Addendum to: "Sequences of 0's and 1's" (Studia Math. 149 (2002), 75–99)

by

JOHANN BOOS (Hagen) and TOIVO LEIGER (Tartu)

Abstract. There is a nontrivial gap in the proof of Theorem 5.2 of [2] which is one of the main results of that paper and has been applied three times (cf. [2, Theorem 5.3, (G) in Section 6, Theorem 6.4]). Till now neither the gap has been closed nor a counterexample found. The aim of this paper is to give, by means of some general results, a better understanding of the gap. The proofs that the applications hold will be given elsewhere.

Concerning notations and preliminary results we refer to the original paper [2] and to [9], [10] and [3]. Let χ be the set of all sequences of 0's and 1's, and, if E is any sequence space, let $\chi(E)$ denote the linear hull of $\chi \cap E$.

In [2] (cf. also [11, 4]) the authors considered sequence spaces E with the property that

$$\chi(E) \subset F \; \Rightarrow \; E \subset F$$

whenever F is an arbitrary FK-space, a separable FK-space, and a matrix domain c_B , respectively. Then E is said to have the *Hahn property*, the separable Hahn property, and the matrix Hahn property, respectively. A sequence space having any Hahn property is necessarily a subspace of ℓ^{∞} (cf. [2, Theorem 5.1]). Obviously, the Hahn property implies the separable Hahn property, and the latter implies the matrix Hahn property. None of the converse implications holds in general (cf. [2, Theorem 5.3] and [11, Theorem 1.3]).

In Theorem 5.2 of [2] the authors stated that for monotone sequence spaces E containing φ the following properties are equivalent:

- (i) E has the matrix Hahn property;
- (ii) E has the separable Hahn property;
- (iii) $\chi(E)^{\beta} = E^{\beta}$.

²⁰⁰⁰ Mathematics Subject Classification: 46A45, 46A35, 40C05, 40H05.

Research of T. Leiger supported by Estonian Science Foundation Grant 5376.

However, in the proof of (iii) \Rightarrow (ii) it was argued that $\tau(E, E^{\beta})|_{\chi(E)} = \tau(\chi(E), E^{\beta})$, which is false in general for dense subspaces of Mackey spaces (cf. [6, Theorem 5.2.1] or consider c_0 as a subspace of $(c, \tau(c, \ell))$ with the natural bilinear map). Till now neither the gap has been closed nor a counterexample found. Nevertheless, the fact that the applications of the theorem in doubt hold (which will be proved elsewhere) gives a little hope that Theorem 5.2 is true.

In this addendum we examine the situation around the gap, aiming at a better understanding of it.

We start with a simple, but useful characterization of the matrix Hahn property which is essentially due to Webb.

PROPOSITION 1. If E is any sequence space containing φ and satisfying $E^{\beta} = \chi(E)^{\beta}$, then the following statements are equivalent:

- (a) E has the matrix Hahn property.
- (b) $\sigma(E^{\beta}, \chi(E))$ and $\sigma(E^{\beta}, E)$ have the same Cauchy sequences in E^{β} .
- (c) $\sigma(E^{\beta}, \chi(E))$ and $\sigma(E^{\beta}, E)$ have the same convergent sequences in E^{β} .
- (d) $\sigma(E^{\beta}, \chi(E))$ and $\sigma(E^{\beta}, E)$ have the same compact subsets in E^{β} .
- (e) $\chi(E) \subset c_{0A}$ implies $E \subset c_{0A}$ for any matrix A.

Proof. The equivalence of (a)–(c) follows immediately from a result of Webb (cf. [8, Proposition 1·4]); (e) is equivalent to the condition that $\sigma(E^{\beta}, \chi(E))$ and $\sigma(E^{\beta}, E)$ have the same sequences converging to 0 in E^{β} , thus it is equivalent to (c). Theorem 11.4.5 in [3], essentially due to Köthe, tells us that in a K-space (X, τ) a subset K is compact if and only if K is $\tau_{\omega}|_X$ -compact, and τ and $\tau_{\omega}|_X$ give rise to the same convergent sequences in X. So (d) and (c) are equivalent.

