-
dition

(A) σe(T (t)) = {λ(t)} for all t > 0.

4.1. Arbitrary Banach spaces. Let X be a complex infinite-dimensional
Banach space and let (T (t))t≥0 be a strongly continuous semigroup on X
which satisfies (A). Clearly, if t, t′ ∈ [0,∞), since T (t) and T (t′) commute,
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we have σe(T (t)T (t′)) ⊆ σe(T (t))σe(T (t′)). This leads to

(4.1) λ(t+ t′) = λ(t)λ(t′).

In the following we denote by λ(·) the map from [0,∞) into C which
assigns to each t ∈ [0,∞) the value λ(t) ∈ σe(T (t)).

Lemma 4.1. If X ′ is separable and hypothesis (A) holds true, then λ(·)
is a Borel map.

Remark 4.1. The separability hypothesis onX ′ is required to guarantee
the Borel character of the function T 7→ σe(T ) from Ls(X) into K(C) (cf.
Theorem 1.1(4)).

Proof of Lemma 4.1. If U is an open set of C, then λ−1(U) = {t ∈ [0,∞) :
{λ(t)} ⊂ U}. Since t 7→ T (t) is continuous from [0,∞) into Ls(X) and
T (t) 7→ σe(T (t)) is a Borel map from Ls(X) into K(C), by composition the
map t 7→ {λ(t)} is Borel from [0,∞) into K(C). Note that λ−1(U) is the
inverse image under t 7→ {λ(t)} of the set {K ∈ K(C) : K ⊂ U}. But this
set is open in K(C), therefore λ−1(U) is a Borel subset of [0,∞).

Lemma 4.2. Assume that hypothesis (A) is satisfied. Then only one of

the following two statements holds:

(1) There exists t0 > 0 such that λ(t0) = 0 (and therefore λ(t) = 0 for

all t ∈ ]0,∞[).
(2) There exists α ∈ C such that λ(t) = eα t for all t ∈ [0,∞).

Proof. (1) Let t0 > 0 be such that λ(t0) = 0. Using (4.1) one sees that
[λ(t0/n)]n = λ(t0) = 0 for every n ∈ N \ {0}. Hence λ(t0/n) = 0. Now

let t ∈ ]0,∞[. Then there exists n ∈ N \ {0} such that t0/n ≤ t. Hence
λ(t) = λ(t0/n) · λ(t− t0/n) = 0. Consequently, λ(·) ≡ 0 on ]0,∞[.

(2) It is well known that any nontrivial Borel solution of the functional
equation (4.1) can be written in the form λ(t) = eαt for some α ∈ C. So, by
the preceding assertion, it suffices that there exists a real t0 > 0 such that
λ(t0) 6= 0 to get λ(t) 6= 0 for all t ∈ ]0,∞[).

Remark 4.2. Actually, the second item of Lemma 4.2 remains valid
if we assume only the measurability of λ(·) (see [9, pp. 144–145]). Hence,
for such λ(·), measurability implies continuity and λ(·) admits an obvious
extension to R.

Now we will prove that the possibilities in Lemma 4.2 for the function
λ(·) give rise to a dichotomy for the corresponding semigroup. To do so, first
recall that for Riesz operators the sets σe(·), σw(·), and σb(·) coincide and
reduce to {0}, and a semigroup (T (t))t≥0 is said to be of Riesz type if T (t)
is a Riesz operator for all t ∈ ]0,∞[.
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Proposition 4.1. Let (T (t))t≥0 be a strongly continuous semigroup on

a Banach space X with infinitesimal generator A. Assume that X ′ is sepa-

rable and hypothesis (A) is satisfied. Then there are two alternatives: either

(T (t))t≥0 is a semigroup of Riesz type and A is unbounded with nonempty

resolvent set and with resolvent of Riesz type, or else (T (t))t≥0 is embeddable

in a uniformly continuous group and there exists β ∈ C such that A− βI is

a Riesz operator.

