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Vetor-valued wavelets and the Hardy spae H1(Rn, X)by
Tuomas Hytönen (Turku)Abstrat. We prove an analogue of Y. Meyer's wavelet haraterization of the Hardyspae H1(Rn) for the spae H1(Rn, X) of X-valued funtions. Here X is a Banah spaewith the UMD property. The proof uses results of T. Figiel on generalized Calderón�Zygmund operators on Bohner spaes and some new loal estimates.1. Introdution. One of the main aspets of the theory of Hardy spaesis the equivalene of their various de�nitions. In the real-variable theory, one�nds (at least) four major types of haraterizations of H1: integrability ofmaximal funtions, integrability of square funtions, integrability of onju-gate funtions (the Hilbert transform, or its variants), and atomi deompo-sitions. In the present paper, we ontribute to this theory by establishing anumber of haraterizations of the square funtion type for the Hardy spae

H1(Rn, X) of Banah-spae-valued funtions, whih is initially de�ned interms of the atomi deomposition as follows:We say that f ∈ H1(Rn, X) if f ∈ L1(Rn, X) has an expansion
f(x) =

∞∑

i=1

ai(x), supp ai ⊂ Bi,
\
ai(x) dx = 0,where the Bi are balls in Rn, and we have(1.1) ∞∑

i=1

‖ai‖Lp(Rn,X)|Bi|
1/p′ <∞,where p∈ ]1,∞[ is �xed, and p′ denotes the onjugate exponent, 1/p+1/p′=1.The norm ‖f‖H1(Rn,X) is de�ned as the in�mum of the values (1.1) takenover all suh deompositions. Its numerial value depends on the hoie of

p ∈ ]1,∞[, but it is well known that eah p ∈ ]1,∞[ (atually also p = ∞)gives the same spae H1(Rn, X) with an equivalent norm (f. [16℄ for atreatment in the vetor-valued setting).2000 Mathematis Subjet Classi�ation: 42B30, 42C40, 46E40.Key words and phrases: wavelet basis, atomi deomposition, generalized Calderón�Zygmund operators, UMD spae. [125℄



126 T. HytönenLet us note that this atomi de�nition of H1(Rn, X) is known to agreewith one given in terms of various maximal funtions, even for an arbitraryBanah spae X. Atually one an hek that the proof of this fat in thesalar ase, as given e.g. in E. M. Stein's book [21℄, goes through word forword in the general setting. For n = 1, the �onjugate Hardy spae�, de�nedas the domain of the Hilbert transform on L1(R, X) with the graph norm,is always (i.e., without any onditions on the Banah spae X) ontained inthe atomi Hardy spae, and agrees with it exatly when X is a UMD spae.(See the papers of O. Blaso [1℄, J. Bourgain [3℄ and D. L. Burkholder [5℄ inthis onnetion.) None of these results, however, will play a r�le in the proofof our main haraterization theorem, but we always work with the atomide�nition.The square funtion desription of H1(Rn, X) that we have in mind in-volves the wavelet expansion of a funtion, and extends Y. Meyer's [18℄haraterization of H1(Rn). Reall (f. [18℄ for more details) that a waveletbasis of L2(Rn) is a omplete orthonormal system (ψλ)λ∈Λ, where Λ is theset of dyadi n-vetors of the form λ = k2−j + η2−j−1 (j ∈ Z, k ∈ Zn,
η ∈ {0, 1}n \ {0}), and ψλ(x) = 2jn/2ψη(2jx − k), where ψη ∈ L2(Rn),
η ∈ {0, 1}n\{0}, are the 2n−1 mother wavelets. The basis is alled r-regularif |∂αψη(x)| ≤ Cm(1+ |x|)−m and Txαψη(x) dx = 0 for all |α| ≤ r, all m ∈ Nand all η ∈ {0, 1}n \ {0}. Meyer's theorem is the following:1.2. Theorem ([18℄). Let (ψλ)λ∈Λ be a 1-regular wavelet basis of L2(Rn).The following onditions are equivalent for the distribution f(x) =∑

λ∈Λ αλψλ(x):
f ∈ H1(Rn),(1.3)
sup
F⊂Λ

sup
ε∈{±1}Λ

∥∥∥
∑

λ∈F

ελαλψλ(·)
∥∥∥
L1(Rn)

<∞,(1.4)
( ∑

λ∈Λ

|αλ|
2|ψλ(·)|

2
)1/2

∈ L1(Rn),(1.5)
( ∑

λ∈Λ

|αλ|
2|Q(λ)|−11Q(λ)(·)

)1/2
∈ L1(Rn),(1.6)

( ∑

λ∈Λ

|α(λ)|2|Q(λ)|−11R(λ)(·)
)1/2

∈ L1(Rn),(1.7)
where

• the �rst supremum in (1.4) is taken over all �nite subsets F of Λ,
• Q(λ) := 2−j([0, 1[n + k) for λ = k2−j + η2−j−1,
• R(λ) := 2−j(Aη + k), where Aη is any non-degenerate ube.



Vetor-valued wavelets 127For historial re�etion, we note that Meyer's theorem was preeded by asimilar haraterization using spline bases of order r ≥ 2 obtained by S.-Y. A.Chang and Z. Ciesielski [7℄. Moreover, the diretion from the square funtionestimates to the atomi deomposition in Meyer's proof is a variant of ideasthat already appeared in similar situations in a number of earlier works,apparently for the �rst time in A. P. Calderón's treatment of �paraboli� Hpspaes [6℄, and then in the papers of Chang and R. Fe�erman [8, 9℄.Theorem 1.2 an also be viewed as a wavelet analogue of B. Davis' in-equality for martingales [11℄, as both assert that the L1 norm of a ertainsquare funtion gives an equivalent norm on H1. In fat, if we ould, for
n = 1, take our wavelet basis to be the Haar system on L2(R), then thefuntion appearing in (1.5), as well as that in (1.6), would be the martingalesquare funtion of f with respet to the dyadi �ltration of the real line.However, the Haar system, although a wavelet basis, is not 1-regular, andatually the square funtion ondition just desribed does not haraterizethe membership of f in H1(R) but in the smaller dyadi Hardy spae, whihindeed oinides with the martingale Hardy spae related to the dyadi �l-tration (f. [18℄). Thus, while the results are analogous, they do not overeah other.It is the martingale Hardy spae that seems to have been more inten-sively studied in the vetor-valued ontext, whih is rather natural sine thefundamental UMD ondition�whih one typially needs to impose on theBanah spae X in order to have some deeper-lying analyti results�is itselfstated in terms of martingales. Reall that a Banah spae X is UMD if forsome (and then all, f. [5℄) 1 < p <∞ there is a �nite onstant C so that(1.8) ∥∥∥

n∑

k=1

ǫkdk

∥∥∥
Lp(Ω,X)

≤ C
∥∥∥

n∑

k=1

dk

∥∥∥
Lp(Ω,X)for all n ∈ Z+, whenever (ǫk)

n
k=1 ∈ {−1,+1}n and (dk)

n
k=1 ∈ Lp(Ω,X)n isa martingale di�erene sequene on an arbitrary probability spae (Ω,A, µ)(i.e., there are sub-σ-algebras A0 ⊂ A1 ⊂ · · · ⊂ An ⊂ A suh that forall k = 1, . . . , n, the funtion dk is Ak-measurable and TA dk dµ = 0 for all