THEOREM 2 (cf. [2, Theorem 5.2]). Let E be a sequence space with $\varphi \subset E$ and $E^{\beta} = \chi(E)^{\beta}$. If $(\chi(E)^{\beta}, \sigma(\chi(E)^{\beta}, \chi(E)))$ is sequentially complete (for instance, if $\chi(E)$ is monotone (cf. [1, Proposition 3])), then the following statements are equivalent:

- (a) E has the matrix Hahn property.
- (b) $\tau(\chi(E), \chi(E)^{\beta}) = \tau(E, E^{\beta})|_{\chi(E)}.$
- (c) E has the separable Hahn property.

Proof. We prove $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a)$ where the last implication is obvious.

Condition (b) holds if and only if $\sigma(E^{\beta}, \chi(E))$ and $\sigma(E^{\beta}, E)$ have the same absolutely convex compact subsets in E^{β} . Thus (a) implies (b) by Proposition 1, (a) \Rightarrow (d).

We suppose that (b) holds and a separable FK-space F with $\chi(E) \subset F$ is given, and deduce $E \subset F$, that is, (b) \Rightarrow (c). Since $(\chi(E)^{\beta}, \sigma(\chi(E)^{\beta}, \chi(E)))$

is assumed to be sequentially complete, it follows from Kalton's closed graph theorem (cf. [5, Theorem 2.4]) that the natural injection

$$i: (\chi(E), \tau(\chi(E), \chi(E)^{\beta})) \to F$$

is continuous. We find that $\chi(E)$ is dense in $(E, \tau(E, E^{\beta}))$ since φ is contained in $\chi(E)$ and obviously dense in $(E, \sigma(E, E^{\beta}))$. Now, by (b), we have

$$\tau(E, E^{\beta})|_{\chi(E)} = \tau(\chi(E), E^{\beta}) = \tau(\chi(E), \chi(E)^{\beta}),$$

so that i extends to E, forcing $E \subset F$.

EXAMPLE 3. Let E be the sequence space in [11, Theorem 2.5]. Then E has the matrix Hahn property, thus $E^{\beta} = \chi(E)^{\beta}$ (cf. [2, Theorem 5.1]), but E does not enjoy the separable Hahn property. Consequently, $(\chi(E)^{\beta}, \sigma(\chi(E)^{\beta}, \chi(E)))$ is not sequentially complete by Theorem 2.

PROPOSITION 4. Let E be a sequence space with $\varphi \subset E$ such that $\chi(E)^{\beta} = \ell^1 = E^{\beta}$ and $\chi(E)$ is monotone. Then $\chi(E) \subset \ell^{\infty}_A$ implies $||A|| := \sup_n \sum_k |a_{nk}| < \infty$, thus $E \subset \ell^{\infty}_A$ for any matrix A, where $\ell^{\infty}_A := \{x \in \omega_A \mid Ax \in \ell^{\infty}\}$.

Proof. Since $\chi(E)$ is monotone and $\chi(E)^{\beta} = \ell^1$, the set \mathcal{F} of subsets of \mathbb{N} corresponding to $\chi \cap E$ is full in the sense of [7, Definition 1]. So $\chi(E) \subset \ell_A^{\infty}$ implies $||A|| < \infty$ by [7, Proposition 1, (i) \Rightarrow (iv)]. Now, $||A|| < \infty$ implies obviously $\ell^{\infty} \subset \ell_A^{\infty}$, thus $E \subset \ell_A^{\infty}$. (Note that $E \subset \ell^{\infty}$ since $\ell^1 = E^{\beta}$.)

THEOREM 5. Let E be a solid subspace of ℓ^{∞} containing φ . Then E has the separable Hahn property if the following conditions are satisfied:

- (a) $\chi(E)^{\beta} = E^{\beta}$.
- (b) $\sigma(E^{\beta}, \chi(E))$ and $\sigma(E^{\beta}, E)$ have the same bounded sequences (sets) in E^{β} .
- (c) $\chi(E)$ is dense in $(E, \beta(E, E^{\beta}))$.

