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Almansi decompositions for polyharmonic, polyheat,

and polywave functions

by

Guangbin Ren (Hefei) and Uwe Kähler (Aveiro)

Abstract. We construct Almansi decompositions for a class of differential operators,
which include powers of the classical Laplace operator, heat operator, and wave operator.
The decomposition is given in a constructive way.

1. Introduction. In 1899 Almansi stated the following classical decom-
position theorem (Almansi expansion, see [1]):

Almansi’s Theorem (cf. Aronszajn et al. [2]). If f is polyharmonic

of degree m in a star-like domain Ω with centre 0, then there exist unique

functions P1f, . . . , Pmf harmonic in Ω such that

f(x) = P1f(x) + |x|2P2f(x) + · · · + |x|2(m−1)Pmf(x).

One can find important applications and generalizations of this result
in the case of several complex variables in the monograph of Aronszajn
et al. [2], e.g. concerning functions holomorphic in a neighbourhood of the
origin in C

n.
More recent generalizations of Almansi’s Theorem, for instance for poly-

harmonic Bergman spaces, can be found in [9] and [4], and for kernels of
iterates of weighted Laplace and Helmholtz operators in [11]. Also the case
of other operators, like Dirac or Dunkl operators, was studied in [6], [10],
and [8].

However, all these cases are limited to elliptic operators on domains
star-like with respect to zero. In 1958 M. Nicolescu [7] obtained an Almansi
decomposition for a class of operators depending on two variables which also
includes the heat operator. As far as we know, no Almansi decomposition
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has been proved for the case of polywave functions. At first sight, the case of
polyheat functions seems to be most difficult, due to the fact that the heat
operator is not homogeneous; it turns out, however, that strangely enough
the difficult case is the case of polyharmonic and polywave functions. While
the decomposition of polyharmonic functions with respect to the unit ball
is unique this is not the case for the half-space. Nevertheless, our proof
will be constructive. We will give representation formulae both locally and,
whenever possible, globally.

In Section 3 we will consider Almansi decompositions for the heat oper-
ator. In this case the decomposition turns out to be unique.

2. The case of polyharmonic and polywave functions. First con-
sider the differential operator � = ∆x + λ ∂2

∂t2
, λ ∈ C \ {0} being a constant,

where ∆x =
∑n

k=1
∂2

∂x2

k

, (x, t) ∈ R
n+1. We remark that for λ = 1 we have

the (n + 1)-dimensional Laplacian and for λ = −1 the wave operator.

We prove the following theorem:

Theorem 2.1. Let D ⊂ R
n+1 be a domain and f : D → C be a function

such that �
mf = 0 for some m ∈ N. Then for any (x, t) ∈ D there exist

functions Pjf ∈ ker�, locally defined and unique up to a harmonic function

in x, such that

(1) f(x, t) = P1f(x, t) + tP2f(x, t) + · · · + tm−1Pmf(x, t).

Conversely , if P1f, . . . , Pmf are functions in ker� then equation (1) defines

a function f ∈ ker �
m.

Remark 2.1. The lack of uniqueness is in the nature of the problem, as
the following simple example shows. If for n = 1 we take f(x, t) = xt and
m = 2 then we have the decomposition with P1f(x, t) = xt and P2f(x, t) = 0
as well as with P1f(x, t) = 0 and P2f(x, t) = x.

For any given (x, t) ∈ R
n+1, we let (x, t) ∈ B × (a, b) where B denotes

the largest ball centred at x such that B × [a, b] ⊂ D. For the proof of the
first part of Theorem 2.1 we need only prove (1) in B× [a, b]. For this reason
we can assume that f ∈ C2(B× [a, b]). We keep this assumption throughout
this section.

