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Regular vector lattices of continuous functions

and Korovkin-type theorems—Part I

by

Francesco Altomare and Mirella Cappelletti Montano (Bari)

Abstract. We introduce and study a new class of locally convex vector lattices of
continuous functions on a locally compact Hausdorff space, which we call regular vector
lattices. We investigate some general properties of these spaces and of the subspaces of
so-called generalized affine functions. Moreover, we present some Korovkin-type theorems
for continuous positive linear operators; in particular, we study Korovkin subspaces for
finitely defined operators, for the identity operator and for positive projections.

Due to its length, the paper is split up into two parts of distinct character; in this
first part, we introduce the class of regular vector lattices, we prove an integral repre-
sentation theorem for continuous positive linear forms and we study some enveloping
functions related to a continuous positive operator, together with the corresponding space
of generalized affine functions. Finally, we obtain a Stone–Weierstrass type theorem.

In the second part, which will appear in the same journal, we will present some
Korovkin-type theorems, together with some applications.

1. Introduction. Since their discovery, the classical theorems of Ko-
rovkin on approximation of continuous functions on a compact interval (see
[22]) have impressed many mathematicians by their simplicity. Several au-
thors have undertaken the program of extending these theorems to other
settings and, in the last forty years, many interesting results have been
found; this research field is often referred to as Korovkin-type approxima-
tion theory.

A quite complete picture of what has been achieved in this field up to
1996 can be found in the monographs by F. Altomare and M. Campiti
([3]; see, in particular, Appendix D), K. Donner ([14]) and G. G. Lorentz,
M. von Golitschek and Y. Makovoz ([23, Chapter 16]).

More recent results that could be compared with those of this paper can
be found in [4]–[6], [27].
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With the aim to extend and to treat in a more systematic way some old
and more recent results, in this paper we develop the main aspects of the
Korovkin-type approximation theory in the framework of a class of locally
convex vector lattices of continuous functions on a locally compact Hausdorff
space X, which we call regular vector lattices on X.

Although several results obtained in the setting of abstract locally con-
vex vector lattices are available in the literature (see, e.g., [14]–[16], [18]),
our approach here is more direct and simple and gives, in addition, new
results.

Examples of regular vector lattices include weighted function spaces (in
particular, the space C0(X, R) of all continuous real-valued functions on X
vanishing at infinity) and every sublattice of C(X, R) containing the continu-
ous functions with compact support endowed with the topology of pointwise
convergence on X or with the topology of uniform convergence on compact
subsets of X. Therefore, our results generalize and/or add some new aspects
to those of F. Altomare and M. Campiti (see [3]) and H. Bauer and K. Don-
ner (see [10]) for C0(X, R), W. Roth (see [27]) for weighted function spaces,
H. Bauer (see [8], [9]), M W. Grossman (see [20]) and F. Altomare and
M. Cappelletti Montano (see [4]) for adapted spaces of continuous functions
(see [13], [24], [31]).

Due to its length, the paper is split up into two parts of distinct charac-
ter. In this first part, we present some preliminary results on regular vector
lattices. In particular, we obtain an integral representation theorem for con-
tinuous positive linear forms and, by means of some suitable enveloping
functions related to a continuous positive linear operator, we study the cor-
responding space of generalized affine functions.

Moreover, we present a natural notion of Choquet boundary and we
characterize it by means of those enveloping functions.

The case of the identity operator is also considered and, as a consequence,
a Stone–Weierstrass type theorem is obtained.

In the second part of the paper, by using the results of the first part,
given a regular vector lattice (E, τ) and a continuous positive linear operator
T : E → E, we characterize those subspaces H of E which are Korovkin

subspaces in E for T and τ , in the sense that every equicontinuous net of
positive linear operators from E into E converging to T on H in (E, τ),
automatically converges to T in (E, τ).

By using this characterization, we give simple methods to construct Ko-
rovkin subspaces for particular positive linear operators, called finitely de-

fined operators, as well as for the identity operator. We also exhibit examples
of finite-dimensional Korovkin subspaces for these operators.
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Finally, we present some Korovkin-type theorems for continuous positive
projections. This last part of the paper is a generalization of a previous work
of the authors (see [4]) concerning the setting of adapted spaces.

2. Regular vector lattices of continuous functions and repre-

sentation theorems. Let X be a locally compact Hausdorff space. We
denote by R

X and C(X, R) the spaces of all real-valued functions on X and
of all continuous real-valued functions on X, respectively. We also denote
by Cc(X, R) the subspace of C(X, R) consisting of all continuous functions
on X whose support is compact, and by Cb(X, R) the subspace of all con-
tinuous real-valued bounded functions on X. Finally, C0(X, R) denotes the
space of all continuous real-valued functions on X which vanish at infinity.

Let BX be the σ-algebra of all Borel subsets of X and denote by M+(X)
and M+

b (X) the cones of all regular (resp., regular and bounded) Borel mea-
sures on X. For every x ∈ X we denote by εx the Dirac measure concentrated
at x.

If µ ∈ M+(X), then supp(µ) denotes the support of µ, i.e. the comple-
ment of the largest open subset of X on which µ is zero.

For every µ ∈ M+(X) and p ∈ [1, +∞[, we denote by Lp(X, µ) the space
of all Borel-measurable functions f ∈ R

X which are p-fold µ-integrable.

In the particular case where X is a Lebesgue-measurable subset of R
n

and µ is the Lebesgue measure on X, we simply use the symbol Lp(X).

Let (E, τ) be a topological vector space. We denote by (E, τ)′ the space
of all τ -continuous linear forms on E. If in addition (E, τ) is a topological
vector lattice, then we denote by (E, τ)′+ the cone of all τ -continuous positive
linear forms on E.

We now recall a very useful result, due to B. Anger and J. Lembcke
(see [7]), that generalizes the Hahn–Banach theorem to the setting of map-
pings that may attain the value +∞.

To this end, we also recall that a mapping p : E → R ∪ {+∞} defined
on a real vector space E is said to be hypolinear if

(i) p(f + g) ≤ p(f) + p(g) for every f, g ∈ E;
(ii) p(λf) = λp(f) for every f ∈ E and λ ≥ 0, with the convention

0 · (+∞) = 0.

