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On the Rockafellar theorem

for Φγ(·,·)-monotone multifunctions

by

S. Rolewicz (Warszawa)

Abstract. Let X be an arbitrary set, and γ : X ×X → R any function. Let Φ be a
family of real-valued functions defined on X. Let Γ : X → 2Φ be a cyclic Φγ(·,·)-monotone
multifunction with non-empty values. It is shown that the following generalization of the
Rockafellar theorem holds. There is a function f : X → R such that Γ is contained in the
Φγ(·,·)-subdifferential of f , Γ (x) ⊂ ∂γ(·,·)

Φ
f |x.

Rockafellar (1970b) proved the following theorem:

Rockafellar Theorem. Let (X, ‖·‖) be a normed space and let X∗ be
its dual. Let Γ be a cyclic monotone multifunction mapping X into subsets

of X∗, Γ : X → 2X
∗

, i.e. for any n ∈ N and x0, x1, . . . , xn = x0 ∈ X and
x∗i ∈ Γ (xi), i = 1, . . . , n, we have

(1)
n∑

i=1

[x∗i−1(xi−1)− x
∗

i−1(xi)] ≥ 0.

Suppose that Γ (x) 6= ∅ for all x ∈ X. Then there is a convex function f
such that Γ is contained in the subdifferential of f ,

(2) Γ (x) ⊂ ∂f |x.

If Γ is a maximal cyclic monotone multifunction, we have equality in (2).

In Pallaschke–Rolewicz (1997) (Proposition I.1.11) (see also Levin (1999),
(2003)) it is shown that the construction of Rockafellar can give the more
general

Theorem 0. Let X be an arbitrary set. Let Φ be a family of real-valued
functions defined on X. Let Γ : X → 2Φ be a cyclic Φ-monotone multi-
function, i.e. for any n ∈ N and x0, x1, . . . , xn = x0 ∈ X and φxi ∈ Γ (xi),
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i = 1, . . . , n, we have

(3)

n∑

i=1

[φxi−1(xi−1)− φxi−1(xi)] ≥ 0.

Suppose that Γ (x) 6= ∅ for all x ∈ X. Then there is a Φ-convex function
f : X → R such that Γ is contained in its Φ-subdifferential ,

(4) Γ (x) ⊂ ∂Φf |x.

In this note we show that the construction of Rockafellar can give a
similar result for a larger class of multifunctions.

Let X be an arbitrary set. Let Φ be a family of real-valued functions
defined on X. Let γ : X ×X → R and f : X → R. We say that a function
φ0 ∈ Φ is a Φ

γ(·,·)-subgradient of f at a point x0 if

(5) f(x)− f(x0) ≥ φ0(x)− φ0(x0) + γ(x, x0)

for all x ∈ X.

The set of all Φγ(·,·)-subgradients of f at x0 will be called the Φ
γ(·,·)-

subdifferential of f at x0 and denoted by ∂
γ(·,·)
Φ f |x0 . Of course ∂

γ(·,·)
Φ f |x is a

multifunction mapping X into subsets of Φ, ∂
γ(·,·)
Φ f |x : X → 2

Φ.

Example 1. Let (X, ‖ · ‖) be a normed space and let Φ = X∗ be its
conjugate. Let γ(·, ·) ≡ 0. Then a Φγ(·,·)-subgradient is a subgradient in the
sense of convex analysis (see for example Rockafellar (1970a)).

Example 2. Let (X, ‖ · ‖) be a normed space and let Φ = X∗. Let
γ(x, y) = −ε‖x − y‖, where ε > 0. Then a Φγ(·,·)-subgradient is an ε-
subgradient in the sense of Ekeland–Lebourg (1975).

Example 3. Let (X, ‖ · ‖) be a normed space and let Φ = X∗. Suppose
that

lim inf
x→x0

γ(x, x0)

‖x− x0‖
≥ 0.

Then a Φγ(·,·)-subgradient is a Fréchet (approximate) subgradient of f at
x0 (see Ioffe (1984), (1986), (1989), (1990), (2000), Mordukhovich (1976),
(1980), (1988), Borwein and Zhu (2005)).