Proof. Let F be a separable FK-space containing $\chi(E)$. We show $F \supseteq E$. Now, $\chi(E)$ is a monotone sequence space (E is solid) so that $(\chi(E)^{\beta}, \sigma(\chi(E)^{\beta}, \chi(E)))$ is sequentially complete. It follows from Kalton's closed graph theorem that the injection $i : (\chi(E), \tau(\chi(E), \chi(E)^{\beta})) \to F$ is continuous. Since $\chi(E)^{\beta} = E^{\beta}$ and because (b) holds, we have

$$\tau(\chi(E), \chi(E)^{\beta}) \subset \beta(\chi(E), \chi(E)^{\beta}) = \beta(E, E^{\beta})|_{\chi(E)}$$

But $\chi(E)$ is assumed to be $\beta(E, E^{\beta})$ -dense in E, thus for every $x \in E$ there exists a net $(x^{(\alpha)})_{\alpha}$ in $\chi(E)$ which is $\beta(E, E^{\beta})$ -convergent to x. In particular, $(x^{(\alpha)})$ is a $\tau(\chi(E), \chi(E)^{\beta})$ -Cauchy net, and since i is continuous, $(x^{(\alpha)})$ converges in the FK-space F to a $y \in F$. Because $(x^{(\alpha)})$ converges coordinatewise to x and y, we get x = y. Altogether we have proved $E \subset F$. THEOREM 6. Let E be a solid sequence space with $\varphi \subset E$ and $\chi(E)^{\beta} = E^{\beta} = \ell^1$. Then E has the separable Hahn property.

Proof. We apply Theorem 5. Condition (a) holds by the assumptions whereas (b) is satisfied by Proposition 4. Moreover, (c) holds, since $\chi(E)$ is $\| \|_{\infty}$ -dense in E, thus $\beta(E, \ell^1)$ -dense because $\tau_{\| \|_{\infty}} \supset \beta(E, \ell^1)$. The last inclusion may be verified as follows: If Y is a $\sigma(\ell^1, E)$ -bounded subset of $\ell^1 = E^{\beta}$, then $M := \sup_{y \in Y} \|y\|_1 < \infty$ by the same argument as at the beginning of the proof of Proposition 4. Consequently,

$$q_Y(x) := \sup_{y \in Y} \left| \sum_k y_k x_k \right| \le M \|x\|_{\infty} \quad (x \in E),$$

proving the $\| \|_{\infty}$ -continuity of the seminorm q_Y .

Some problems

- 1. Does (iii) \Rightarrow (ii) in [2, Theorem 5.2] hold?
- 2. Is the sequential completeness of $(\chi(E)^{\beta}, \sigma(\chi(E)^{\beta}, \chi(E)))$ in Theorem 2 also necessary for the validity of the implication (a) \Rightarrow (c)?
- 3. Let *E* be a solid sequence space containing φ and satisfying $\chi(E)^{\beta} = E^{\beta} = \ell^{1}$. Then *E* has the separable Hahn property by Theorem 6. Does it have the Hahn property?

References

- G. Bennett, A new class of sequence spaces with applications in summability theory, J. Reine Angew. Math. 266 (1974), 49–75.
- [2] G. Bennett, J. Boos and T. Leiger, Sequences of 0's and 1's, Studia Math. 149 (2002), 75–99.
- [3] J. Boos, Classical and Modern Methods in Summability, Oxford Univ. Press, Oxford, 2000.
- [4] J. Boos and M. Zeltser, Sequences of 0's and 1's. Classes of concrete 'big' Hahn spaces, Z. Anal. Anwendungen 22 (2003), 819–842.
- [5] N. J. Kalton, Some forms of the closed graph theorem, Proc. Cambridge Philos. Soc. 70 (1971), 401–408.
- [6] P. Pérez Carreras and J. Bonet, *Barrelled Locally Convex Spaces*, North-Holland Math. Stud. 113, North-Holland, Amsterdam, 1987.
- [7] J. J. Sember and A. R. Freedman, On summing sequences of 0's and 1's, Rocky Mountain J. Math. 11 (1981), 419–425.
- J. H. Webb, Sequential convergence in locally convex spaces, Proc. Cambridge Philos. Soc. 64 (1968), 341–364.
- [9] A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, New York, 1978.
- [10] —, Summability through Functional Analysis, North-Holland Math. Stud. 85, North-Holland, Amsterdam, 1984.

[11] M. Zeltser, J. Boos and T. Leiger, Sequences of 0's and 1's: new results via double sequence spaces, J. Math. Anal. Appl. 275 (2002), 883–899.

Fachbereich Mathematik FernUniversität in Hagen 58084 Hagen, Germany E-mail: Johann.Boos@FernUni-Hagen.de Puhta Matemaatika Instituut Tartu Ülikool EE 50090 Tartu, Estonia E-mail: Toivo.Leiger@ut.ee

Received August 12, 2005

(5513)