Theorem 2.1. Let (E, τ) be a real locally convex Hausdorff space and

p : E → R ∪ {+∞} a hypolinear lower semicontinuous mapping. Then for

every f ∈ E and α ∈ ]−p(−f), p(f)[ there exists ϕ ∈ (E, τ)′ such that ϕ ≤ p
and ϕ(f) = α.

If E and F are real vector lattices or Riesz spaces (see, e.g., [1], [28] for
more details) then a (positive) linear operator T : E → F is said to be a
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lattice homomorphism if

T (|f |) = |T (f)| for every f ∈ E;

we also point out that T is a lattice homomorphism if and only if

T (sup(f, g)) = sup(T (f), T (g)) for every f, g ∈ E

or, equivalently,

T (inf(f, g)) = inf(T (f), T (g)) for every f, g ∈ E.

A subset V of a vector lattice E is said to be a solid set (resp., a sublat-

tice) if for every f ∈ E and g ∈ V such that |f | ≤ |g|, we have f ∈ V (resp.,
if sup(f, g) ∈ V for every f, g ∈ V ).

We now introduce a class of locally convex vector lattices of continuous
functions, in which we shall develop our results.

Definition 2.2. Let X be a locally compact Hausdorff space and E
a subspace of C(X, R), endowed with the natural (pointwise) order ≤ and
with a locally convex topology τ .

The locally convex space (E, τ) is said to be a regular locally convex

vector lattice on X, for short, a regular vector lattice, if

(i) (E, τ,≤) is a locally convex vector lattice with a neighborhood base
Uτ consisting of absolutely convex solid sublattices;

(ii) τ is finer than the topology of pointwise convergence on X;
(iii) Cc(X, R) is dense in (E, τ).

We point out that property (i) is equivalent to requiring that the topology
τ is generated by a saturated family (pα)α∈A of seminorms on E such that
for every α ∈ A,

(1) pα(f) ≤ pα(g) for every f, g ∈ E, |f | ≤ |g|;
(2) pα(sup(f, g)) = sup(pα(f), pα(g)) for every f, g ∈ E+.

Such seminorms are also called M -seminorms. Below we present some ex-
amples of regular vector lattices.

Examples 2.3. 1. Every sublattice E of C(X, R) containing Cc(X, R)
and endowed with the topology τc of uniform convergence on compact sub-
sets of X or the topology τs of pointwise convergence on X is a regular
vector lattice.

We recall that a neighborhood base of the origin for τc (resp., τs) is

Uc := {VK,ε | ε > 0, K compact},

(resp.,
Us := {VF,ε | ε > 0, F finite}),

where, for Q ⊂ X and ε > 0, we set

VQ,ε := {f ∈ E | |f(x)| ≤ ε for every x ∈ Q}.



Vector lattices of continuous functions 243

2. Let H be an adapted subspace of C(X, R) (see [13, Vol. II, Ch. 8],
[24], [31]) and set

(2.1) EH := {f ∈ C(X, R) | there exists h ∈ H such that |f | ≤ h}.

Then EH is a sublattice of C(X, R) containing Cc(X, R) ([13, Vol. II, Re-
mark 34.5, Theorem 34.6]). Accordingly, the subspace EH endowed with the
topologies τs and τc, respectively, is a regular vector lattice.

Several examples of adapted spaces are indicated in [13], [24], [31].
Here we limit ourselves to pointing out that, if X is a locally compact

subset of R
n, then the subspace H of all real-valued polynomials on X is

adapted; moreover

(2.2) EH = {f ∈ C(X, R) | there exist m ∈ N and α, β ∈ R
+ such that

|f(x1, . . . , xn)| ≤ α|x1|
m · · · |xn|

m + β for every (x1, . . . , xn) ∈ X}.

3 (Weighted function spaces). Let W be a family of positive upper
semicontinuous functions on X such that if w1, w2 ∈ W then there exist
w ∈ W and α > 0 such that w1 ≤ αw and w2 ≤ αw. Further, assume that
for every x ∈ X there exists w ∈ W such that w(x) > 0.

Consider the weighted function space CW (X, R) of all functions f ∈
C(X, R) such that wf vanishes at infinity for all w ∈ W .

The space CW (X, R) is endowed with the locally convex topology τW

generated by the family (pw)w∈W of seminorms defined by

pw(f) := sup
x∈X

w(x)|f(x)| (f ∈ E)

(see [25], [26]). Then (CW (X, R), τW ) is a regular vector lattice on X.
Indeed, properties (i)–(iii) are obvious (see, e.g., [26]), upon taking into

account that a neighborhood base of the origin is

UW := {Vw,ε | w ∈ W, ε > 0},

where

Vw,ε := {f ∈ CW (X, R) | pw(f) ≤ ε} (w ∈ W, ε > 0).

We give some examples of weighted function spaces that can be useful
for more concrete applications.

3.a. The space Cc(X, R) is the weighted function space CW (X, R), where
W = {w ∈ C(X, R) | w ≥ 0}. The topology τW is coarser than the inductive
limit topology on Cc(X, R) and finer than the topology of uniform conver-
gence on X.

3.b. The space C0(X, R) is the weighted function space CW (X, R), where
W = {1}. The topology τW is the topology of uniform convergence on X.

3.c. The space Cb(X, R) is the weighted function space CW (X, R), where
W = {w ∈ C0(X, R) | w ≥ 0}. Its topology τW is called the strict topology
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and it is finer than the topology of uniform convergence on compact subsets
of X and coarser than the topology of uniform convergence on X.

3.d. The space C(X, R) endowed with the topology of uniform conver-
gence on compact subsets of X (resp., the topology of pointwise convergence
on X) is the weighted function space CWc

(X, R) (resp., CWs
(X, R)), where

Wc consists of the characteristic functions of all compact subsets of X (resp.,
Ws consists of the characteristic functions of all finite subsets of X).

Coming back to the general definition, we point out that if all the func-
tions in W are strictly positive and W is filtering decreasing, then CW (X, R)
is also an adapted space (see [31, Prop. 4 and Corollary 5, pp. 14–15]). On
the other hand, the space Cb(X, R) is not adapted.

4. Assume that X is noncompact and denote by C∗(X, R) the subspace
of all functions in C(X, R) which are convergent at the point at infinity ∞
of X. Then C∗(X, R), endowed with the natural order and the topology of
uniform convergence on X, is not a regular vector lattice (property (iii) is
not satisfied).