To give explicit formulae for Pjf we introduce the operator

Qf(x, t) =
1

λ

t\
a

f(x, s) ds + K

(

∂f

∂t
(x, a)

)

=
1

λ

t\
a

f(x, s) ds −
\
B

Φ(x − y)
∂f

∂t
(y, a) dy.
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Here,

Kg(x) = −
\
B

Φ(x − y)g(y) dy

stands for the Newtonian potential with

Φ(x) =











Γ (n/2)

(n − 2)2πn/2
|x|2−n, n > 2,

−
1

2π
ln |x|, n = 2,

being the fundamental solution of the Laplacian. Recall that K is a right
inverse of the Laplacian, i.e. ∆xKg = g for any g ∈ C2(B).

Define

Ck =
1

2kk!

and let I be the identity operator. Then we get the following representation
formulae for the operators Pj :

(2)











































Pm = Cm−1Q
m−1

�
m−1,

Pm−1 = Cm−2Q
m−2

�
m−2(I − Cm−1t

m−1Qm−1
�

m−1),

...

P2 = C1Q�(I − C2t
2Q2

�
2) · · · (I − Cm−1t

m−1Qm−1
�

m−1),

P1 = (I − C1Q�)(I − C2t
2Q2

�
2) · · · (I − Cm−1t

m−1Qm−1
�

m−1),

or, for j = 2, . . . , m − 1,

Pj = Cj−1Q
j−1

�
j−1(I − Cjt

jQj
�

j) · · · (I − Cm−1t
m−1Qm−1

�
m−1),

where tk denotes the multiplication operator defined by (tkf)(x, t)=tkf(x, t).

From these formulae we see that all Pj are linear operators.

If our operator � is hypoelliptic, i.e. every distributional null solution u ∈
L2

loc(Ω) is C∞ (see [12] or [5]), then we can consider Qf in the distributional
sense. By replacing the operator K by the distributional convolution (cf. [3])

of ∂f
∂t (x, a) with the fundamental solution Φ we obtain global representation

formulae. For instance, this will be the case if λ ∈ R and λ > 0. This leads
to the following theorem.

Theorem 2.2. Let D ⊂ R
n+1 be a convex domain with respect to the

last variable t, let the operator � be hypoelliptic and f : D → C be a function

such that �
mf = 0 for some m ∈ N. Then for any (x, t) ∈ D there exist

functions Pjf ∈ ker �, globally defined and unique up to a harmonic function

in x, such that

(3) f(x, t) = P1f(x, t) + tP2f(x, t) + · · · + tm−1Pmf(x, t).



94 G. Ren and U. Kähler

Conversely , if P1f, . . . , Pmf are functions in ker� then equation (3) defines

a function f ∈ ker �
m.

In the case of λ = 1 we obtain from Theorem 2.2 the Almansi decompo-
sition for polyharmonic functions in the half-space:

Proposition 2.1. Let f : R
n×R+ → C be a function such that ∆mf = 0

for some m ∈ N. Then there exist harmonic functions Pjf ∈ ker∆, uniquely

determined up to a harmonic function in x, such that

(4) f(x, t) = P1f(x, t) + tP2f(x, t) + · · · + tm−1Pmf(x, t)

for any (x, t) ∈ R
n×R+. Conversely , if P1f, . . . , Pmf are functions in ker∆

then equation (4) defines a polyharmonic function f ∈ ker∆m.

Remark 2.2. In the case of D = Ω×R+ with Ω being a bounded, suffi-
ciently smooth domain and f ∈ C1(Ω×R+) we obtain global representation
formulae for our operators Pj defined by (2) by defining

Qf(x, t) =
1

λ

t\
1

f(x, s) ds −
\
Ω

Φ(x − y)
∂f

∂s
(y, 1) dy,

due to the fact that also in this case ∆xKg = g for any g ∈ Cα(Ω), 0 < α ≤
1.

To prove Theorem 2.1 we need some lemmas.

Lemma 2.1. If �f(x, t) = 0 for all (x, t) ∈ B × [a, b], then

(5) �Qf = 0, λ
∂

∂t
Qf = f.