Note that the first alternative corresponds to the case λ(t) = 0 for all
t > 0 and the second one concerns the case λ(t) 6= 0 for some (and hence for
all) t > 0. Before establishing the proposition we recall the following result
proved in [3, p. 276].

Lemma 4.3. Let (T (t))t≥0 be a strongly continuous semigroup with gen-

erator A on a Banach space X. The following spectral inclusion holds:

etσ(A) ⊆ σ(T (t)) for t ≥ 0.

Moreover , if eλ0t is an isolated eigenvalue of T (t), then λ0 is an iso-

lated eigenvalue of A and ma(λ0, A) ≤ ma(e
λ0t, T (t)) where ma(λ0, A)

and ma(e
λ0t, T (t)) denote, respectively , the algebraic multiplicities of λ0

and eλ0t.

Proof of Proposition 4.1. Obviously, if λ(t0) = 0 for some t0 > 0, then, by
Lemma 4.2(1), λ(t) = 0 for all t > 0 and therefore σe(T (t)) = {λ(t)} = {0}
for all t ∈ ]0,∞[. This proves that (T (t))t≥0 is a semigroup of Riesz type.

On the other hand, for all t ∈ ]0,∞[, σe(T (t)) = {0} implies that T (t) is not
invertible. Thus, by Theorem 2.1 in [13], (T (t))t≥0 cannot be embedded in a
C0-group and so A is necessarily unbounded. By the Hille–Yosida theorem
(cf. [3]), the domain of A, D(A), is dense in X and ̺(A) 6= 0.

Let µ ∈ ̺(A). Then the range of (µ − A)−1 is the domain of A. So
(µ − A)−1 is closed and has dense range. If we suppose that its range is
closed, we should have D(A) = X, and therefore A would be bounded. Con-
sequently, 0 ∈ σe((µ−A)−1). To prove that (µ−A)−1 is a Riesz operator, it
remains to show that all other elements of its spectrum are isolated eigenval-
ues with finite algebraic multiplicity. Note that every 0 6= µ ∈ σ(T (t)) is an

isolated eigenvalue of finite algebraic multiplicity. So, if µ′ ∈ σ(A) and etµ
′

is
an eigenvalue of T (t) with finite algebraic multiplicity, then, by Lemma 4.3,
µ′ is an eigenvalue of A with finite algebraic multiplicity. Now let µ′′ 6= 0
be any element of σ((µ − A)−1). Then µ − 1/µ′′ ∈ σ(A) and is an isolated
eigenvalue by the preceding considerations. Hence, µ′′ is an eigenvalue of
(µ − A)−1 of finite algebraic multiplicity so (µ − A)−1 is a Riesz operator.
Now the resolvent identity, the fact that (λ−A)−1 and (ν −A)−1 commute
for all λ and ν in ̺(A), and Theorem 3.1 of [22] show that the resolvent of
A is of Riesz type.
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Assume now that there exists t > 0 such that λ(t) 6= 0. Applying
Lemma 4.2(2) we conclude that λ(t) 6= 0 for all t > 0. By Lemma 4.2
and Remark 4.2, the function t 7→ λ(t) is continuous. This proves that
(T (t))t≥0 satisfies the assumption (A1) in [15] for n = 1 and λ(·) = ϕ(·).
Moreover, since D(λ) (the domain of λ(·)) contains ]0,∞[, applying Lem-
mas 2.4 and 2.6 of [15] we infer that (T (t))t≥0 can be embedded in a strongly
continuous group on X and A ∈ L(X).

4.2. Hereditarily indecomposable Banach spaces. Recall that an opera-
tor in L(X) is said to be strictly singular if none of its restrictions to a
closed infinite-dimensional subspace is an isomorphism onto its range. For
the properties and the spectral theory of strictly singular operators we refer
to [1] or [6]. Note however that a strictly singular operator satisfies the Riesz–
Schauder theory of compact operators and, if X is an infinite-dimensional
Banach space, the class of strictly singular operators on X, S(X), is an
ideal, in general, larger than that of compact operators.