A useful property of regular vector lattices is shown below. We first prove
a preliminary lemma.

Lemma 2.4. Let X be a locally compact Hausdorff space and (E, τ) a

regular vector lattice on X. If ̺ ∈ (E, τ)′+ is a lattice homomorphism on E,
then there exist x ∈ X and λ ≥ 0 such that ̺(f) = λf(x) for every f ∈ E.

Proof. Consider the (unique) µ ∈ M+(X) such that

(1) ̺(f) =
\
f dµ for every f ∈ Cc(X, R).

Accordingly, for every f ∈ Cc(X, R) we get

(2)
∣∣∣
\
f dµ

∣∣∣ =
\
|f | dµ.

We shall show that there exist λ ≥ 0 and x ∈ X such that µ = λεx. In fact,
if µ = 0, then choose λ = 0. If µ 6= 0, then supp(µ) 6= ∅. Take x ∈ supp(µ)
and ϕ ∈ Cc(X, R), 0 ≤ ϕ ≤ 1, such that ϕ(x) = 1. Then α :=

T
ϕdµ > 0;

otherwise, we would have ϕ = 0 on supp(µ), so that ϕ(x) = 0.

To prove that supp(µ) = {x}, choose f ∈ Cc(X, R) such that supp(f) ⊂
X \ {x}; we shall show that

T
f dµ = 0.

Otherwise, setting β :=
T
f dµ, we would get\1

β
f dµ =

\1

α
ϕdµ = 1,

so from (2) it would follow that

0 =

∣∣∣∣
\1

β
f −

1

α
ϕdµ

∣∣∣∣ =
\∣∣∣∣ 1

β
f −

1

α
ϕ

∣∣∣∣ dµ.
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Accordingly, (1/β)f − (1/α)ϕ = 0 on supp(µ), but this is impossible since
(1/β)f(x) − (1/α)ϕ(x) = −1/α 6= 0.

Hence, from (1) it follows that

̺(f) =
\
f dµ = λf(x) (f ∈ Cc(X, R)).

Fix now f ∈ E; since by (iii) of Definition 2.2, Cc(X, R) is dense in

(E, τ), there exists a net (fi)
≤
i∈I in Cc(X, R) such that lim

i∈I
≤ fi = f in (E, τ).

By (ii) of Definition 2.2, we also get lim
i∈I

≤ fi(x) = f(x); hence

̺(f) = lim
i∈I

≤ ̺(fi) = lim
i∈I

≤ λfi(x) = λf(x)

and this completes the proof.

Proposition 2.5. Every regular vector lattice (E, τ) on a locally com-

pact Hausdorff space X has Dini’s property , i.e. if (fi)
≤
i∈I is a filtering de-

creasing net in E such that infi∈I fi = 0, then lim
i∈I

≤ fi = 0 in (E, τ).

Proof. Indeed, if (E, τ) is a regular vector lattice on X, it is an M -space
in the sense of [21, Section 4.3], so that it is a Dini lattice, i.e. every filtering
decreasing net in E converging to 0 pointwise on V (E, τ), converges to 0 with
respect to τ , where V (E, τ) denotes the set of all real-valued τ -continuous
lattice homomorphisms on E (see [17, p. 180]).

Hence, our statement follows from Lemma 2.4.

The following integral representation property will be essential for our
work. It generalizes similar results obtained in the framework of Examples
2.3 (see [12], [32]).

Theorem 2.6. Let X be a locally compact Hausdorff space and (E, τ)
a regular vector lattice on X. Then for every ̺ ∈ (E, τ)′+, there exists a

(unique) µ ∈ M+(X) such that E ⊂ L1(X, µ) and

̺(f) =
\
f dµ for every f ∈ E.

Proof. From the Riesz representation theorem, there exists µ ∈ M+(X)
such that

̺(ϕ) =
\
ϕdµ for every ϕ ∈ Cc(X, R).

Fix now f ∈ E, f ≥ 0; then for every ϕ ∈ Cc(X, R) with 0 ≤ ϕ ≤ f ,\
ϕdµ = ̺(ϕ) ≤ ̺(f).

Moreover, set
Af := {ϕ ∈ Cc(X, R) | 0 ≤ ϕ ≤ f}.

An easy application of Urysohn’s lemma shows that

f = sup
ϕ∈Af

ϕ.
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Since Af is filtering increasing, from Proposition 2.5 we get

f = sup
ϕ∈Af

ϕ = lim
ϕ∈Af

≤ ϕ in (E, τ).

On the other hand, from [11, Theorem 1.5], it follows that\
f dµ = sup

ϕ∈Af

\
ϕdµ ≤ ̺(f) < ∞;

accordingly, f ∈ L1(X, µ) and\
f dµ = sup

ϕ∈Af

\
ϕdµ = sup

ϕ∈Af

̺(ϕ) = lim
ϕ∈Af

≤ ̺(ϕ) = ̺(f).

Since E = E+ − E+, this completes the proof.

Remark 2.7. We point out that, if (E, τ,≤) is a locally convex vector
sublattice of C(X, R) satisfying property (i) of Definition 2.2, and an integral
representation theorem such as Theorem 2.6 holds in E, then necessarily
Cc(X, R) is dense in (E, τ).

Otherwise, there would exist ̺ ∈ (E, τ)′ such that ̺ 6= 0 and ̺ = 0 on
Cc(X, R). By [1, Theorem 5.7], there would exist ̺1, ̺2 ∈ (E, τ)′+ such that
̺ = ̺1 − ̺2 and, consequently, there would exist µ1, µ2 ∈ M+(X) such that
for every f ∈ E,

̺1(f) =
\
f dµ1, ̺2(f) =

\
f dµ2.

In particular, for every ϕ ∈ Cc(X, R),\
ϕdµ1 =

\
ϕdµ2,

so that µ1 = µ2. Accordingly, ̺1 = ̺2 and hence ̺ = 0, a contradiction.

Finally, we state a property which holds true in a more general context
of vector lattices.