Proof. The first property follows from

�Qf = �

(

1

λ

t\
a

f(x, s) ds − K

(

∂f

∂s
(x, a)

))

= λ
∂2

∂t2

(

1

λ

t\
a

f(x, s) ds

)

+ ∆

(

1

λ

t\
a

f(x, s) ds

)

− ∆K

(

∂f

∂s
(x, a)

)

=
∂

∂t
f(x, t) +

t\
a

−
∂2f

∂s2
(x, s) ds −

∂f

∂s
(x, a) = 0.

Here, we used the fact that ∆f = −λ∂2f/∂t2 for f ∈ ker�.
The second property comes from

λ
∂

∂t
Qf(x, t) = λ

∂

∂t

(

1

λ

t\
a

f(x, s) ds − K

(

∂f

∂s
(x, a)

))

= f(x, t),

because the second term in parentheses does not depend on t.
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Lemma 2.2. Let k, q ∈ N and f ∈ ker�. Then there exist constants Cj,q

and functions gj,s ∈ ker� such that

�
qtkf = λq

[

2qk(k − 1) · · · (k − q + 1)tk−qRqf

+

q
∑

j=1

Cj,qk(k − 1) · · · (k − q − j − 1)tk−q−jgj,q

]

,

where R = ∂/∂t.

Proof. We will prove the lemma by induction on q. If q = 1, then

�(tkf) = ∆(tkf) + λ
∂2

∂t2
(tkf)

= tk∆f + λ

(

∂2tk

∂t2
f + 2

∂tk

∂t

∂f

∂t
+ tk

∂2f

∂t2

)

= tk�f + λ

(

k(k − 1)tk−2f + 2ktk−1 ∂f

∂t

)

= λ(2ktk−1Rf + k(k − 1)tk−2f)

for all k ∈ N.
Now, assume that the statement holds for q. Then

�
q+1(tkf) = �(�qtkf)

= λq
(

2kk(k − 1) · · · (k − q + 1)�(tk−qRqf)

+

q
∑

j=1

Cj,q(k − 1) · · · (k − q − j − 1)�(tk−q−jgj,q)
)

.

Note that from the case q = 1 we have

�(tk−qRqf) = λ(2(k − q)tk−q−1Rq+1f + (k − q)(k − q − 1)tk−q−2Rqf)

and

�(tk−q−jgj,q)

= λ(2(k − q − j)tk−q−j−1Rgj,q + (k − q − j)(k − q − j − 1)tk−q−j−2gj,q).

Here, we used the fact that �Rq = Rq
�. The lemma follows immediately

from the above identities.

Lemma 2.3. Let k ∈ N and �f(x, t) = 0 for all (x, t) ∈ B × [a, b]. Then

�
ktkf = λk2kk!Rkf, �

ktk
1

2kk!
Qkf = f.

Proof. We take q = k in Lemma 2.2 to obtain the first identity. If we
replace in it f by Qkf (cf. Lemma 2.1) then we have

�
ktk

1

2kk!
Qkf = λkRkQkf.
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Notice that the operators R and Q do not commute. Nevertheless, we can
prove that

RkQkf =
1

λk
f

by induction on k ∈ N. Indeed, if k = 1, then

RQf(x, t) =
∂

∂t

(

1

λ

t\
a

f(x, s) ds − K

(

∂f

∂s
(x, a)

))

=
1

λ
f(x, t).

Assume that the statement is true for k−1. If f is in ker � then Lemma 2.1
shows that so is Qf . Therefore, by the inductive assumption we get

Rk−1Qk−1(Qf) =
1

λk−1
Qf,

so that

RkQkf = R(Rk−1Qk−1(Qf)) =
1

λk−1
RQf =

1

λk
f.

The last step follows from the case k = 1.

Let us now turn to the proof of the main theorem.