A Banach space is said to be decomposable if it is the topological direct
sum of two closed infinite-dimensional subspaces. A Banach space is said to
be hereditarily indecomposable (for short an H.I. space) if it does not con-
tain any decomposable subspace. The class of hereditarily indecomposable
Banach spaces was first introduced and investigated by Gowers and Mau-
rey in [7] (see also [4]). One of the main facts relating to this class is the
following result due to Gowers and Maurey [7].

Lemma 4.4. If X is a complex H.I. Banach space, then every operator

in L(X) can be written in the form λI + S where λ ∈ C and S ∈ S(X).

The goal of this subsection is to prove the following result which gives a
characterization of strongly continuous semigroups on complex H.I. Banach
spaces with separable duals.

Proposition 4.2. Let X be a complex H.I. Banach space and let

(T (t))t≥0 be a strongly continuous semigroup on X with generator A. If X ′

is separable, then there are two alternatives: either (T (t))t≥0 is a semigroup

of strictly singular operators whose generator A is unbounded with strictly

singular resolvent , or else (T (t))t≥0 is embeddable in a uniformly continuous

group (so, its generator A has the form βI + S with β 6= 0 and S strictly

singular).

It is worth noticing that Proposition 4.2 shows another feature of H.I.
Banach spaces with separable topological duals: the infinitesimal generator
of each strongly continuous group on such spaces is necessarily bounded.
Note, however, that in separable Hilbert spaces (which are not H.I. spaces),
there always exist strongly continuous groups with unbounded generators.
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It suffices to apply the Stone theorem to iA where A is a self-adjoint opera-
tor. (Such operators exist because all separable Hilbert spaces are unitarily
equivalent and therefore all classical unbounded self-adjoint operators on L2

spaces give rise to unitarily equivalent operators on any separable Hilbert
space.)

Proof of Proposition 4.2. Let R ∈ L(X) be a Riesz operator on X. It
follows from Lemma 4.4 that R = βI + S for some β ∈ C and S ∈ S(X).
Then, according to [12, Theorem 3.1(i)], we have σe(R) = σe(βI) = {β}.
But σe(R) = {0} (because dimX = ∞), so β = 0, that is, R ∈ S(X). This
shows that R(X) = S(X). Hence, to prove Proposition 4.2, it suffices to
show that the hypotheses of Proposition 4.1 are satisfied. Indeed, applying
Lemma 4.4 we get T (t) = λ(t)I + S(t) where λ(t) ∈ C and S(t) ∈ S(X)
for all t > 0. Applying again [12, Theorem 3.1(i)] we infer that σe(T (t)) =
σe(λ(t)I) = {λ(t)}. This together with the separability of X ′ shows that the
condition (A) holds, which completes the proof.

Note that if X is a separable H.I. space, it follows from the proof above
that S(X) and R(X) coincide. This fact does not require the separability
of X ′. Now making use of Corollary 1.1 we get

Corollary 4.1. If X is a separable H.I. space, then S(X) is a Borel

subset of Ls(X).

Remark 4.3. After this paper was submitted for publication, Professor
G. Lancien called to our attention the paper by Räbiger and Ricker [17]
which deals with strongly continuous semigroups and groups on H.I. spaces.
Proposition 4.2 was established in Section 2 of that paper (see [17, Propo-
sition 2.2 and Theorem 2.3]) without the separability hypothesis. Since our
proof uses arguments from descriptive set theory, the separability hypothe-
sis of X cannot be removed (for the moment) because the space is required
to be standard Borel (cf. [24, Proposition III.1.1]). On the other hand, we
did not manage to drop the separability hypothesis on X ′ in the proof of as-
sertion (4) of Theorem 1.1 which is used above. Nevertheless, our approach
is different from that by Räbiger and Ricker, so we maintain this subsection.