A ∈ Ak−1). P. F. X. Müller and G. Shehtman [20℄ have extended Davis'inequality, with the square funtion rewritten in terms of a Rademaheraverage, to the UMD-spae-valued H1.Other vetor-valued results losely related to the present investigationare due to T. Figiel [13℄. He established the unonditionality of waveletdeompositions in Lp(Rn, X) when X is a UMD spae and 1 < p < ∞.While the result itself does not involve martingales, its proof is based onmartingale tehniques, and in partiular on the unonditionality of the Haarsystem on Lp(Rn, X). This is an easy onsequene of the UMD inequality,as the Haar funtions (with X-valued oe�ients) on [0, 1], in their natural



128 T. Hytönenordering, onstitute a martingale di�erene sequene for whih (1.8) applies;the resulting estimate is readily transferred to the Haar system on Rn. Letus also reall a theorem of B. Maurey [17℄, whih asserts that the validityof (1.8) for this partiular hoie already implies the full UMD ondition.A similar approah based on the de�ning inequality (1.8) of UMD spaesdoes not seem available in the ase of our interest, beause of the alreadymentioned reason that the Haar system does not span the full H1(Rn, X)spae but only its dyadi analogue. On the ontrary, we will be onernedwith the Calderón�Zygmund-theoreti properties of UMD spaes, whih wererevealed by the works of D. L. Burkholder [4℄, J. Bourgain [3℄ and T. Figiel[14℄ in the 80's: They established the Lp(Rn, X)-boundedness, respetively,of the Hilbert transform, of all singular onvolution operators with a stan-dard kernel, and �nally of generalized Calderón�Zygmund operators as inthe T (1) theorem of G. David and J.-L. Journé [10℄. Conversely, Bourgainalso showed that the Hilbert transform boundedness again implies the UMDondition (1.8).We now ome to the statement of our main theorem. As in Müllerand Shehtman's formulation of the UMD-valued Davis's inequality, andin many other results of analysis of vetor-valued funtions, we replae thesquare funtions in (1.5) through (1.7) by Rademaher averages. We denoteby ελ independent random variables on some probability spae Ω with dis-tribution P (ελ = +1) = P (ελ = −1) = 1/2. Eε denotes the orrespondingexpetation. Then we have:1.9. Theorem. Let X be a UMD spae, let (ψλ)λ∈Λ be a 1-regularwavelet basis of L2(Rn), and α ∈ XΛ. The following onditions are equivalentfor the X-valued distribution f(x) =
∑

λ∈Λ αλψλ(x):
f ∈ H1(Rn, X),(1.10)
sup
F⊂Λ

sup
ε∈{±1}Λ

∥∥∥
∑

λ∈F

ελαλψλ(·)
∥∥∥
L1(Rn,X)

<∞,(1.11) \
Rn

Eε

∣∣∣
∑

λ∈Λ

ελαλψλ(x)
∣∣∣
X
dx <∞,(1.12) \

Rn

Eε

∣∣∣
∑

λ∈Λ

ελαλ|Q(λ)|−1/21Q(λ)(x)
∣∣∣
X
dx <∞,(1.13) \

Rn

Eε

∣∣∣
∑

λ∈Λ

ελαλ|Q(λ)|−1/21R(λ)(x)
∣∣∣
X
dx <∞,(1.14)

where F , λ, Q(λ) and R(λ) = 2−j(Aη + k) have the same meaning as inTheorem 1.2. Moreover , the expressions (1.11) through (1.14) de�ne equiv-alent norms on H1(Rn, X). Consequently , the wavelet series of f onvergesunonditionally to f in the H1(Rn, X) norm.



Vetor-valued wavelets 129Note that the ondition (1.14) a priori depends on the hoie of the ubes
Aη de�ning the R(λ)'s. However, the proof will show that the validity of thisondition for any one hoie of the Aη's already implies it for all possiblehoies. Also reall that (1.10) has an impliit dependene on the exponent
p ∈ ]1,∞[ appearing in the de�nition of H1(Rn, X), but no suh dependeneis present in the other four onditions. Thus, as a by-produt, we also obtaina new proof of the p-independene of the atomi de�nition of H1(Rn, X)when X is a UMD spae.To simplify the proof of Theorem 1.9 to be given in the following setions,note that it su�es to establish the equivalene of the di�erent norms in thease of (αλ)λ∈Λ �nitely non-zero. The general ase then follows by standardmethods, using the density in H1(Rn, X) of suh funtions.The paper is organized as follows: In Se. 2 we show that (1.10) impliesthe other onditions; the main arguments here are based on Figiel's T1 the-orem [14℄. The reverse diretion, whih onsists of onstruting an atomideomposition for a funtion f satisfying a randomized �square-funtion� es-timate, is given in Se. 3 and involves some new loal estimates. We onludewith a disussion of the vetor-valued BMO spae and its duality with H1in Se. 4.1.15. Remark. The validity of Theorem 1.9 on H1(R, X) atually har-aterizes the UMD property of X. Indeed, let X be any omplex Banahspae and let the onlusions of Theorem 1.9 be satis�ed. Let (ψλ)λ∈Λ bethe Littlewood�Paley wavelet basis of Meyer [18℄. Sine ψ̂λ ∈ D(R) is sup-ported away from the origin (where the multiplier of the Hilbert transformhas a disontinuity), and sine the Hilbert transform is an isometry on L2(R),it follows that (Hψλ)λ∈Λ, too, is an in�nitely regular wavelet basis of L2(R).But then, aording to our assumption, the H1(R, X) norms of both
f(x) =

∑
αλψλ(x) and Hf(x) =

∑
αλHψλ(x) are omparable (with on-stants independent of f) to the quantity (1.13). In partiular, ‖Hf‖H1(R,X) ≤

C‖f‖H1(R,X), and so H is bounded on H1(R, X). This is equivalent to its
Lp(R, X)-boundedness (a result due to Blaso [1℄), and thus to the UMDproperty of X. Sine Blaso's proof is given in the slightly di�erent periodisetting, let us brie�y indiate the argument for the present ase: For an oper-ator with a standard kernel, the H1(R, X)-boundedness implies boundednessfrom L∞

0 (R, X) [ompatly supported L∞ funtions with vanishing integral,equipped with the norm of L∞(R, X)℄ to BMO(R, X). See [16, p. 49℄ for anargument valid in the vetor-valued setting. Then we just use interpolation;again f. [16℄.Aknowledgments. I wish to thank Dr. Hans-Olav Tylli, who broughtthe results of T. Figiel to my attention; Prof. Tadeusz Figiel himself, whokindly supplied me with further piees of his work; and Prof. Osar Blaso,



130 T. Hytönenwho asked me a question whih led me to investigate the validity of Re-mark 1.15. The anonymous referee is aknowledged for bringing to my at-tention several referenes whih helped elaborate the historial perspetivesgiven in the Introdution. I express my thanks to the Magnus EhrnroothFoundation for �nanial support.2. Impliations using Calderón�Zygmund operators. In provingTheorem 1.9, we will need to apply several transformations of the waveletseries. All these transformations will have the generi form of an integraloperator
Tf(x) =

