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Quasi *-algebras of measurable operators

by

Fabio Bagarello, Camillo Trapani
and Salvatore Triolo (Palermo)

Abstract. Non-commutative Lp-spaces are shown to constitute examples of a class
of Banach quasi ∗-algebras called CQ∗-algebras. For p ≥ 2 they are also proved to possess
a sufficient family of bounded positive sesquilinear forms with certain invariance proper-
ties. CQ∗-algebras of measurable operators over a finite von Neumann algebra are also
constructed and it is proven that any abstract CQ∗-algebra (X, A0) with a sufficient family
of bounded positive tracial sesquilinear forms can be represented as a CQ∗-algebra of this
type.

1. Introduction and preliminaries. A quasi ∗-algebra is a couple
(X, A0), where X is a vector space with involution ∗, A0 is a ∗-algebra and
a vector subspace of X, and X is an A0-bimodule whose module operations
and involution extend those of A0. Quasi ∗-algebras were introduced by
Lassner [8, 9, 11] to provide an appropriate mathematical framework for
certain quantum physical systems for which the usual algebraic approach in
terms of C∗-algebras turned out to be insufficient. In these applications they
usually arise by taking the completion of the C∗-algebra of observables in
a weaker topology satisfying certain physical requirements. The case where
this weaker topology is a norm topology has been considered in a series of
previous papers [3]–[2], where CQ∗-algebras were introduced: a CQ∗-algebra
is, indeed, a quasi ∗-algebra (X, A0) where X is a Banach space with respect
to a norm ‖ ‖ possessing an isometric involution and A0 is a C∗-algebra with
respect to a norm ‖ · ‖0, which is dense in X[‖ · ‖].

Since any C∗-algebra A0 has a faithful ∗-representation π, it is natural to
ask if this completion can also be realized as a quasi ∗-algebra of operators
affiliated to π(A0)

′′. The Segal–Nelson theory [12, 10] of non-commutative
integration provides a number of mathematical tools for dealing with this
problem.
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The paper is organized as follows. In Section 2 we consider non-commut-
ative Lp-spaces constructed starting from a von Neumann algebra M and a
normal, semifinite, faithful trace τ as Banach quasi ∗-algebras. In particular
if ϕ is finite, then it is shown that (Lp(ϕ), M) is a CQ∗-algebra. If p ≥ 2,
they even possess a sufficient family of positive sesquilinear forms enjoying
certain invariance properties.

In Section 3, starting from a family F of normal finite traces on a von
Neumann algebra M, we prove that the completion of M with respect
to a norm defined in a natural way by F is indeed a CQ∗-algebra con-
sisting of measurable operators, in Segal’s sense, and therefore affiliated
with M.

Finally, in Section 4, we prove that any CQ∗-algebra (X, A0) with a suf-
ficient family of bounded positive tracial sesquilinear forms can be continu-
ously embedded into the CQ∗-algebra of measurable operators constructed
in Section 3.

To keep the paper sufficiently self-contained, we collect below some pre-
liminary definitions and propositions that will be used in what follows.

Let (X, A0) be a quasi ∗-algebra. The unit of (X, A0) is an element e ∈ A0

such that xe = ex = x for every x ∈ X. A quasi ∗-algebra (X, A0) is said to be
locally convex if X is endowed with a topology τ which makes of X a locally
convex space and such that the involution a 7→ a∗ and the multiplications
a 7→ ab, a 7→ ba, b ∈ A0, are continuous. If τ is a norm topology and the
involution is isometric with respect to the norm, we say that (X, A0) is a
normed quasi ∗-algebra and, if it is complete, we say it is a Banach quasi
∗-algebra.

Definition 1.1. Let (X, A0) be a Banach quasi ∗-algebra with norm
‖ · ‖ and involution ∗. Assume that a second norm ‖ · ‖0 is defined on A0,
satisfying the following conditions:

(a.1) ‖a∗a‖0 = ‖a‖2
0, ∀a ∈ A0;

(a.2) ‖a‖ ≤ ‖a‖0, ∀a ∈ A0;
(a.3) ‖ax‖ ≤ ‖a‖0‖x‖, ∀a ∈ A0, x ∈ X;
(a.4) A0[‖ · ‖0] is complete.