Proposition 2.8. Let X be a locally compact Hausdorff space, (E, τ,≤)
a locally convex vector sublattice of C(X, R) satisfying property (i) of Defi-

nition 2.2, and assume that Cc(X, R) ⊂ E. Then for every f ∈ E and x ∈ X
and for every V ∈ Uτ there exists a neighborhood Q of x such that

|f − f(x)|ϕ ∈ V

for every ϕ ∈ Cc(X, R) with 0 ≤ ϕ ≤ 1 and supp(ϕ) ⊂ Q.

Proof. Fix f ∈ E, x ∈ X and V ∈ Uτ and choose a compact neighbor-
hood Q0 of x. Moreover, consider a function ϕQ0

∈ Cc(X, R), 0 ≤ ϕQ0
≤ 1,

such that ϕQ0
= 1 on Q0.

There exists ε > 0 such that εϕQ0
∈ V . Further, since f is continuous,

there exists a neighborhood Q ⊂ Q0 of x such that for every y ∈ Q,

|f(y) − f(x)| ≤ ε.
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For every ϕ ∈ Cc(X, R) with 0 ≤ ϕ ≤ 1 and supp(ϕ) ⊂ Q, we clearly
have ϕ ≤ ϕQ0

. Hence, for every y ∈ Q,

|f(y) − f(x)|ϕ(y) ≤ εϕQ0
(y),

while for every y 6∈ Q,

|f(y) − f(x)|ϕ(y) = 0 ≤ εϕQ0
(y).

Accordingly,

0 ≤ |f − f(x)|ϕ ≤ εϕQ0
∈ V,

so that, V being solid, it follows that |f − f(x)|ϕ ∈ V .

3. Generalized affine functions and Choquet boundaries. In this
section, we introduce some enveloping functions for each function of a regular
vector lattice and we study the corresponding space of generalized affine
functions. Moreover, we introduce a natural notion of Choquet boundary
and we characterize it by means of those enveloping functions.

From now on, we fix a locally compact Hausdorff space X and a regular
vector lattice (E, τ) on X.

For every µ ∈ M+(X) such that E ⊂ L1(X, µ), consider the positive
linear form Iµ : E → R defined by

Iµ(f) :=
\
f dµ (f ∈ E)

and set

M+
τ,E(X) := {µ ∈ M+(X) | E ⊂ L1(X, µ) and Iµ ∈ (E, τ)′+}.

By Theorem 2.6, M+
τ,E(X) can be identified with (E, τ)′+. In fact some def-

initions and results of this paper could be stated and proved by replacing
M+

τ,E(X) with (E, τ)′+. On the other hand, in other situations, e.g. when
studying Choquet boundaries, the use of Borel measures is essential. Hence,
to get more complete results, we prefer to use Borel measures everywhere.

We finally point out that, if (pα)α∈A is a saturated family of M -semi-
norms, then a Borel measure µ ∈ M+(X) belongs to M+

τ,E(X) if and only

if there exist c ≥ 0 and α ∈ A such that for every ϕ ∈ Cc(X, R),
∣∣∣
\
ϕdµ

∣∣∣ ≤ cpα(ϕ).

Indeed, if µ satisfies the inequality above, then the functional I∗µ : Cc(X, R)
→ R defined by I∗µ(ϕ) =

T
ϕdµ (ϕ ∈ Cc(X, R)) is τ -continuous and hence it

can be continuously extended to a continuous linear form ̺ on E. If f ∈ E
and f ≥ 0, then f = supϕ∈Af

ϕ = lim
ϕ∈Af

≤ ϕ (see the proof of Theorem 2.6)

and so \
f dµ = sup

ϕ∈Af

\
ϕdµ = lim

ϕ∈Af

\
ϕdµ = ̺(f).
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Therefore f ∈ L1(X, µ). This shows that E = E+ − E+ ⊂ L1(X, µ) and
Iµ = ̺ is τ -continuous, i.e. µ ∈ M+

τ,E(X). The converse implication is obvi-
ous.

Fix now a subspace H of E and for every µ ∈ M+
τ,E(X) consider the

mappings µ̂τ,H : E → R ∪ {+∞} and

̂

µτ,H : E → R ∪ {−∞} defined by

µ̂τ,H(f) := sup
U∈Uτ

inf
k∈H

(f−k)+∈U

\
k dµ,(3.1)

̂

µτ,H(f) := inf
U∈Uτ

sup
h∈H

(h−f)+∈U

\
h dµ,(3.2)

for every f ∈ E, with the conventions inf ∅ = +∞ and sup ∅ = −∞.
We point out that if we set

Hu
τ := {f ∈ E | for every U ∈ Uτ there exists k ∈ H

such that (f − k)+ ∈ U},

H l
τ := {f ∈ E | for every U ∈ Uτ there exists h ∈ H

such that (h − f)+ ∈ U},

then µ̂τ,H(f) = +∞ (resp.,

̂

µτ,H(f) = −∞) for every f ∈ E \Hu
τ (resp., for

every f ∈ E \ H l
τ ).

We list some elementary properties of µ̂τ,H and
̂

µτ,H , whose proofs are
straightforward:̂

µτ,H(h) =
\
h dµ = µ̂τ,H(h) for every h ∈ H;(3.3)

µ̂τ,H(f + g) ≤ µ̂τ,H(f) + µ̂τ,H(g) for every f, g ∈ E;(3.4)

µ̂τ,H(λf) = λµ̂τ,H(f) for every f ∈ E and λ ≥ 0,(3.5)

with the convention 0 · (+∞) = 0;

(3.6)

̂

µτ,H(f) = −µ̂τ,H(−f) for every f ∈ E.

Proposition 3.1. For every µ ∈ M+
τ,E(X) and f ∈ E,

(3.7)

̂

µτ,H(f) ≤
\
f dµ ≤ µ̂τ,H(f).

Proof. We show the second inequality; the proof of the first is similar.
If f ∈ E \ Hu

τ , there is nothing to prove. Assume that f ∈ Hu
τ ; since Iµ

is τ -continuous, given ε > 0, there exists V ∈ Uτ such that |
T
g dµ| ≤ ε for

every g ∈ V . Accordingly, for every k ∈ H such that (f − k)+ ∈ V , we get\
f dµ −

\
k dµ ≤

\
(f − k)+ dµ ≤ ε.

Therefore, \
f dµ ≤ inf

k∈H
(f−k)+∈V

\
k dµ + ε ≤ µ̂τ,H(f) + ε

and, since ε was arbitrarily chosen, this completes the proof.
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We are now in a position to show a fundamental property of µ̂τ,H .