\
Rn

k(x, y)f(y) dy,where the kernel k is atually bounded and integrable. What is important isto obtain appropriate uniform bounds for operator norms of di�erent oper-ators T of this kind.T. Figiel [14℄ has generalized the famous T1 theorem of G. David andJ.-L. Journé to the setting of X-valued Lp spaes. (See also [15℄, where anintermediate estimate omitted in [14℄ is proved in detail.) A rather generalformulation of this result is given in [14℄; for our purposes, the followingversion is su�ient:2.1. Proposition ([14℄). Let k(x, y) ∈ L1(Rn×Rn) satisfy the standardestimates
|k(x, y)| ≤ κ|x− y|−n, |∇xk(x, y)| + |∇yk(x, y)| ≤ κ|x− y|−n−1.Assume, moreover , that T is bounded on L2(Rn) with operator norm atmost κ. Then T is also bounded on Lp(Rn, X), where X is any UMD spae,with norm ≤ Cp(X)κ, for all p ∈ ]1,∞[, and it is bounded from H1(Rn, X)to L1(Rn, X) with norm ≤ C1(X)κ. If , in addition,

[T ′1](y) :=
\

Rn

k(x, y) dx ≡ 0,then T is bounded on H1(Rn, X) with norm ≤ C0(X)κ.This proposition is essentially a statement of the fat that for an operatorde�ned in terms of a kernel whih satis�es the standard estimates, the on-ditions of the T1 theorem are neessary and su�ient: Sine T is boundedon L2(Rn), it satis�es these onditions, but then the vetor-valued versionapplies to give the boundedness on Lp(Rn, X). For our purposes, we wouldatually only need a speial T1 theorem, i.e., the ase T1 = 0 = T ′1.It is a well known fat, in whih the vetor-valued situation brings no om-pliations, that an integral operator satisfying the standard estimates andbounded on Lp(Rn, X) is also bounded from H1(Rn, X) to L1(Rn, X). As forthe H1(Rn, X)-boundedness under the additional assumption, see Y. Meyer



Vetor-valued wavelets 131and R. Coifman [19, Th. 3 of Ch. 7℄. (This is also an extension argument,whih goes through in the vetor-valued setting without modi�ations.)2.2. Corollary. Let (aλ)λ∈Λ, (bλ)λ∈Λ be orthogonal sets in L2(Rn)satisfying
|aλ(x)| ≤ Cm

2nj/2

(1 + |2jx− k|)m
, |∇aλ(x)| ≤ Cm

2nj/2+j

(1 + |2jx− k|)mfor all λ = k2−j + η2−j−1 and all m ∈ N, with similar estimates for the
(bλ)λ∈Λ. Consider the integral operators with kernels given by

k(x, y) =
∑

λ∈F

νλaλ(x)bλ(y),where F ⊂ Λ is any �nite set and νλ ∈ C, |νλ| ≤ 1. These are uniformlybounded on Lp(Rn, X), and from H1(Rn, X) to L1(Rn, X), with the operatornorms depending only on p ∈ ]1,∞[, the UMD onstant of the spae X, andthe quantities Cm, m ∈ N. If the aλ's have vanishing integral , then we alsohave boundedness on H1(Rn, X) with a similar estimate for the norm.Proof. From the assumed pointwise estimates, it easily follows that ‖aλ‖2

≤ C, whih depends only on the Cm's, and similarly ‖bλ‖2 ≤ C. Then abound depending only on the Cm's is easily derived for the operator normof f 7→
∑

λ∈F νλaλ〈bλ, f〉 on L2(Rn), using the orthogonality of the two sets
(aλ) and (bλ).It is also a routine exerise to verify the standard estimates for the ker-nel k, with the onstant only depending on the Cm's. Then the assertionfollows from Prop. 2.1.Now the �rst steps in our main theorem follow at one:Proof of (1.10)⇒(1.11)⇒(1.12). The �rst impliation is immediate fromthe fat that, for any F ⊂ Λ and ε ∈ {±1}Λ,

∑

λ∈F

ελψλ(x)ψλ(y)are kernels of the kind onsidered in Cor. 2.2. Clearly the integral operatorwith the kernel given above maps f to ∑
λ∈F ελαλψλ(·).The seond impliation is obvious, sine the L1 norm on the probabilityspae Ω is dominated by the L∞ norm.For the proof of further impliations, we will need regular wavelet baseswith the mother wavelet non-vanishing at a preassigned point. This is asomewhat untypial need, sine usually it is the anellation and vanishingproperties of the wavelets whih are desired.2.3. Lemma. For every x ∈ R, there exists an in�nitely regular wavelet

ψ on R suh that ψ(x) 6= 0.



132 T. HytönenProof. The proof is based on a modi�ation of Meyer's onstrution ofthe Littlewood�Paley multiresolution analysis ([18, �2.2℄), and the relatedwavelet ([18, �3.2℄). In that onstrution, one starts with an even, non-negative funtion θ ∈ D(R) suh that θ(ξ) = 1 for |ξ| ≤ 2π/3, θ(ξ) = 0for |ξ| ≥ 4π/3, and θ2(ξ) + θ2(2π − ξ) = 1 for ξ ∈ [0, 2π]. Our modi�-ation onsists in hoosing an η ∈ C∞(R), whih is required to be 0 on
[−2π/3, 2π/3] but otherwise arbitrary, and taking ϑ(ξ) := θ(ξ)eiη(ξ). We set
φ := ϑ̌, the inverse Fourier transform.It follows, for m(ξ) :=

∑
cke

ikξ, that
∥∥∥

∑
ckφ(x− k)

∥∥∥
2

2
=

1

2π
‖m(ξ)ϑ(ξ)‖2

2 =
1

2π

∞∑

j=−∞

2π\
0

|m(ξ)ϑ(ξ + 2πj)|2 dξ

=
1

2π

2π\
0

|m(ξ)|2 dξ =
∑

|ck|
2,

sine ∑
|ϑ(ξ + 2πj)|2 ≡ 1, as is easily veri�ed, and so φ(· − k), k ∈ Z, arethe orthonormal basis of a losed subspae V0 of L2(R), whih gives rise toa multiresolution analysis of L2(R).We then pass to the onstrution of the orresponding wavelet ψ. Fol-lowing [18, �3.2℄, we ompute the auxiliary oe�ients

αk =

∞\
−∞

1

2
φ

(
x

2

)
φ(x+ k) dx =

1

2π

∞\
−∞

ϑ(2ξ)ϑ(ξ)eikξ dξ =
1

2
φ

(
k

2

)
,

sine ϑ(ξ) = 1 on the support of ϑ(2ξ).Then
m0(ξ) :=

∞∑

k=−∞

αke
ikξ =

∞∑

k=−∞

ϑ(−2(ξ + 2kπ))

by Poisson's summation formula, and ψ̂(ξ) := e−iξ/2ϑ1(ξ), where
ϑ1(ξ) := m0(ξ/2 + π)ϑ(ξ/2) =





ϑ(ξ/2), ξ ∈ ±[4π/3, 8π/3],

ϑ(−ξ ± 2π), ξ ∈ ±[2π/3, 4π/3],

0, else,where the last equality follows readily upon taking into aount the sets onwhih ϑ equals 1 or 0. Note that ϑ1|±[2π/3,4π/3] is obtained from ϑ1|±[4π/3,8π/3]by re�eting and saling about the point ±4π/3; in fat
ϑ1(4π/3 − ξ) = ϑ(2π/3 + ξ),

ϑ1(4π/3 + 2ξ) = ϑ(2π/3 + ξ) for ξ ∈ [0, 2π/3],



Vetor-valued wavelets 133and similarly on the negative axis. Thus
(2.4) ψ(x+ 1/2) =