Example 4. Let X be an arbitrary set. Let Φ be a family of real-valued
functions defined on X. Let γ(·, ·) ≡ 0. Then a Φγ(·,·)-subgradient is a Φ-
subgradient in the sense of Φ-convex analysis (see for example Pallaschke–
Rolewicz (1997), Rubinov (2000), Singer (1997)).

Example 5. Let (X, dX) be a metric space. Let Φ be a family of real-
valued continuous functions defined on X. Let γ(x, y) = α(dX(x, y)), where
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α(·) is a real-valued function. Then a Φγ(·,·)-subgradient is a strong Φ-
subgradient with modulus α(·) if α(·) ≥ 0 (Rolewicz (1998), (2003)), and it
is a weak Φ-subgradient with modulus α(·) if α(·) ≤ 0 (Rolewicz (2000a)).

If ∂
γ(·,·)
Φ f |x0 6= ∅ we say that f is Φ

γ(·,·)-subdifferentiable at x0. If

∂
γ(·,·)
Φ f |x 6= ∅ for all x ∈ X we say that f is Φ

γ(·,·)-subdifferentiable.
Putting x = x0 in (1) we trivially get

Proposition 6. If a function f is Φγ(·,·)-subdifferentiable at x0, then
γ(x0, x0) ≤ 0. If f is Φ

γ(·,·)-subdifferentiable, then γ(x, x) ≤ 0 for all x ∈ X.

A multifunction Γ mapping X into 2Φ is called n-cyclic Φγ(·,·)-monotone
if, for any x0, x1, . . . , xn = x0 ∈ X and φxi ∈ Γ (xi), i = 1, . . . , n, we have

(6)

n∑

i=1

[φxi−1(xi−1)− φxi−1(xi)− γ(xi, xi−1)] ≥ 0.

2-monotone multifunctions are simply called Φγ(·,·)-monotone.

A multifunction Γ mapping X into 2Φ is called cyclic Φγ(·,·)-monotone
if it is n-cyclic Φγ(·,·)-monotone for n = 2, 3, . . . . The definition immediately
yields

Proposition 7. If γ1(x, y) ≤ γ(x, y) for all x, y ∈ X then an n-cyclic
(resp. cyclic) Φγ(·,·)-monotone multifunction Γ is n-cyclic (resp. cyclic)
Φγ1(·,·)-monotone.

It is not difficult to show

Proposition 8. Let X be an arbitrary set. Let Φ be a family of real-
valued functions defined on X. Let γ : X × X → R. Let f be a Φγ(·,·)-

subdifferentiable function. Then its Φγ(·,·)-subdifferential , ∂
γ(·,·)
Φ f |x, consid-

ered as a multifunction of x, is cyclic Φγ(·,·)-monotone.

Proof. Since f is Φγ(·,·)-subdifferentiable, for any x0, x1, . . . , xn= x0 ∈X

and φxi ∈ ∂
γ(·,·)
Φ f |xi , i = 1, . . . , n, we have

(5i) f(xi)− f(xi−1) ≥ φxi−1(xi)− φxi−1(xi−1) + γ(xi, xi−1).

Adding (5i), i = 1, . . . , n, we get

(7) 0 ≥
n∑

i=1

[φxi−1(xi)− φxi−1(xi−1) + γ(xi, xi−1)],

which trivially implies (6).

Example 1m. Let (X, ‖ · ‖) be a normed space and let Φ = X∗. Let
γ(·, ·) ≡ 0. Then each n-cyclic (resp. cyclic) Φγ(·,·)-monotone multifunction Γ
is n-cyclic (resp. cyclic) monotone in the classical sense (Rockafellar (1967),
(1970a)).
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Example 2m. Let (X, ‖ · ‖) be a normed space and let Φ = X∗. Let
γ(x, y) = −ε‖x−y‖, where ε > 0. Then each Φγ(·,·)-monotone multifunction
Γ is ε-monotone (Jofré–Luc–Théra (1998), Luc–Ngai–Théra (1999)).

Example 4m. LetX be an arbitrary set. Let Φ be a family of real-valued
functions defined on X. Let γ(·, ·) ≡ 0. Then each n-cyclic (resp. cyclic)
Φγ(·,·)-monotone multifunction Γ is n-cyclic (resp. cyclic) monotone in the
sense of Φ-convex analysis (see for example Pallaschke–Rolewicz (1997)).