Proposition 3.2. The mapping µ̂τ,H is lower semicontinuous on E with

respect to τ .

Proof. First, we observe that Hu
τ is a closed subset of E.

Indeed, fix f ∈ Hu
τ and U ∈ Uτ and consider V ∈ Uτ such that V +V ⊂ U .

Then there exists g ∈ Hu
τ with f − g ∈ V and hence |f − g| ∈ V ; moreover,

there exists h ∈ H such that (g − h)+ ∈ V . Since

f − h = f − g + g − h ≤ |f − g| + (g − h)+,

clearly we get

(f − h)+ ≤ |f − g| + (g − h)+ ∈ V + V ⊂ U,

so that f ∈ Hu
τ .

To prove that µ̂τ,H is lower semicontinuous on E, fix f ∈ E and consider
α ∈ R such that α < µ̂τ,H(f).

If f ∈ E \Hu
τ , then α < µ̂τ,H(g) = +∞ for every g ∈ E \Hu

τ , with E \Hu
τ

open. If f ∈ Hu
τ , fix U ∈ Uτ such that

α < inf
k∈H

(f−k)+∈U

\
k dµ.

Moreover, consider V ∈ Uτ such that V +V ⊂ U and g ∈ E with f − g ∈ V ,
so that |f − g| ∈ V .

If g 6∈ Hu
τ , then µ̂τ,H(g) = +∞ > α; on the other hand, if g ∈ Hu

τ , then
for every h ∈ H such that (g − h)+ ∈ V , we get

f − h = f − g + g − h ≤ |f − g| + (g − h)+

and hence
(f − h)+ ≤ |f − g| + (g − h)+ ∈ V + V ⊂ U.

Therefore,

inf
k∈H

(f−k)+∈U

\
k dµ ≤

\
h dµ,

so that
inf
k∈H

(f−k)+∈U

\
k dµ ≤ inf

h∈H
(g−h)+∈V

\
h dµ ≤ µ̂τ,H(g).

Thus, α < µ̂τ,H(g), and this completes the proof.

Set now

(3.8) L+
τ,τs

(E) := {T : E → E | T is a (τ, τs)-continuous

positive linear operator},

(3.9) L+
τ (E) := {T : E → E | T is a (τ, τ)-continuous

positive linear operator}.
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Then for a given T ∈ L+
τ,τs

(E) and x ∈ X consider the positive linear form
̺x : E → R defined by

̺x(f) := T (f)(x) (f ∈ E).

Obviously, ̺x ∈ (E, τ)′+ and hence by Theorem 2.6 there exists (a unique)
µx ∈ M+

τ,E(X) such that E ⊂ L1(X, µx) and

(3.10) T (f)(x) =
\
f dµx

for every f ∈ E. Taking (3.1) and (3.2) into account, for every x ∈ X and
f ∈ E, set

f̂τ,T (x) := (µ̂x)τ,H(f) = sup
U∈Uτ

inf
k∈H

(f−k)+∈U

T (k)(x),(3.11)

̂

f τ,T (x) := (

̂

µx)τ,H(f) = inf
U∈Uτ

sup
h∈H

(h−f)+∈U

T (h)(x).(3.12)

Clearly, from Proposition 3.1, it follows that

(3.13)

̂

f τ,T ≤ T (f) ≤ f̂τ,T for every f ∈ E,

and from (3.3) we get̂

hτ,T = T (h) = ĥτ,T for every h ∈ H.

An important role will be played by the following subspace of E:

(3.14) Ĥτ,T := {f ∈ E |

̂

f τ,T = T (f) = f̂τ,T },

which we shall refer to as the subspace of generalized H-affine functions

with respect to the operator T and the topology τ .

Moreover, for every x ∈ X, consider the set

(3.15) MT
τ,x(H) :=

{
µ ∈ M+

τ,E(X)
∣∣∣
\
h dµ = T (h)(x) for every h ∈ H

}
.

Every µ ∈ MT
τ,x(H) is said to be an H-representing measure for x with

respect to the operator T and the topology τ .

We point out that, given x ∈ X, from (3.11) and (3.12) it follows that
for every µ ∈ MT

τ,x(H) and f ∈ E,

f̂τ,T (x) = µ̂τ,H(f),

̂

f τ,T (x) =

̂

µτ,H(f).

Proposition 3.1 also shows that if x ∈ X, µ ∈ MT
τ,x(H) and f ∈ E, then

(3.16)

̂

f τ,T (x) ≤
\
f dµ ≤ f̂τ,T (x).
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Finally, the set

(3.17) ∂T
τ,HX := {x ∈ X | MT

τ,x(H) = {µx}}

= {x ∈ X | if µ ∈ M+
τ,E(X) and

\
h dµ = T (h)(x) for every h ∈ H,

then
\
f dµ = T (f)(x) for every f ∈ E}

is defined to be the Choquet boundary of H with respect to the operator T
and the topology τ .

Remark 3.3. By (3.13) and (3.16) it is easy to check that ∂T
τ,HX =

∂T

τ,Ĥτ,T

X.

In what follows, we shall characterize the Choquet boundary of H with
respect to an operator T ∈ L+

τ,τs
(E) in terms of the enveloping mappings

(3.11) and (3.12). To this end, we state the following result.

Theorem 3.4. Let X be a locally compact Hausdorff space, (E, τ) a

regular vector lattice on X, H a subspace of E, and T ∈ L+
τ,τs

(E). Then for

every x ∈ X and f ∈ E,

]

̂

f τ,T (x), f̂τ,T (x)[ ⊂
{\

f dµ
∣∣∣µ ∈ MT

τ,x(H)
}
⊂ [

̂

f τ,T (x), f̂τ,T (x)].

Proof. The second inclusion is a consequence of (3.16).

In order to show the first inclusion, note that if the open interval is
empty, there is nothing to prove; so assume that it is nonempty, fix x ∈ X
and γ ∈ ]

̂

f τ,T (x), f̂τ,T (x)[, and consider the functional p : E → R ∪ {+∞}
defined by p(g) := ĝτ,T (x) for every g ∈ E.