1

2π

∞\
−∞

eiξ(x+1/2)e−iξ/2ϑ1(ξ) dξ

=

2π/3\
0

(ϑ(2π/3 + ξ)ei(4π/3−ξ)x + 2ϑ(2π/3 + ξ)ei(4π/3+2ξ)x) dξ

+ an integral over the negative half-line.Now the phase of ϑ on ±[4π/3, 8π/3] is under ontrol; moreover, it anbe adjusted independently on the positive and negative line segments. Bysymmetry, it then su�es to show that we an make the integral T2π/30 (. . .) dξabove non-vanishing by an appropriate hoie of this phase. We hoose thisphase in suh a way that
Re

2π/3\
0

ϑ(2π/3 + ξ)ei(4π/3+2ξ)x dξ ≥
3

4

2π\
0

|ϑ(2π/3 + ξ)| dξ;then the integral in (2.4) is estimated by
∣∣∣
2π/3\

0

(I(ξ) + II(ξ)) dξ
∣∣∣ ≥

∣∣∣
2π/3\

0

II(ξ) dξ
∣∣∣ −

2π/3\
0

|I(ξ)| dξ

≥

(
3

2
− 1

) 2π/3\
0

|ϑ(2π/3 + ξ)| dξ > 0.Thus, for an arbitrary x ∈ R, we have onstruted a wavelet ψ suh that
ψ(x + 1/2) 6= 0; in fat, one with |ψ(x + 1/2)| ≥ c, where c > 0 does notdepend on x.The n-dimensional version follows readily by a tensor produt onstru-tion. Reall that the 2n − 1 mother wavelets in the n-dimensional settingare naturally indexed by η ∈ {0, 1}n \ {0}. We denote by ι := (1, . . . , 1) the
n-vetor all of whose entries are 1.2.5. Corollary. For any x ∈ Rn, there exists an in�nitely regularwavelet basis of L2(Rn) suh that ψι(x) 6= 0.Proof. Let ψi,0 := φi, ψi,1 := ψi be (in�nitely regular) father, resp.mother, wavelets on R for i = 1, . . . , n. For η ∈ {0, 1}n, y ∈ Rn, de�ne

ψη(y) :=

n∏

i=1

ψi,ηi
(yi).Then ψη, η ∈ {0, 1}n\{0}, is the set of (in�nitely regular) mother wavelets fora multiresolution analysis of L2(Rn). By hoosing the 1-dimensional wavelets



134 T. Hytönen
ψi,1 in suh a way that ψi,1(xi) 6= 0 for a given x = (x1, . . . , xn), we learlyensure the ondition ψι(x) 6= 0.Proof of (1.10) ⇒ ∀Aη : (1.14)⇒(1.13). Let Aη, η ∈ {0, 1}n \ {0}, benon-degenerate ubes, and de�ne

A :=
⋃

η∈{0,1}n\{0}

Aη;this is a ompat set.For every x ∈ A, we hoose an in�nitely regular wavelet basis (ψx,λ)λ∈Λsuh that ψιx(x) 6= 0. By ontinuity of ψιx, we have ψιx(Ux) 6∋ 0 for some neigh-bourhood Ux of x, and then by ompatness we an hoose �nitely many,say m, in�nitely regular wavelet bases (ψi,λ)λ∈Λ suh that ∑m
i=1 |ψ

ι
i(x)| ≥

c > 0 for all x ∈ A. Now the kernels∑

λ∈F : η=η0

ελ2
jn/2ψιi(2

jx− k)ψλ(y)satisfy the assumptions of Cor. 2.2; hene they de�ne uniformly boundedintegral operators from H1(Rn, X) to L1(Rn, X), and thus
m∑

i=1

Eε
\

Rn

∣∣∣
∑

λ∈F

ελαλ2
jn/2ψιi(2

jx− k)
∣∣∣
X
dx ≤ C‖f‖H1(Rn,X).The ontration priniple permits replaing ψιi(2jx−k) by its absolute valueabove, and using the fat that ∑m

i=1 |ψ
ι
i(2

jx−k)| ≥ c1Aη(2jx−k) = c1R(λ)(x)and the ontration priniple again, we �nally dedue
Eε
\

Rn

∣∣∣
∑

λ∈F

ελαλ|Q(λ)|−1/21R(λ)(x)
∣∣∣
X
dx ≤ C‖f‖H1(Rn,X).The fat that (1.14) for all Aη implies (1.13) is evident, sine (1.13) isjust the speial ase of (1.14) with Aη = [0, 1[n.Proof of (1.12) ⇒ ∃Aη : (1.14). It su�es to observe that neessarily

|ψη(x)| ≥ c > 0 for all x in some ube Aη; then the expression in (1.14) anbe dominated by that in (1.12) aording to the ontration priniple.Now we have shown that(1.10) ⇒ (1.11) ⇒ (1.12) ⇒ ∃Aη : (1.14), and(1.10) ⇒ ∀Aη : (1.14) ⇒ (1.13) ⇒ ∃Aη : (1.14)(where the last impliation was not mentioned expliitly before, but it istrivial).3. Constrution of the atomi deomposition. To omplete theproof of Theorem 1.9, we need to show that the ondition (1.14), for anyubes Aη whatsoever, implies the existene of an atomi deomposition for f ;



Vetor-valued wavelets 135moreover, the H1 norm of f omputed in terms of this deomposition shouldbe ontrolled in terms of the expression in (1.14). Note that, without lossof generality, we may take the Aη to be dyadi ubes of side-length ≤ 1,sine the expression in (1.14) dereases when the sets Aη (and hene R(λ))derease. When this is done, it follows that the R(λ) are dyadi ubes as well.To ahieve the atomi deomposition, we are going to modify the on-strution used by Meyer [18℄. Certain parts of the proof are in almost one-to-one orrespondene with the salar-valued ase; however, there are alsosigni�ant departures from Meyer's reasoning.Let us �x an η0 ∈ {0, 1}n\{0}, and onsider f =
∑

λ : η=η0
αλψλ(x), wherethe summation runs over all λ of the form k2−j + η2−j−1, where η = η0. Itlearly su�es to deompose eah of the 2n − 1 series of this kind. Then wean use a di�erent indexing system whih is more onvenient in the presentontext: Let R be the olletion of all the ubes R(λ) = 2−j(Aη + k) suhthat η = η0. Then, instead of Λ, we an use R as our index set, and we write

εR instead of ελ. Moreover, write αR := αλ for R = R(λ) and η = η0. Sine
|Q(λ)| and |R(λ)| only di�er by a multipliative onstant independent of λ(as long as η = η0 is �xed), we an further replae the fator |Q(λ)|−1/2 inour equations by |R|−1/2.Following [18℄, we set

σ(x) := Eε

∣∣∣
∑

R∈R

εRαR|R|
−1/21R(x)

∣∣∣
X

;

then σ ∈ L1(Rn) by the standing assumption (1.14).We further adopt the following notations:
Ek := {x : σ(x) > 2k}, Ck := {R ∈ R : |R ∩ Ek| ≥ β|R|},

∆k := Ck \ Ck+1,where we �x some β ∈ ]0, 1[. Note that, if αR 6= 0, then σ(x) ≥ |αR|X for all
x ∈ R. Thus R ⊂ Ek and hene R ∈ Ck for all small enough k.The maximal members of Ck will be denoted by R(k, l), where l runs overan appropriate index set, and

∆(k, l) := {R ∈ ∆k : R ⊂ R(k, l)}.Note that(3.1) ∑

l

|R(k, l)| ≤
∑

l

β−1|R(k, l) ∩Ek| ≤ β−1|Ek|and(3.2) ∞∑

k=−∞

2k|Ek| ≤ 2‖σ‖L1(Rn).