Then we say that (X, A0) is a CQ∗-algebra.

Remark 1.2. (1) If A0[‖ · ‖0] is not complete, we say that (X, A0) is a
pre-CQ∗-algebra.

(2) In previous papers the name of CQ∗-algebra was given to a more
complicated structure where two different involutions were considered on
A0. When these involutions coincide, we spoke of a proper CQ∗-algebra. In
this paper only this case will be considered and so we systematically omit
the word proper.
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The following basic definitions and results on non-commutative measure
theory are also needed in what follows.

Let M be a von Neumann algebra and ϕ a normal faithful semifinite
trace defined on M+. Put

J = {X ∈ M : ϕ(|X|) < ∞}.

Then J is a ∗-ideal of M. We denote by Proj(M) the lattice of projections
of M.

Definition 1.3. A vector subspace D of H is said to be strongly dense

(resp., strongly ϕ-dense) if

• U ′D ⊂ D for any unitary U ′ in M′,
• there exists a sequence Pn ∈ Proj(M) such that PnH ⊂ D , P⊥

n ↓ 0
and P⊥

n is a finite projection (resp., ϕ(P⊥
n ) < ∞).

Clearly, every strongly ϕ-dense domain is strongly dense.
Throughout this paper, when we say that an operator T is affiliated with

a von Neumann algebra M, written TηM, we always mean that T is closed,
densely defined and TU ⊇ UT for every unitary operator U ∈ M′.

Definition 1.4. An operator TηM is called

• measurable (with respect to M) if its domain D(T ) is strongly dense;
• ϕ-measurable if its domain D(T ) is strongly ϕ-dense.

From the very definition it follows that, if T is ϕ-measurable, then there
exists P ∈ Proj(M) such that TP is bounded and ϕ(P⊥) < ∞.

We recall that any operator affiliated with a finite von Neumann algebra
is measurable [12, Cor. 4.1] but it is not necessarily ϕ-measurable.

2. Non-commutative Lp-spaces as CQ∗-algebras. In this section we
will discuss the structure of non-commutative Lp-spaces as quasi ∗-algebras.
We begin by recalling the basic definitions.

Let M be a von Neumann algebra and ϕ a normal faithful semifinite
trace defined on M+. For each p ≥ 1, let

Jp = {X ∈ M : ϕ(|X|p) < ∞}.

Then Jp is a ∗-ideal of M. Following [10], we denote by Lp(ϕ) the Banach
space completion of Jp with respect to the norm

‖X‖p := ϕ(|X|p)1/p, X ∈ Jp.

One usually defines L∞(ϕ) = M. Thus, if ϕ is a finite trace, then L∞(ϕ) ⊂
Lp(ϕ) for every p ≥ 1. As shown in [10], if X ∈ Lp(ϕ), then X is a measurable
operator.
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Proposition 2.1. Let M be a von Neumann algebra and ϕ a normal

faithful semifinite trace on M+. Then (Lp(ϕ), L∞(ϕ) ∩ Lp(ϕ)) is a Banach

quasi ∗-algebra. If ϕ is a finite trace and ϕ(I) = 1, then (Lp(ϕ), L∞(ϕ)) is

a CQ∗-algebra.

Proof. Indeed, it is easily seen that the norms ‖·‖∞ of L∞(ϕ)∩Lp(ϕ) and
‖ ·‖p on Lp(ϕ) satisfy conditions (a.1)–(a.2) of Definition 1.1. Moreover, if ϕ
is finite, then L∞(ϕ) ⊂ Lp(ϕ) and thus (Lp(ϕ), L∞(ϕ)) is a CQ∗-algebra.

Remark 2.2. Of course the condition ϕ(I) = 1 can be easily removed
by rescaling the trace.

Definition 2.3. Let (X, A0) be a Banach quasi ∗-algebra. We denote
by S(X) the set of all sesquilinear forms Ω on X × X with the following
properties:

(i) Ω(x, x) ≥ 0, ∀x ∈ X,
(ii) Ω(xa, b) = Ω(a, x∗b), ∀x ∈ X, a, b ∈ A0,
(iii) |Ω(x, y)| ≤ ‖x‖ ‖y‖, ∀x, y ∈ X.