By (3.4), (3.5) and Proposition 3.2, p is a hypolinear, τ -lower semicontin-
uous functional. Moreover, since (3.6) holds, Theorem 2.1 yields ϕ ∈ (E, τ)′

such that ϕ ≤ p and ϕ(f) = γ. The linear form ϕ is also positive because if
g ∈ E and g ≤ 0, then ϕ(g) ≤ p(g) ≤ 0.

Therefore, from Theorem 2.6, there exists µ ∈ M+(X) such that E ⊂
L1(X, µ) and ϕ(g) =

T
g dµ for every g ∈ E. Note that, for h ∈ H, we have\
h dµ = ϕ(h) ≤ p(h) = T (h)(x)

and so, replacing h by −h, we get\
h dµ = T (h)(x).

Hence, µ ∈ MT
τ,x(H) and γ = ϕ(f) =

T
f dµ, and this completes the proof.

From Theorem 3.4 several corollaries follow.

Corollary 3.5. Under the assumptions of Theorem 3.4,

∂T
τ,HX = {x ∈ X |

̂

f τ,T (x) = T (f)(x) = f̂τ,T (x) for every f ∈ E}.
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In particular , if ∂T
τ,HX 6= ∅, then f̂τ,T (x) < +∞ and

̂

f τ,T (x) > −∞ for

every x ∈ ∂T
τ,HX and f ∈ E.

In the next result, we characterize the generalized H-affine functions
with respect to T and τ by means of H-representing measures.

Corollary 3.6. Under the assumptions of Theorem 3.4, fix f ∈ E.

Then f ∈ Ĥτ,T if and only if
T
f dµ = T (f)(x) for every x ∈ X and µ ∈

MT
τ,x(H). In particular , ∂T

τ,HX = X if and only if Ĥτ,T = E.

Another useful characterization of the generalized H-affine functions is
shown below.

Theorem 3.7. Let X be a locally compact Hausdorff space, (E, τ) a

regular vector lattice on X, H a subspace of E, T ∈ L+
τ,τs

(E), and f ∈ E.

Then the following statements are equivalent :

(a) f ∈ Ĥτ,T .

(b) For every V ∈ Uτ there exist n, m ∈ N and k1, . . . , kn, k′
1, . . . , k

′
m ∈ H

such that

(i) (f −ki)
+ ∈ V for every i = 1, . . . , n and (k′

j −f)+ ∈ V for every

j = 1, . . . , m;
(ii) inf1≤i≤n T (ki) − sup1≤j≤m T (k′

j) ∈ V .

Proof. (a)⇒(b). Fix f ∈ Ĥτ,T and consider the subset G of E consisting
of all functions of the form

T (f) − inf
k∈H

(f−k)+∈U

T (k),

with U ∈ Uτ . We show that G is filtering decreasing.
Indeed, fix U, V ∈ Uτ and set W := U ∩ V ; then

inf
k∈H

(f−k)+∈U

T (k) ≤ inf
k∈H

(f−k)+∈W

T (k), inf
k∈H

(f−k)+∈V

T (k) ≤ inf
k∈H

(f−k)+∈W

T (k).

Accordingly,

T (f) − inf
k∈H

(f−k)+∈W

T (k) ≤ T (f) − inf
k∈H

(f−k)+∈U

T (k),

T (f) − inf
k∈H

(f−k)+∈W

T (k) ≤ T (f) − inf
k∈H

(f−k)+∈V

T (k),

so that G is filtering decreasing.
Moreover,

inf
g∈G

g = inf
U∈Uτ

(T (f) − inf
k∈H

(f−k)+∈U

T (k)) = T (f) − sup
U∈Uτ

inf
k∈H

(f−k)+∈U

T (k)

= T (f) − f̂τ,T = 0.
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By Proposition 2.5, (E, τ) has Dini’s property and so lim
g∈G

⊃ g = 0 with

respect to τ . Fix, V ∈ Uτ and consider W ∈ Uτ such that W + W + W + W
⊂ V ; then there exists W0 ∈ Uτ such that for every W1 ∈ Uτ with W1 ⊂ W0,

T (f) − inf
k∈H

(f−k)+∈W1

T (k) ∈ W.

In particular, set V1 := W0 ∩ V ;

(1) T (f) − inf
k∈H

(f−k)+∈V1

T (k) ∈ W.

Consider now the subset G̃ of E consisting of all functions of the form

inf
1≤i≤n

T (ki) − inf
k∈H

(f−k)+∈V1

T (k),

with n ∈ N and k1, . . . , kn ∈ H, (f − ki)
+ ∈ V1 for every i = 1, . . . , n.

Clearly, G̃ is filtering decreasing and inf
g∈G̃

g = 0 because

inf
k∈H

(f−k)+∈V1

T (k)

= inf
n≥1

inf
1≤i≤n

{T (ki) | k1, . . . , kn ∈ H, (f − ki)
+ ∈ V1 for every i = 1, . . . , n}.

Thus, lim
g∈G̃

≤ g = 0 with respect to τ and, hence, there exist n ∈ N and

k1, . . . , kn ∈ H, with (f − ki)
+ ∈ V1 for every i = 1, . . . , n, such that

inf
1≤i≤n

T (ki) − inf
k∈H

(f−k)+∈V1

T (k) ∈ W.

Therefore, by taking (1) into account, it follows that

(2) T (f) − inf
1≤i≤n

T (ki)

= T (f) − inf
k∈H

(f−k)+∈V1

T (k) + inf
k∈H

(f−k)+∈V1

T (k) − inf
1≤i≤n

T (ki) ∈ W + W.

By applying a similar reasoning to −f , there exist V2 ∈ Uτ , V2 ⊂ V , m ∈ N,
and k′

1, . . . , k
′
m ∈ H, with (k′

j − f)+ ∈ V2 for every j = 1, . . . , m, such that

(3) sup
1≤j≤m

T (k′
j) − T (f) ∈ W + W.

From (2) and (3), it follows that

inf
1≤i≤n

T (ki) − sup
1≤j≤m

T (k′
j) ∈ V,

and this completes the proof.
(b)⇒(a). Fix f ∈ E; to show that f ∈ Ĥτ,T , we shall apply Corollary

3.6. To this end, consider x ∈ X and µ ∈ MT
τ,x(H). Since the mapping
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g ∈ E 7→
T
g dµ is τ -continuous, given ε > 0, there exists V ∈ Uτ such that

for every g ∈ V ,

(1)
∣∣∣
\
g dµ

∣∣∣ ≤ ε.