136 T. HytönenWe then ome to a key estimate in the proof of (1.14)⇒(1.10). Thestatement of this estimate is little more than a vetor-valued analogue ofthe orresponding step in [18℄; however, the proof is substantially longer andvery di�erent in spirit. The proof in [18℄ (where p = 2) exploits the Hilbertspae struture of the salar-valued L2 spae, whih at �rst seems to givelittle hope of extending the result beyond the Hilbert spae framework. Inview of this, it is perhaps surprising that the argument given below atuallyrequires no geometri restritions on the underlying Banah spae X. Theproof is very loal in spirit; it essentially involves going through every ube
R ∈ R one by one, in sharp ontrast to the �global� argument in [18℄ interms of the orthogonal expansions.3.3. Lemma. With the notation adopted above, we have the estimate\
Rn

Eε

∣∣∣
∑

R∈∆(k,l)

εRαR|R|
−1/21R(x)

∣∣∣
p

X
dx

≤
1

1 − β

\
R(k,l)\Ek+1

Eε

∣∣∣
∑

R∈∆(k,l)

εRαR|R|
−1/21R(x)

∣∣∣
p

X
dx ≤ cp

2(k+1)p

1 − β
|R(k, l)|.

Proof. The seond inequality is lear from Kahane's inequality
Eε|

∑
εixi|

p
X ≤ cp(Eε|

∑
εixi|X)p and the fat that σ(x) ≤ 2k+1 for x 6∈

Ek+1. Therefore we will onentrate on the �rst inequality.Observe that if R1 ∩ R2 6= ∅, then neessarily R1 ⊂ R2 or R2 ⊂ R1,sine R1, R2 are dyadi ubes. If R̃ ∈ ∆(k, l) is minimal, in the sense that
R ( R̃⇒ R 6∈ ∆(k, l), then for x ∈ R̃ we have(3.4) Eε

∣∣∣
∑

R∈∆(k,l)

εRαR|R|
−1/21R(x)

∣∣∣
X

= Eε

∣∣∣
∑

R∈∆(k,l), R⊃R̃

εRαR|R|
−1/2

∣∣∣
X
,

i.e., this expression is onstant for x ∈ R̃.More generally, if R̃ ∈ ∆(k, l), and(3.5) R̃0 := R̃ \
⋃

R∈∆(k,l)

R(R̃

R,

then (3.4) holds for all x ∈ R̃0.It su�es to establish the assertion of the lemma in the ase when only�nitely many α(Q) are non-zero, sine the general ase then follows from themonotone onvergene theorem. Then the summations involved are �nite,and we an avoid all onvergene problems in the following. Replaing ∆(k, l)by {R ∈ ∆(k, l) : αR 6= 0} if neessary, we an assume that ∆(k, l) is �nite.Let R be one of the maximal members of ∆(k, l). It learly su�es toprove, for all suh R, that



Vetor-valued wavelets 137
(3.6)

\
R

Eε

∣∣∣
∑

R̃∈∆(k,l), R̃⊂R

εR̃αR̃|R̃|
−1/21R̃(x)

∣∣∣
p

X
dx

≤
1

1 − β

\
R\Ek+1

Eε

∣∣∣
∑

R̃∈∆(k,l), R̃⊂R

ε
R̃
α
R̃
|R̃|−1/21

R̃
(x)

∣∣∣
p

X
dx.

To prove this inequality, we need to introdue some notation. We say that
R̃ is a ∆-subube of R if R̃ ( R and R̃ ∈ ∆(k, l). We say that R̃ is a �rstorder ∆-subube of R if, in addition, the following property holds: there is no
R̂ ∈ ∆(k, l) with R̃ ( R̂ ( R. We label the �rst order∆-sububes of R by Ri,where i runs over an appropriate �nite index set. The �rst order ∆-sububesof Ri, whih are labelled Rij , are alled the seond order ∆-sububes of R,and so on. The mth order ∆-sububes of R will be denoted by Rα, where
α = α1 . . . αm is a string of m indies. We further de�ne Rα0 := Rα \

⋃
Rαi,whih is obviously equivalent to the earlier de�nition (3.5). For onveniene,we also set E := Ek+1.Sine the proof of the inequality (3.6) in the general situation involves alarge amount of indies, it is helpful to onsider �rst a speial ase in whihonly �rst and seond order ∆-sububes of R are involved. If S ⊂ R, wedenote by I(S) the integral over S of the same integrand as in (3.6), and

µ(S) := I(S)/|S| if |S| > 0, and µ(S) := 0 otherwise.Now in our speial situation, the ube R is deomposed into disjoint partsas follows:(3.7) R = R0 ∪
⋃

i∈I

Ri ∪
⋃

j∈J

(
Rj0 ∪

⋃

k∈Kj

Rjk

)
,

where Ri, i ∈ I, are those �rst order ∆-sububes of R whih have no further
∆-sububes, whereas Rj =

⋃
k∈{0}∪Kj

Rjk, j ∈ J , are those �rst order ∆-sububes of R whih do have some further ∆-sububes, namely the Rjk,
k ∈ Kj .Now
I(R \E) = I(R0 \E) +

∑

i∈I

I(Ri \E) +
∑

j∈J

(
I(Rj0 \E) +

∑

k∈Kj

I(Rjk \E)
)

= |R0 \E|µ(R0) +
∑

i∈I

|Ri \E|µ(Ri)

+
∑

j∈J

(
|Rj0 \E|µ(Rj0) +

∑

k∈Kj

|Rjk \ E|µ(Rjk)
)
,

sine the integrand is onstant on eah of the sets R0, Ri, Rj0, Rjk, as wasobserved above.We want to show that the above displayed quantity is at least (1 − β)I(R)
=: tI(R), where t := 1−β. To see this, observe that |R∩E| = |R∩Ek+1| <
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β|R|, hene |R \ E| > (1 − β)|R| for all R ∈ ∆k ⊂ Cc

k+1 by the de�nition of
Ck+1. Now
tI(R) = t|R0|µ(R0)+

∑

i∈I

t|Ri|µ(Ri)+
∑

j∈J

(
t|Rj0|µ(Rj0)+

∑

k∈Kj

t|Rjk|µ(Rjk)
)
,

and hene
I(R \E) − tI(R) = (|R0 \ E| − t|R0|)µ(R0) +

∑

i∈I

(|Ri \ E| − t|Ri|)µ(Ri)

+
∑

j∈J

[
(|Rj0 \ E| − t|Rj0|)µ(Rj0) +

∑

k∈Kj

(|Rjk \E| − t|Rjk|)µ(Rjk)
]
,

and if we set τ(S) := |S \ E| − t|S| (whene τ(R) > 0 for all R ∈ ∆k), thisan be further written as
=

[
τ(R0) +

∑

i∈I

τ(Ri) +
∑

j∈J

∑

k∈{0}∪Kj

τ(Rjk)
]
µ(R0)

+
∑

i∈I

τ(Ri)(µ(Ri) − µ(R0)) +
∑

j∈J

({ ∑

k∈{0}∪Kj

τ(Rjk)
}
(µ(Rj0) − µ(R0))

+
∑

k∈Kj

τ(Rjk)(µ(Rjk) − µ(Rj0))
)
.