Example 5m. Let (X, dX) be a metric space. Let Φ be a family of
real-valued continuous functions defined on X. Let γ(x, y) = α(dX(x, y)),

where α(·) is a real-valued function. Then each n-cyclic (resp. cyclic) Φγ(·,·)-
monotone multifunction Γ is n-cyclic (resp. cyclic) strongly α(·)-monotone
if α(·) ≥ 0 (Rolewicz (1998)) and weakly α(·)-monotone if α(·) ≤ 0 (Role-
wicz (2000a)).

A cyclic Φγ(·,·)-monotone multifunction Γ is calledmaximal cyclic Φγ(·,·)-
monotone if for each cyclic Φγ(·,·)-monotone multifunction Γ1 such that
Γ (x) ⊂ Γ1(x) for all x (in other words, the graph of Γ , G(Γ ), is contained
in G(Γ1)), we have Γ (x) = Γ1(x) for all x ∈ X.

Theorem 9. Let X be an arbitrary set. Let Φ be a family of real-valued
functions defined on X. Let γ : X × X → R. Let Γ be a cyclic Φγ(·,·)-

monotone multifunction. Suppose that Γ (x) 6= ∅ for all x ∈ X. Then there
is a Φγ(·,·)-subdifferentiable function f such that Γ is contained in the Φγ(·,·)-

subdifferential of f ,

(8) Γ (x) ⊂ ∂
γ(·,·)
Φ f |x.

Proof. Fix x0 ∈ X and φx0 ∈ Γ (x0). We define

f(x) = sup{(φxn(x)− φxn(xn) + γ(x, xn))(9)

+ (φxn−1(xn)− φxn−1(xn−1) + γ(xn, xn−1))

+ · · ·+ (φx0(x1)− φx0(x0) + γ(x1, x0))},

where the supremum is taken over all x1, . . . , xn ∈ X, φx1 ∈ Γ (x1), . . . , φxn
∈ Γ (xn). Observe that f(x0) ≤ 0 by cyclic Φ

γ(·,·)-monotonicity of Γ (·).

Take any x ∈ X and φx ∈ Γ (x). Let λ be an arbitrary number smaller
than f(x). By the definition of f(x), there are x1, . . . , xn ∈ X, φx1 ∈
Γ (x1), . . . , φxn ∈ Γ (xn) such that

λ < (φxn(x)− φxn(xn) + γ(x, xn))(10)

+ (φxn−1(xn)− φxn−1(xn−1) + γ(xn, xn−1))

+ · · ·+ (φx0(x1)− φx0(x0) + γ(x1, x0)).
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Put xn+1 = x and φxn+1 = φx. Then for all y ∈ X,

f(y) ≥ (φx(y)− φx(x) + γ(x, y)) + λ.

Since this holds for any λ < f(x), we trivially obtain

(11) f(y) ≥ f(x) + φx(y)− φx(x) + γ(x, y).

Therefore f(x0) ≤ 0 implies that f(x) < ∞ for all x ∈ X. Moreover from
(11) we have

(12) f(y)− f(x) ≥ φx(y)− φx(x) + γ(·, ·),

i.e. φx is a Φ
γ(·,·)-subgradient of f at x.

Since φx was an arbitrary element of Γ (x) we get

(8) Γ (x) ⊂ ∂
γ(·,·)
Φ f |x.

Corollary 10. Let X be an arbitrary set. Let Φ be a family of real-
valued functions defined on X. Let γ : X × X → R. Let Γ be a maximal

cyclic Φγ(·,·)-monotone multifunction. Suppose that Γ (x) 6= ∅ for all x ∈ X.
Then there is a Φγ(·,·)-subdifferentiable function f such that Γ is equal to

the Φγ(·,·)-subdifferential of f ,

(13) Γ (x) = ∂
γ(·,·)
Φ f |x.

Proof. By Theorem 9 the graph G(Γ ) is contained in G(∂
γ(·,·)
Φ f |x). By

Proposition 8 the multifunction ∂
γ(·,·)
Φ f |x is cyclic Φ

γ(·,·)-monotone. Since Γ
is maximal cyclic Φγ(·,·)-monotone, this implies that

(13) Γ (x) = ∂
γ(·,·)
Φ f |x.
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