Moreover, by assumption, T ∈ L+
τ,τs

(E) and hence by property (ii) of Defi-
nition 2.2 there exists W ∈ Uτ such that for every g ∈ W ,

(2) |T (g)(x)| ≤ ε.

Finally, since the positive linear form δx : E → R defined by δx(f) := f(x)
(f ∈ E) is τ -continuous, there exists U ∈ Uτ such that for every g ∈ U ,

(3) |g(x)| ≤ ε.

Set V1 := V ∩W ∩U ; then there exist n, m ∈ N and k1, . . . , kn, k′
1, . . . , k

′
m ∈

H, with (f − ki)
+ ∈ V1 for every i = 1, . . . , n and (k′

j − f)+ ∈ V1 for every
j = 1, . . . , m, such that

inf
1≤i≤n

T (ki) − sup
1≤j≤m

T (k′
j) ∈ V1.

From (1) it follows that for every i = 1, . . . , n,\
f dµ −

\
ki dµ ≤

\
(f − ki)

+ dµ ≤ ε

and, thus, \
f dµ ≤ inf

1≤i≤n
T (ki)(x) + ε.

By applying a similar reasoning, we also get

sup
1≤j≤m

T (k′
j)(x) − ε ≤

\
f dµ.

Moreover, from (2) it follows that

sup
1≤j≤m

T (k′
j)(x) − ε ≤ T (f)(x) ≤ inf

1≤i≤n
T (ki)(x) + ε.

Therefore, taking (3) into account, we have
∣∣∣
\
f dµ − T (f)(x)

∣∣∣ ≤ 2ε + inf
1≤i≤n

T (ki)(x) − sup
1≤j≤m

T (k′
j)(x) ≤ 3ε

and, since ε > 0 was arbitrarily chosen, we get
T
f dµ = T (f)(x), and the

proof is complete.

Corollary 3.8. Let (E, τ) be a regular vector lattice on a locally com-

pact Hausdorff space X, H a subspace of E and T ∈ L+
τ,τs

(E). Then

(i) Ĥτ,T is closed in (E, τ).
(ii) If T ∈ L+

τ (E), and we denote by R(T (H)) the vector sublattice of E
generated by T (H), then

T (Ĥτ,T ) ⊂ R(T (H)).
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Therefore, if Ĥτ,T =E and T is onto (or , more generally , if T (Ĥτ,T )

= E), then R(T (H)) = E.

Proof. (i) Given g ∈ Ĥτ,T and W ∈ Uτ , choose V ∈ Uτ such that

V + V ⊂ W . There exists f ∈ Ĥτ,T such that f − g ∈ V and hence, by
Theorem 3.7, there exist k1, . . . , kn, k′

1, . . . , k
′
m ∈ H satisfying (i) and (ii) of

that theorem with respect to V .

For every i = 1, . . . , n and j = 1, . . . , m we get

(g − ki)
+ ≤ (g − f)+ + (f − ki)

+ ∈ V + V ⊂ W,

(k′
j − g)+ ≤ (k′

j − f)+ + (f − g)+ ∈ V + V ⊂ W.

Therefore, (g−ki)
+ ∈ W , (k′

j−g)+ ∈ W and inf1≤i≤n T (ki)−sup1≤j≤m T (k′
j)

∈ W and hence g ∈ Ĥτ,T by Theorem 3.7.

(ii) Consider f ∈ Ĥτ,T and fix W ∈ Uτ . Choose U, V ∈ Uτ such that
U ⊂ V , T (U) ⊂ V and V + V + V ⊂ W . By Theorem 3.7, we can also
consider k1, . . . , kn, k′

1, . . . , k
′
m such that

(f − ki)
+ ∈ U and (k′

j − f)+ ∈ U for i = 1, . . . , n and j = 1, . . . , m,

inf
1≤i≤n

T (ki) − sup
1≤j≤m

T (k′
j) ∈ U.

For given i = 1, . . . , n and j = 1, . . . , m, we get

f − ki ≤ sup
1≤i≤n

(f − ki)
+ =: u ∈ U, k′

j − f ≤ sup
1≤j≤m

(k′
j − f)+ =: v ∈ U.

Therefore,

T (f) − inf
1≤i≤n

T (ki) ≤ T (u)

and

inf
1≤i≤n

T (ki) − T (f) = inf
1≤i≤n

T (ki) − sup
1≤j≤m

T (k′
j) + sup

1≤j≤m
T (k′

j) − T (f)

≤ inf
1≤i≤n

T (ki) − sup
1≤j≤m

T (k′
j) + T (v).

Accordingly,

|T (f) − inf
1≤i≤n

T (ki)|

≤ T (u) + | inf
1≤i≤n

T (ki) − sup
1≤j≤m

T (k′
j)| + T (v) ∈ V + V + V ⊂ W.

This shows that T (f) ∈ R(T (H)).

4. Generalized affine functions with respect to the identity op-

erator. The results of the last section also hold true when T is the identity
operator I on E. This particular case is worth a separate consideration.
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For the sake of simplicity, we adopt suitable symbols for this case. The
enveloping functions (3.11) and (3.12) will be denoted by f̂τ and

̂

f τ respec-

tively. Analogously, we use the symbols Ĥτ , Mτ,x(H) and ∂τ,HX to denote
the subsets (3.14), (3.15) and (3.17), respectively, for T = I.

Thus, for every f ∈ E and x ∈ X we have

f̂τ (x) = sup
U∈Uτ

inf
k∈H

(f−k)+∈U

k(x),

̂

f τ (x) = inf
U∈Uτ

sup
h∈H

(h−f)+∈U

h(x).

Clearly, ̂

f τ ≤ f ≤ f̂τ for every f ∈ E,̂

hτ = h = ĥτ for every h ∈ H.

Moreover,

(4.1) Ĥτ = {f ∈ E |

̂

f τ = f = f̂τ},

and its elements will be called generalized H-affine functions with respect
to the topology τ .

Furthermore, for every x ∈ X,

(4.2) Mτ,x(H) =
{
µ ∈ M+

τ,E(X)
∣∣∣
\
h dµ = h(x) for every h ∈ H

}
.