Noting that the quantity in brakets [· · · ] is simply τ(R), whereas that inbraes {· · · } is τ(Rj), we �nd that all the terms appearing above are non-negative, and hene I(R \E) ≥ tI(R), whih we wanted to prove.The speial ase treated above already ontains the essene of the mat-ter, and it is essentially the notation whih is more di�ult in the generalase where ∆-sububes of higher orders are allowed. Now R is disjointlydeomposed as(3.8) R = R0 ∪
⋃

α

( ⋃

i

Rαi ∪
⋃

j

Rαj0

)
,where α runs over an appropriate set of strings of indies, and i and j overappropriate sets (possibly di�erent for di�erent α) of single indies. Notethat the possibility of α being the empty string is allowed. The deomposi-tion (3.8) should be ompared with the speial ase in (3.7).We have

I(R \E) − tI(R) = (|R0 \ E| − t|R0|)µ(R0)

+
∑

α

[∑

i

(|Rαi \ E| − t|Rαi|)µ(Rαi) +
∑

j

(|Rαj0 \E| − t|Rαj0|)µ(Rαj0)
]

= τ(R0)µ(R0) +
∑

α

( ∑

i

τ(Rαi)µ(Rαi) +
∑

j

τ(Rαj0)µ(Rαj0)
)
.



Vetor-valued wavelets 139We laim that this is equal to
{
τ(R0) +

∑

α

( ∑

i

τ(Rαi) +
∑

j

τ(Rαj0)
)}
µ(R0)

+
∑

α

∑

i

τ(Rαi)(µ(Rαi) − µ(Rα0))

+
∑

α

∑

j

[
τ(Rαj0)+

∑

β

( ∑

k

τ(Rαjβk)+
∑

l

τ(Rαjβl0)
)]

(µ(Rαj0)−µ(Rα0)).

In the expression above, the quantity in braes {· · · } is τ(R) ≥ 0 and that inbrakets [· · · ] is τ(Rαj) ≥ 0, so that all the terms appearing above are non-negative. Hene it su�es to verify the laimed equality, i.e., the vanishingof the expression
(3.9)

∑

α,i

τ(Rαi)µ(R0) +
∑

α,j

τ(Rαj0)µ(R0)

−
∑

α,i

τ(Rαi)µ(Rα0) −
∑

α,j

τ(Rαj0)µ(Rα0)

+
∑

α,j,β

( ∑

k

τ(Rαjβk) +
∑

l

τ(Rαjβl0)
)
µ(Rαj0)

−
∑

α,j,β

( ∑

k

τ(Rαjβk) +
∑

l

τ(Rαjβl0)
)
µ(Rα0).When α runs over all strings, and j over all single indies, αj learly runsover all strings exept for the empty string. Hene the seond-to-last termin (3.9) is equal to

∑

α,β

[∑

k

τ(Rαβk) +
∑

l

τ(Rαβl0)
]
µ(Rα0)

−
∑

β,k

τ(Rβk)µ(R0) −
∑

β,l

τ(Rβl0)µ(R0).

Similarly, replaing the pair (j, β) by β alone in the last term of (3.9), we�nd that this last term is equal to
−

∑

α,β

[∑

k

τ(Rαβk) +
∑

l

τ(Rαβl0)
]
µ(Rα0) +

∑

α,k

τ(Rαk)µ(Rα0)

+
∑

α,l

τ(Rαl0)µ(Rα0).

Now it is lear that the di�erent terms in (3.9) anel eah other, so ourlaim, and hene the assertion of the lemma, is veri�ed.



140 T. HytönenNow we de�ne
Ak,l(x, ε) :=

∑

R∈∆(k,l)

εRαR|R|
−1/21R(x);

note that
∞∑

k=−∞

∑

l

Ak,l(x, ε) =
∑

R∈R

εRαR|R|
−1/21R(x).A modi�ation of this series will give us the required atomi deompositionof f . Observe that suppAk,l(·, ε) ⊂ R(k, l) by the de�nition of ∆(k, l).Moreover, by Lemma 3.3, we have

(3.10)
∑

k,l

‖Ak,l‖Lp(Ω×Rn,X)|R(k, l)|1/p
′

≤
∑

k,l

c1/pp (1 − β)−1/p2k+1|R(k, l)|1/p|R(k, l)|1/p
′

≤ 2c1/pp (1 − β)−1/p
∑

k

2k
∑

l

|R(k, l)|(3.1)
≤ 2c1/pp (1 − β)−1/pβ−1

∑

k

2k|Ek|(3.2)
≤ 4c1/pp (1 − β)−1/pβ−1‖σ‖L1(Rn).The quantity on the left of this estimate should be ompared with the de�-nition of the H1 norm in (1.1).Now we are ready to �nish the proof of Theorem 1.9.Conlusion of the proof of (1.14)⇒(1.10). Now we onstrut the atomideomposition of f , or more preisely, of eah of the subseries

fη0(x) :=
∑

λ∈Λ : η=η0

αλψλ(x) =
∑

R∈R

αRψλ(R)(x)where λ(R) := 2−jk + 2−j−1η0 for R = 2−j(Aη0 + k).Consider a basis (Ψλ)λ∈Λ of ompatly supported, 1-regular wavelets. Theexistene of suh wavelet bases is well known ([18℄). Now that Aη0 is a non-degenerate ube, we have suppΨ2−j0k0+2−j0−1η0 = supp 2j0n/2Ψη0(2j0 ·−k0) ⊂
Aη0 for some suitable j0 ≥ 0 and k0 ∈ Zn.De�ne Ψηj,k := Ψλ for λ = 2−jk + 2−j−1η, and set φ := Ψη0j0,k0 , and
φj,k := 2nj/2φ(2j · −k) = 2n(j+j0)/2Ψη0(2j0(2j · −k) − k0) = Ψη0

j+j0,2j0k+k0
.Sine j0 ≥ 0, we see that (φj,k)j∈Z, k∈Zn is a subset of (ψλ)λ∈Λ, thus or-thonormal (but not omplete, of ourse) in L2(Rn).



Vetor-valued wavelets 141Now that φ is bounded and supported on Aη0 , we have
|φ(x)| ≤ C|Aη0 |−1/21Aη0 (x),where C = ‖φ‖∞|Aη0 |1/2, and then by saling

|φR(x)| := |φj,k(x)| ≤ C|R|−1/21R(x)for R = 2−j(Aη0 + k). Then the ontration priniple gives\
Rn

Eε

∣∣∣
∑

R∈∆(k,l)

εRαRφR(x)
∣∣∣
p

X
dx ≤ C

\
Rn

Eε

∣∣∣
∑

R∈∆(k,l)

εRαR|R|
−1/21R(x)

∣∣∣
p

X
dx.

Now we apply Cor. 2.2 with
∑

λ∈Λ : η=η0

εR(λ)ψλ(x)φR(λ)(y)to get\
Rn

∣∣∣
∑

λ∈Λ : η=η0,
R(λ)∈∆(k,l)

αλψλ(x)
∣∣∣
p

X
dx ≤

\
Rn

∣∣∣
∑

R∈∆(k,l)

εRαR|R|
−1/21R(x)

∣∣∣
p

X
dx.