A subfamily A of S(X) is called sufficient if the conditions x ∈ X and
Ω(x, x) = 0 for every Ω ∈ A imply x = 0.

If (X, A0) is a Banach quasi ∗-algebra, then the Banach dual space X♯ of
X can be made into a Banach A0-bimodule with norm

‖f‖♯ = sup
‖x‖≤1

|〈x, f〉|, f ∈ X♯,

by defining, for f ∈ X♯, a ∈ A0, the module operations in the following way:

〈x, f ◦ a〉 := 〈ax, f〉, x ∈ X,

〈x, a ◦ f〉 := 〈xa, f〉, x ∈ X.

As usual, an involution f 7→ f∗ can be defined on X♯ by 〈x, f∗〉 = 〈x∗, f〉 for
x ∈ X. With these notations we can easily prove the following (see also [15]):

Proposition 2.4. Let (X, A0) be a Banach quasi ∗-algebra and Ω a

positive sesquilinear form on X×X. The following statements are equivalent :

(i) Ω ∈ S(X);
(ii) there exists a bounded conjugate linear operator T : X → X♯ with the

properties:

(ii.1) 〈x, Tx〉 ≥ 0, ∀x ∈ X;
(ii.2) T (ax) = (Tx) ◦ a∗, ∀a ∈ A0, x ∈ X;
(ii.3) ‖T‖B(X,X♯) ≤ 1;

(ii.4) Ω(x, y) = 〈x, Ty〉, ∀x, y ∈ X.
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We will now focus on the question whether for the Banach quasi ∗-algebra
(Lp(ϕ), L∞(ϕ)∩Lp(ϕ)), the family S(Lp(ϕ)), which we are going to describe
in more detail, is or is not sufficient.

Before going forth, we recall that many of the familiar results of the or-
dinary theory of Lp-spaces hold in the very same form for non-commutative
Lp-spaces. This is the case, for instance, of Hölder’s inequality and also of
the characterization of the dual of Lp: the form defining the duality is an ex-
tension of ϕ (denoted by the same symbol) to products of the type XY with

X ∈ Lp(ϕ), Y ∈ Lp′(ϕ) with p−1 +p′−1 = 1, and one has (Lp(ϕ))♯ ≃ Lp′(ϕ).
In order to study S(Lp(ϕ)), we introduce, for p ≥ 2, the following nota-

tion:

Bp
+ = {X ∈ Lp/(p−2)(ϕ) : X ≥ 0, ‖X‖p/(p−2) ≤ 1}

where p/(p − 2) = ∞ if p = 2.
For each W ∈ Bp

+, we consider the right multiplication operator

RW : Lp(ϕ) → Lp/(p−1)(ϕ), RW X = XW, X ∈ Lp(ϕ).

Since L∞(ϕ) ∩ Lp(ϕ) = Jp, we use, for brevity, the latter notation.

Lemma 2.5. The following statements hold.

(i) Let p ≥ 2. For every W ∈ Bp
+, the sesquilinear form Ω(X, Y ) =

ϕ[X(RW Y )∗] is an element of S(Lp(ϕ)).
(ii) If ϕ is finite, then for each Ω ∈ S(Lp(ϕ)), there exists W ∈ Bp

+

such that

Ω(X, Y ) = ϕ[X(RW Y )∗], ∀X, Y ∈ Lp(ϕ).

Proof. (i) We check that the sesquilinear form Ω(X, Y ) = ϕ[X(RW Y )∗],
X, Y ∈ Lp(ϕ), satisfies conditions (i)–(iii) of Definition 2.3. For every X ∈
Lp(ϕ) we have

Ω(X, X) = ϕ[X(RW X)∗] = ϕ[X(XW )∗] = ϕ[(XW )∗X] = ϕ[W |X|2] ≥ 0.

For every X ∈ Lp(ϕ), A, B ∈ Jp, we get

Ω(XA, B) = ϕ(XA(BW )∗) = ϕ(WB∗XA) = ϕ(A(X∗BW )∗)

= Ω(A, X∗B).