4.3. Further remarks. Let X be a Polish space. A subset A of X is called
analytic if there is a Polish space Y and a continuous function f : Y → X
with f(Y ) = A (see [11]). A subset C of X is called coanalytic if X \ C is

analytic. The class of coanalytic subsets of X is denoted by
∏1

1.
Let X be a Banach space and F ∈ L(X). We say that F is a Fredholm

perturbation if U + F ∈ Φ(X) whenever U ∈ Φ(X). The set of Fredholm
perturbations is denoted by F(X). (Recall that F(X) is the greatest proper
ideal of L(X) contained in the set of Riesz operators [1].) According to this
definition one can write F ∈ F(X) if for all U ∈ L(X), U ∈ Φ(X) ⇒
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U + F ∈ Φ(X). So, if X ′ is separable, then F(X) is a coanalytic subset
of Ls(X). (Evidently, here we use the fact that Φ(X) is a Borel subset of
Ls(X) if X ′ is separable—cf. Corollary 1.1.) Making use of this observation,
our objective here is to describe the topological complexity of some subsets
of Ls(X) for particular Banach spaces. Since the separability of the dual
space X ′ is required, from the classes of spaces mentioned below, we use
only Banach spaces with this property.

(1) A Banach space X is said to be an h-space if each closed infinite-
dimensional subspace of X contains a complemented subspace isomorphic
to X. In [23, Theorem 6.2], Whitley proved that if X is an h-space, then
the ideal of strictly singular operators S(X) is the greatest proper ideal of
L(X). So, as observed in [12, p. 293], we have F(X) = S(X). This shows
that S(X) is a coanalytic subset of Ls(X) for any h-space X with separable
dual. This holds true, in particular, for the spaces c, c0 and lp (1 < p <∞).

(2) We say that a Banach space X is subprojective if given any closed
infinite-dimensional subspace M of X, there exists a closed infinite-dimen-
sional subspace N contained in M and a continuous projection from X
onto N . Pfaffenberger [1, p. 100] proved that if X is subprojective, then
F(X) = S(X). Accordingly, for any subprojective Banach space X with
separable dual, S(X) is a coanalytic subset of Ls(X). This holds, in partic-
ular, for the spaces c0, lp (1 < p <∞), and Lp (2 ≤ p <∞).

(3) Let (Ω,Σ, µ) be a positive measure space and let Xp denote the space
Lp(Ω, dµ) with 1 < p < ∞. Since p ∈ [1,∞), it follows from [16, 21] that

S(Xp) = F(Xp). (In fact, this also holds for p = 1 and ∞.) This implies that

the set of strictly singular operators is a
∏1

1 subset of Ls(Xp) for 1 < p <∞.
Note that the identity S(Xp) = F(Xp) is not specific to Lp-spaces. In fact,
it is also fulfilled for C(Ξ) (the Banach space of continuous scalar-valued
functions on Ξ with the supremum norm) provided that Ξ is a compact
Hausdorff space (see [16] or [21]). So, the conclusion above is also valid for
S(C(Ξ)) provided that Ξ is countable.

(4) Let X be a Banach space. An operator T ∈ L(X) is compact if for
every bounded sequence (xn)n∈N ⊂ X, there exists a subsequence (Txnk

)k∈N

of (Txn)n∈N which converges in X. If X is separable, it follows from this

definition that the set of compact operators on X, K(X), is a
∏1

2 subset of

Ls(X) (for the definition of
∏1

2 subsets we refer to [11, p. 313]). We close
this subsection by giving some examples of Banach spaces for which the
ideal of compact operators belongs to the projective class

∏1
1.

Recall that there are many separable Banach spaces X for which L(X)
has only one proper nonzero closed two-sided ideal. Indeed, Calkin proved
that if X is a separable Hilbert space, then K(X) is the unique proper
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nonzero closed two-sided ideal of L(X) (see, for example, [1, p. 81]). Goh-
berg, Markus and Feldman [5] established the same result for the spaces lp,
1 ≤ p < ∞, and c0. Accordingly, if X is separable Hilbert space or one of
the spaces lp, 1 < p < ∞, or c0, then K(X) = F(X) and therefore K(X)

is a
∏1

1 subset of Ls(X).
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