Taking the expetation Eε of the right-hand side and ombining this withthe previous inequality, we have shown, for
ak,l(x) :=

∑

λ∈Λ : η=η0,
R(λ)∈∆(k,l)

αλψλ(x),

the estimate(3.11) ‖ak,l‖Lp(Rn,X) ≤ C‖Ak,l‖Lp(Ω×Rn,X).Sine eah of the wavelets ψλ has a vanishing integral, so does ak,l. Con-sider two ases:The ase of ompatly supported wavelets. Sine Aη is a non-degenerateube and ψη has ompat support, we have suppψη ⊂ (Aη)∗ where Q∗denotes the ube onentri with Q and having g times the side lengthof Q, where g is a su�iently large onstant. Then ψηj,k = ψ2−jk+2−j−1η =

2jn/2ψη(2j · −k) satis�es suppψηj,k = 2−j(suppψη + k) ⊂ 2−j((Aη)∗ + k) =

(2−j(Aη + k))∗, i.e., suppψλ ⊂ R(λ)∗.Thus, if R(λ) ∈ ∆(k, l), hene R(λ) ⊂ R(k, l), we have suppψλ ⊂
R(k, l)∗. This means that supp ak,l ⊂ R(k, l)∗, and then

‖fη0‖H1(Rn,X) ≤
∑

k,l

‖ak,l‖Lp(Rn,X)|R(k, l)∗|1/p
′

(3.11)
≤ C

∑

k,l

‖Ak,l‖Lp(Ω×Rn,X)|R(k, l)|1/p
′
(3.10)
≤ C‖σ‖L1(Rn).



142 T. HytönenThus we obtain a norm estimate for fη0 , and then for f =
∑

η∈{0,1}n\{0} fη,of the desired form.The general ase. By the speial ase onsidered above, we obtain
∥∥∥

∑

λ∈Λ

αλΨλ

∥∥∥
H1(Rn,X)

≤ C‖σ‖L1(Rn),where (Ψλ)λ∈Λ is a ompatly supported 1-regular wavelet basis as above.Then it su�es to apply the H1(Rn, X)-boundedness assertion of Cor. 2.2 to
∑

ψλ(x)Ψλ(y)to dedue the desired norm estimate for f =
∑
αλψλ, where (ψλ)λ∈Λ is any

1-regular wavelet basis. This ompletes the proof of (1.14)⇒(1.10), and ofTheorem 1.9.4. On BMO(Rn, X) and duality. One an also generalize the waveletharaterization of the spae BMO(Rn) from [18℄ to the UMD-valued situ-ation. This generalization is not as exiting as that of the haraterizationof H1(Rn); in essene, we just need to replae lassial L2 estimates usedin [18℄ by the appliation of Cor. 2.2, but otherwise the proof follows thelines of [18℄.4.1. Proposition. Let X be a UMD spae and (ψλ)λ∈Λ a 1-regularwavelet basis. If b ∈ BMO(Rn, X), p ∈ ]1,∞[ and αλ := 〈b, ψλ〉, then(4.2) \
Rn

Eε

∣∣∣
∑

λ∈F

ελαλψλ(x)
∣∣∣
p

X
dx ≤ κp|Q| ∀F ⊂ {λ ∈ Λ : Q(λ) ⊂ Q},where κ ≤ Cp‖b‖BMO(Rn,X).Conversely , if (4.2) holds for some set of oe�ients (αλ)λ∈Λ ⊂ X andall �nite sets F as above, then the series
∑

λ∈Λ

αλψλ(x)onverges unonditionally in Lploc(R
n, X)/X to a funtion in BMO(Rn, X)with norm at most Cpκ.By onvergene in Lploc(R

n, X)/X we mean the following: For every om-pat K ⊂ Rn, there exist �renormalization onstants� cλ ∈ X suh that∑
λ∈Λ(αλψλ(·) + cλ) onverges in Lp(K,X).Proof. We give the proof in the ase of ompatly supported wavelets,sine the additional onsiderations required by the general ase do not involvethe vetor-valuedness of the funtions in any way. The required modi�ationsare left as an exerise for the reader in Meyer's book [18℄, and we follow himhere. Thus, under the additional assumption, we have suppψλ ⊂ Q(λ)∗.



Vetor-valued wavelets 143Neessity of (4.2). Writing
b := (b− bQ∗)1Q∗ + (b− bQ∗)1(Q∗)c + bQ∗ =: b1 + b2 + b3,where bQ∗ := |Q∗|−1

T
Q∗ b(x) dx, we �nd that 〈b2, ψλ〉 = 0 if Q(λ) ⊂ Q (sinethen suppψλ ⊂ Q∗), and 〈b3, ψλ〉 = 0 for all λ ∈ Λ, sine Tψλ(x) dx = 0.Thus, when Q(λ) ⊂ Q, we have
αλ = 〈b, ψλ〉 = 〈(b− bQ∗)1Q∗ , ψλ〉,and so \

Rn

Eε

∣∣∣
∑

Q(λ)⊂Q

ελαλψλ(x)
∣∣∣
p

X
dx ≤ C‖(b− bQ∗)1Q∗‖pLp(Rn,X)

≤ C|Q∗|‖b‖pBMO(Rn,X).This ompletes the �rst half of the proof.Su�ieny of (4.2). LetB be a ball of radius r. We investigate separatelythe two series ∑

|Q(λ)|≤|B|

αλψλ(x) and ∑

|Q(λ)|>|B|

αλψλ(x).

Conerning the �rst series, if x ∈ B and x ∈ suppψλ ⊂ Q(λ)∗ for some x,then B ∩ Q(λ)∗ 6= ∅, and from the size assumption |Q(λ)| ≤ |B| it followsthat Q(λ) ⊂ B
⋆, where the ⋆ designates expansion about the same entreby a su�iently large fator whih only depends on the expansion fatorimpliit in the notation Q(λ)∗. Thus

(4.3)
\

Rn

Eε

∣∣∣
∑

λ∈F : |Q(λ)|≤|B|,

B∩suppψλ 6=∅

ελαλψλ(x)
∣∣∣
p

X
dx

≤
\

Rn

Eε

∣∣∣
∑

λ∈F :Q(λ)⊂B
⋆

· · ·
∣∣∣
p

X
dx ≤ cκp|B|.

From this estimate, whih is uniform for �nite sets F ⊂ Λ, and the fatthat c0 6⊂ X for X UMD, it follows that the series ∑
ελαλψλ(·) (summationover λ ∈ Λ with |Q(λ)| ≤ |B| and B ∩ suppψλ 6= ∅) onverges almostsurely (with respet to the ελ's) in Lp(Rn, X). But due to the Lp(Rn, X)-boundedness of the integral transformations with kernels ∑

ελψλ(x)ψλ(y),it atually onverges surely, i.e., ∑αλψλ(x) (summation restrited as above)onverges unonditionally. For x ∈ B, this series agrees with
∑

λ∈Λ, |Q(λ)|≤|B|

αλψλ(x),

whih hene onverges unonditionally in Lp(B,X).