Every µ ∈ Mτ,x(H) is said to be an H-representing measure for x with
respect to the topology τ .

Finally, the set

(4.3) ∂τ,HX = {x ∈ X | Mτ,x(H) = {εx}}

= {x ∈ X | if µ ∈ M+
τ,E(X) and

\
h dµ = h(x) for every h ∈ H,

then
\
f dµ = f(x) for every f ∈ E}

is said to be the Choquet boundary of H with respect to the topology τ .
Clearly, from Remark 3.3, it follows that ∂τ,HX = ∂

τ,Ĥτ
X.

Moreover, from Theorem 3.4, we get the following result.

Theorem 4.1. Let (E, τ) be a regular vector lattice on a locally compact

Hausdorff space X, and H a subspace of E. Then for every x ∈ X and

f ∈ E,

]

̂

f τ (x), f̂τ (x)[ ⊂
{\

f dµ
∣∣∣µ ∈ Mτ,x(H)

}
⊂ [

̂

f τ (x), f̂τ (x)].

The analogues of Corollary 3.5, Corollary 3.6 and Theorem 3.7 are stated
below.

Corollary 4.2. Under the assumptions of Theorem 4.1,

∂τ,HX = {x ∈ X |

̂

f τ (x) = f(x) = f̂τ (x) for every f ∈ E}.
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In particular , if ∂τ,HX 6= ∅, then f̂τ (x) < +∞ and

̂

f τ (x) > −∞ for every

x ∈ ∂τ,HX and f ∈ E.

Theorem 4.3. Let (E, τ) a regular vector lattice on a locally compact

Hausdorff space X, H a subspace of E, and f ∈ E. Then the following

statements are equivalent :

(a) f ∈ Ĥτ .

(b) For every V ∈ Uτ there exist n, m ∈ N and k1, . . . , kn, k′
1, . . . , k

′
m ∈ H

such that :

(i) (f −ki)
+ ∈ V for every i = 1, . . . , n and (k′

j −f)+ ∈ V for every

j = 1, . . . , m;
(ii) inf1≤i≤n ki − sup1≤j≤m k′

j ∈ V .

(c)
T
f dµ = f(x) for every x ∈ X and µ ∈ Mτ,x(H).

Moreover , ∂τ,HX = X if and only if Ĥτ = E.

In the case where T = I, Corollary 3.8 can be restated as follows.

Corollary 4.4. Let (E, τ) be a regular vector lattice on a locally com-

pact Hausdorff space X, H a subspace of E, and R(H) the vector sublattice

of E generated by H. Then:

(i) Ĥτ is closed in (E, τ) and Ĥτ ⊂ R(H).

(ii) If Ĥτ = E, i.e. ∂τ,HX = X, then R(H) = E.

A simple consequence of Corollary 4.4 is the following Stone–Weierstrass-
type theorem that could be compared with [9, Theorem 2.6], [12, Theorem 5],
[18, Theorem 4.4], [19, Theorem 1.19], [27, Corollary 2.2].

We recall that a subset H of C(X, R) separates linearly the points of
X if for any distinct x, y ∈ X, there exist h, k ∈ H such that h(x)k(y) 6=
h(y)k(x).

It is easy to show that H separates linearly the points of X if and only
if for any distinct x, y ∈ X and α ∈ R there exists h ∈ H such that h(x) 6=
αh(y).

In particular, if H = H+−H+ (and, hence, in particular, if H is a vector
sublattice of C(X, R)) then H separates linearly the points of X if and only
if for any x, y ∈ X and α ≥ 0 there exists h ∈ H (which can be chosen to
be positive) such that h(x) 6= αh(y).

Finally, if H separates linearly the points of X, then for every x ∈ X
there exists h ∈ H such that h(x) 6= 0.

Corollary 4.5. Let (E, τ) be a regular vector lattice on a locally com-

pact Hausdorff space X, and H a linear sublattice of E linearly separating

the points of X. Then H is dense in (E, τ).
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Proof. In this case R(H) = H and hence, according to Corollary 4.4, it
is enough to show that ∂τ,HX = X.

Let x0 ∈ X and µ ∈ Mτ,x0
(H). Given h0 ∈ H such that h0 ≥ 0 and

h0(x0) = 1, for every h ∈ H with h ≥ 0 we get\
|h − h(x0)h0| dµ = 0

because |h − h(x0)h0| ∈ H. Therefore

supp(µ) ⊂
⋂

h∈H
h≥0

{x ∈ X | h(x) = h(x0)h0(x)} = {x0}

because H linearly separates the points of X.
The above inclusion implies that there exists λ ≥ 0 such that µ = λεx0

.
Since

1 = h0(x0) =
\
h0 dµ = λh0(x0) = λ,

we have, indeed, µ = εx0
, and this shows that x0 ∈ ∂τ,HX.

Theorems 4.3 and 3.7 can be fruitfully combined to study the space of
generalized affine functions with respect to a lattice homomorphism T :
E → E.

We recall that, by Lemma 2.4, for a given lattice homomorphism T ∈
L+

τ,τs
(E), there exist λ ∈ R

X with λ ≥ 0 and ϕ : X → X such that

(4.4) T (f) = λ(f ◦ ϕ) (f ∈ E).

Corollary 4.6. Let X be a locally compact Hausdorff space, (E, τ) a

regular vector lattice on X, H a subspace of E, and T ∈ L+
τ (E) a lattice

homomorphism. Then

Ĥτ ⊂ Ĥτ,T .

Proof. Let f ∈ Ĥτ . To show that f ∈ Ĥτ,T we shall verify statement
(b) of Theorem 3.7. Given V ∈ Uτ , since T is (τ, τ)-continuous, there exists
U ∈ Uτ with U ⊂ V such that

(1) T (g) ∈ V for every g ∈ U.

By Theorem 4.3, there exist k1, . . . , kn, k′
1, . . . , k

′
m ∈ H such that

(f − ki)
+ ∈ U for every i = 1, . . . , n,

(k′
j − f)+ ∈ U for every j = 1, . . . , m

and

inf
1≤i≤n

ki − sup
1≤j≤m

k′
j ∈ U.

Therefore, from (1) it follows that

inf
1≤i≤n

T (ki) − sup
1≤j≤m

T (k′
j) ∈ V,

and this completes the proof.
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