Proof of Theorem 2.1. As pointed out in the paragraph after Theo-
rem 2.1, we need only prove decomposition (1) locally. Clearly, once we
prove that (1) is unique, the local construction of Pj yields the global defi-
nition of Pj .

Set Hm = ker�
m. We only need to show

Hm = Hm−1 + tm−1H1.

Let us first prove the ⊃ inclusion. It is clear that Hm ⊃ Hm−1. We prove
that Hm ⊃ tm−1H1. In fact, for any f ∈ H1, it follows from Lemma 2.2 that

�
m(tm−1f) = 0.

To prove the other inclusion, let f ∈ Hm. We consider the decomposition

f = (I −Cm−1t
m−1Qm−1

�
m−1)f + tm−1(Cm−1Q

m−1
�

m−1f) =: g + tm−1h.

We have to verify that g ∈ Hm−1 and h ∈ H1, i.e. �
m−1g(x, t) = 0 and

�h(x, t) = 0 for all (x, t) ∈ B × [a, b]. Indeed,

�h = �(Cm−1Q
m−1

�
m−1f) = Cm−1�Qm−1(�m−1f) = 0,

due to the fact that �
m−1f ∈H1 so that Q(�m−1f)∈ker� (cf. Lemma 2.1).

Repeating this procedure yields Qm−1(�m−1f) ∈ ker �. Moreover, from
Lemma 2.3, for �

m−1f ∈ H1 we have

(Cm−1�
m−1tm−1Qm−1)�m−1f = �

m−1f
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so that

�
m−1g = �

m−1(I − Cm−1t
m−1Qm−1

�
m−1)f

= �
m−1f − (Cm−1�

m−1tm−1Qm−1)�m−1f

= �
m−1f − �

m−1f = 0.

Now, we are going to investigate the uniqueness of our decomposition

f = g + tm−1h, g ∈ Hm−1, h ∈ H1,

for any f ∈ ker�. To this end we apply Qm−1
�

m−1 to both sides:

Qm−1
�

m−1f = Qm−1
�

m−1g + Qm−1
�

m−1tm−1h

= Qm−1
�

m−1tm−1h

= λm−1C−1
m−1Q

m−1Rm−1h.

Therefore, the question is: what can we say about the operator QR?
Plugging the term Rv with v ∈ C2(B × R+) and v ∈ ker� into the

definition of Q we obtain

QRv(x, t) =
1

λ

t\
a

∂v

∂s
(x, s) ds +

\
B

Φ(x − y)
∂2v

∂t2
(y, a) dy

=
1

λ

(

v(x, t) − v(x, a) −
\
B

Φ(x − y)∆xv(y, a) dy

)

=
1

λ

(

v(x, t) − v(x, a) + v(x, a) −
\

∂B

Φ(x − y)
∂v

∂n
(y, a) dσy

+
\

∂B

∂Φ(x − y)

∂n
v(y, a) dσy

)

,

where dσ denotes the surface measure. In the last identity we used the
integral representation for C2-functions in x. The last two terms define a
harmonic function, so that we obtain

QRv(x, t) =
1

λ
v(x, t) + w(x)

with ∆xw(x) = 0. For m = 2 we obtain, for f = g + th = g1 + th1,

�f − �f = λC−1
1 QRh − λC−1

1 QRh1 = λC−1
1 QR(h − h1)

= λC−1
1

(

1

λ
(h − h1) + w(x)

)

,

therefore,
∆x(h(x, t) − h1(x, t)) = 0

as well as
∆x(g − g1) = −t∆x(h − h1) = 0.

Thus our result follows by induction.
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3. The case of polyheat functions. First consider the case of the
operator � = ∆x + λ ∂

∂t with λ ∈ C \ {0} being a constant. For λ = −1 we
have the heat operator.