144 T. HytönenWe then onsider summation over |Q(λ)| > |B|. For eah �xed size
2−jn = |Q(λ)|, there are at most a bounded number, say m, of dyadi ubes
Q(λ) suh that Q(λ)∗ ∩ B 6= ∅. Moreover, denoting by x0 the entre of B,we have, for x ∈ B,

|ψλ(x) − ψλ(x0)| ≤ |(x− x0) · ∇ψλ(ξ)| ≤ C2nj/2+jr,where r is the radius of B and λ = 2−jk+2−j−1η. From (4.2) it follows that
|αλ|X ≤ Cκ2−nj/2. Combining these observations yields
(4.4)

∑

|Q(λ)|>|B|, Q(λ)∗∩B 6=∅

|αλ|X |ψλ(x) − ψλ(x0)|

≤
∑

2−jn>|B|

mκ2−nj/2C2nj/2+jr ≤ cκ
∑

2j<r−1

2jr ≤ cκ,and this shows that ∑
|Q(λ)|>|B| αλ(ψλ(x) − ψλ(x0)) onverges absolutely in

X, uniformly on B; thus ∑
|Q(λ)|>|B| αλψλ(x) onverges unonditionally on

Lp(B,X)/X.The asserted onvergene of ∑
αλψλ(x) has now been established. More-over, the estimates (4.3) and (4.4) ombined give\

B

∣∣∣
∑

|Q(λ)|≤|B|

αλψλ(x) +
∑

|Q(λ)|>|B|

αλ(ψλ(x) − ψλ(x0))
∣∣∣
p

X
dx ≤ Cκp|B|,

whih shows the membership of the limit element in BMO(Rn, X), and theasserted norm estimate.Finally, we wish to exploit the wavelet framework to give a new pointof view on the H1-BMO duality in the UMD-valued situation. It should benoted that C. Fe�erman's duality theorem [12℄ holds in the vetor-valuedsituation under muh milder geometri assumptions (see O. Blaso [1℄), butrequires a di�erent approah.4.5. Proposition. Let X (and then also X ′) be a UMD spae and
(ψλ)λ∈Λ (and then also (ψλ)λ∈Λ) a 1-regular wavelet basis of L2(Rn). Let

b(x) =
∑

λ∈Λ

α′
λψλ(x) ∈ BMO(Rn, X ′), α′

λ = 〈b, ψλ〉 ∈ X ′,where the onvergene is unonditional in Lploc(R
n, X ′)/X ′. Then(4.6) A(f) = A

( ∑

λ∈Λ

αλψλ

)
:=

∑

λ∈Λ

α′
λ(αλ)onverges unonditionally for every f =

∑
λ∈Λ αλψλ ∈ H1(Rn, X), and de-�nes an element of H1(Rn, X)′ with ‖A‖H1(Rn,X)′ ≤ C‖b‖BMO(Rn,X′).Conversely , every A∈H1(Rn, X)′ is of the form (4.6), where ∑

λ∈Λ α
′
λψλonverges in Lploc(R

n,X ′)/X ′ to b∈BMO(Rn,X) whih satis�es ‖b‖BMO(Rn,X′)

≤ C‖A‖H1(Rn,X)′ .



Vetor-valued wavelets 145Proof. Let F ⊂ Λ be �nite. Then(4.7) ∑

λ∈F

α′
λ(αλ) =

\
Rn

〈∑

λ∈F

α′
λψλ(x),

∑

µ∈F

αµψµ(x)
〉
dx.

Aording to Prop. 4.1, the BMO(Rn, X) norms of bF :=
∑

λ∈F α
′
λψλ arebounded by C‖b‖BMO(Rn,X) for all F ⊂ Λ. On the other hand, from The-orem 1.9 it follows that the H1(Rn, X) norms of fF :=

∑
µ∈F αµψµ areuniformly bounded, and also that ‖fF ‖H1(Rn,X) an be made smaller thanany positive ǫ as soon as F ⊂ F c

ǫ , where Fǫ is a su�iently large set.Now fF has an atomi deomposition ∑
ai, where supp ai ⊂ Bi, Tai = 0,and ∑

‖ai‖Lp′ (Rn,X)|Bi|1/p ≤ 2‖f‖H1(Rn,X). Sine the atomi series on-verges in L1(Rn, X), and bF ∈ L∞(Rn, X ′), we have
|〈bF , fF 〉| ≤

∞∑

i=1

|〈bF , ai〉| ≤
∞∑

i=1

‖bF ‖BMO(Rn,X′)|Bi|
1/p‖ai‖Lp′ (Rn,X)

≤ 2C‖b‖BMO(Rn,X′)‖fF ‖H1(Rn,X),where a standard estimate for the pairing of a BMO funtion and an H1atom was used in the seond step.From this estimate and the unonditional onvergene of fF to f in
H1(Rn, X) as F ↑Λ, it follows that ∑

λ∈Λ α
′
λ(αλ) onverges unonditionallyto a omplex number of absolute value at most ‖b‖BMO(Rn,X′)‖f‖H1(Rn,X).This proves the �rst assertion.The onverse impliation. Let now A ∈ H1(Rn, X)′ be arbitrary. De�ne

α′
λ ∈ X ′ by α′

λ(x) := A(xψλ) for x ∈ X. Sine ∑
λ∈Λ αλψλ onverges unon-ditionally to f in H1(Rn, X), it follows that ∑

λ∈ΛA(αλψλ) =
∑

λ∈Λ α
′
λ(αλ)onverges unonditionally to A(f). Set bF :=

∑
λ∈F α

′
λψλ for �nite F ⊂ Λ.We estimate the BMO(Rn, X) norm of bF . Let B be a ball, and f ∈

Lp
′

(B,X). Then
〈bF − (bF )B, f〉 = 〈bF , f − fB1B〉 − 〈(bF )B1B, f〉 + 〈bF , fB1B〉,and the last two terms are both equal to |B|〈(bF )B, fB〉. Furthermore, notethat 〈bF , g〉 = 〈bF , gF 〉 = A(gF ) for any g ∈ H1(Rn, X). Thus

|〈bF − (bF )B, f〉| = |A((f − fB1B)F )| ≤ ‖A‖H1(Rn,X)′‖(f − fB1B)F ‖H1(Rn,X)

≤ ‖A‖H1(Rn,X)′‖f − fB1B‖Lp′ (Rn,X)|B|1/p.Taking the supremum over all f ∈ Lp
′

(B,X) of norm at most 1, and observ-ing that the unit ball of Lp′(B,X) is norming for Lp(B,X ′), we dedue
‖(bF − (bF )B)1B‖Lp(Rn,X′) ≤ 2‖A‖H1(Rn,X)′ |B|1/p,and thus ‖bF ‖BMO(Rn,X) ≤ 2‖A‖H1(Rn,X)′ . From Prop. 4.1 it follows thatthis uniform estimate for bF implies that bF → b as F ↑ Λ, unonditionally



146 T. Hytönenin the spae Lploc(R
n, X ′)/X ′, and ‖b‖BMO(Rn,X′) ≤ C‖A‖H1(Rn,X). Then, bythe �rst part of the proof, b de�nes via duality an element Ã ∈ H1(Rn, X)′.It is lear that Ã(f) = 〈bF , f〉 = A(f) if f =

∑
λ∈F αλψλ and F ⊂ Λ is�nite; sine suh f are dense in H1(Rn, X), we see that A = Ã, i.e., A is ofthe asserted form.The previous proposition shows that H1(Rn, X)′ =BMO(Rn, X ′) for XUMD, whih, as already mentioned, atually holds under more general on-ditions. While restrited to the UMD setting, the present approah has thevirtue of providing the expliit formula (4.6) for the evaluation of the dual-ity pairing 〈b, f〉. Note that the wavelet oe�ients α′

λ of b and αλ of f areuniquely determined by the funtions b and f , and moreover expliitly givenby the formulae α′
λ = 〈b, ψλ〉, αλ = 〈f, ψλ〉. On the other hand, the atomideomposition of f , in terms of whih the H1-BMO duality is often de�nedby 〈b, f〉 =

∑∞
i=1〈b, ai〉 is far from being unique.From the previous proof we also readily see the following, realling thatUMD spaes are re�exive:4.8. Corollary. Let X be a UMD spae, and (ψλ)λ∈Λ a 1-regularwavelet basis. Then, for every b ∈ BMO(Rn, X), the wavelet expansions∑

λ∈F 〈b, ψλ〉ψλ onverge unonditionally to b in the weak∗ topology
σ(BMO(Rn, X), H1(Rn, X ′)) as F ↑ Λ.
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