Theorem 3.1. Let D ⊂ R
n+1 be a domain and f : D → C be a function

such that �
mf = 0 for some m ∈ N. Then there exist functions Pjf ∈ ker�,

uniquely determined , such that

(6) f(x, t) = P1f(x, t) + tP2f(x, t) + · · · + tm−1Pmf(x, t)

for any (x, t) ∈ D. Conversely , if P1f, . . . , Pmf are functions in ker� then

equation (6) defines a function f ∈ ker�
m.

Define Ck = 1/λkk! and let I be the identity operator. Then we have the
following representation formulae for the operators Pj :

(7)











































Pm = Cm−1�
m−1,

Pm−1 = Cm−2�
m−2(I − Cm−1t

m−1
�

m−1),

...

P2 = C1�(I − C2t
2
�

2) . . . (I − Cm−1t
m−1

�
m−1),

P1 = (I − C1�)(I − C2t
2
�

2) . . . (I − Ck−1t
k−1

�
k−1),

or, for j = 2, . . . , m − 1,

Pj = Cj−1�
j−1(I − Cjt

j
�

j) · · · (I − Cm−1t
m−1

�
m−1),

where tk again denotes the multiplication operator defined by (tkf)(x, t) =
tkf(x, t). Note that in this case there is no operator Q appearing in the
formulae. Again, the operators Pj, j = 1, . . . , m, are manifestly linear.

Remark 3.1. Due to the nature of our operators Pj we see that if f is
a polynomial in x and t then all the Pjf are polynomials in x and t.

For the proof of Theorem 3.1 we again need some lemmas.

Lemma 3.1. If f ∈ ker� then

�(tkf) = λktk−1f.

Proof. A straightforward calculation shows that

�(tkf) =

(

∆ + λ
∂

∂t

)

(tkf) = tk∆f + λktk−1f + λtk
∂f

∂t

= tk
(

∆ + λ
∂

∂t

)

f + λktk−1f = λktk−1f.

Lemma 3.2. If f ∈ ker� then

Ck�
ktkf = f.
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Proof. From Lemma 3.1 we obtain

1

λk
�tkf = tk−1f,

so that

Ck�
ktkf = Ckλk�

k−1

(

1

λk
�tkf

)

= Ck−1�
k−1tk−1f.

The statement now follows by induction.

Now we are prepared for the proof of the theorem.

Proof of Theorem 3.1. Define Hm = ker�
m. We only need to show

Hm = Hm−1 + tm−1H1.

Let us first prove the ⊃ inclusion. Since it is clear that Hm ⊃ Hm−1, we
need only show Hm ⊃ tm−1H1. If f ∈ H1, then Lemma 3.2 yields

�
m(tm−1f) = �(�m−1(tm−1f)) = �

(

1

Cm−1
f

)

=
1

Cm−1
�f = 0.

To prove the other inclusion, let f ∈ Hm and consider the decomposition

f = (I − Cm−1t
m−1

�
m−1)f + tm−1(Cm−1�

m−1f).

Again applying Lemma 3.2 we obtain

�
m−1(I − Cm−1t

m−1
�

m−1)f = �
m−1f − (�m−1Cm−1t

m−1)�m−1f

= �
m−1f − �

m−1f = 0

as well as
�(Cm�

m−1f) = 0.

As a result, for f ∈ Hm,

Pmf = Cm−1�
m−1f.

Now f can be written as

f = g + tk−1Pmf, g ∈ Hm−1,

with g given by (I−Cm−1t
m−1

�
m−1)f . Therefore, by (descending) induction

we get the desired expressions of Pj.
Let us now prove that for any f ∈ ker� the decomposition

f = g + tm−1h, g ∈ Hm−1, h ∈ H1,

is unique. To this end we again apply �
m−1 to both sides:

�
m−1f = �

m−1g + �
m−1tm−1h = �

m−1tm−1h = C−1
m−1h.

Therefore,
h = Cm−1�

m−1f,

so that
g = f − tm−1h = (I − Cm−1t

m−1
�

m−1)f.

Thus uniqueness follows by induction.
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