Finally, for every X, Y ∈ Lp(ϕ),

|Ω(X, Y )| ≤ ‖X‖p‖Y ‖p‖W‖p/(p−2) ≤ ‖X‖p‖Y ‖p.

(ii) Let Ω ∈ S(Lp(ϕ)). Let T : Lp(ϕ) → Lp′(ϕ) be the operator which
represents Ω in the sense of Proposition 2.4. The finiteness of ϕ implies that
Jp = M; thus we can put W = T (I). It is easy to check that RW = T . This
concludes the proof.

Proposition 2.6. If p ≥ 2, then S(Lp(ϕ)) is sufficient.
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Proof. Let X ∈ Lp(ϕ) be such that Ω(X, X) = 0 for every Ω ∈ S(Lp(ϕ)).

By the previous lemma, since |X|p−2 ∈ Lp/(p−2)(ϕ), the right multiplication
operator RW with W = |X|p−2/α, α ∈ R, satisfying ‖|X|p−2/α‖p/(p−2) ≤ 1
represents a sesquilinear form Ω ∈ S(Lp(ϕ)). By assumption, Ω(X, X) = 0.
We then have

Ω(X, X) = ϕ[X(RW X)∗] =
ϕ[X(X|X|p−2)∗]

α
=

ϕ[(X|X|p−2)∗X]

α

=
ϕ[|X|p]

α
= 0,

so X = 0, by the faithfulness of ϕ.

3. CQ∗-algebras over finite von Neumann algebras. Let M be a
von Neumann algebra and F = {ϕα : α ∈ I} be a family of normal finite

traces on M. As usual, we say that the family F is sufficient if the conditions
X ∈ M, X ≥ 0 and ϕα(X) = 0 for every α ∈ I imply X = 0 (clearly, if
F = {ϕ}, then F is sufficient if, and only if, ϕ is faithful). In this case, M is
a finite von Neumann algebra [13, Ch. 7]. We assume in addition that the
following condition (P) is satisfied:

(P) ϕα(I) ≤ 1, ∀α ∈ I.

Then we define

‖X‖p,I = sup
α∈I

‖X‖p,ϕα = sup
α∈I

ϕα(|X|p)1/p.

Since F is sufficient, ‖ · ‖p,I is a norm on M.
We will need the following lemmas whose simple proofs will be omitted.

Lemma 3.1. Let M be a von Neumann algebra in a Hilbert space H, and

{Pα}α∈I a family of projections of M with
∨

α∈I

Pα = P .

If A ∈ M and APα = 0 for every α ∈ I, then AP = 0.

Lemma 3.2. Let F = {ϕα}α∈I be a sufficient family of normal finite

traces on the von Neumann algebra M and let Pα be the support of ϕα.
Then

∨
Pα = I, where I denotes the identity of M.

It is well known that the support of each ϕα enjoys the following prop-
erties:

(i) Pα ∈ Z(M), the center of M, for each α ∈ I;
(ii) ϕα(X) = ϕα(XPα) for each α ∈ I.
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From the preceding two lemmas it follows that, if the Pα’s are as in
Lemma 3.2, then

APα = 0, ∀α ∈ I ⇒ A = 0.

If Condition (P) is fulfilled, then

‖X‖p,I = sup
α∈I

‖XPα‖p,α, ∀X ∈ M.

Clearly, the sufficiency of the family of traces and Condition (P) imply that
‖ · ‖p,I is a norm on M.

Proposition 3.3. Let M(p, I) denote the Banach space completion of

M with respect to the norm ‖ · ‖p,I . Then (M(p, I)[‖ · ‖p,I ], M[‖ · ‖B(H)]) is

a CQ∗-algebra.

Proof. Indeed, we have

‖X∗‖p,I = sup
α∈I

‖X∗Pα‖p,α = sup
α∈I

‖(XPα)∗‖p,α = ‖X‖p,I , ∀X ∈ M.(1)

Furthermore, for every X, Y ∈ M,

‖XY ‖p,I = sup
α∈I

‖XY Pα‖p,α ≤ ‖X‖B(H) sup
α∈I

‖Y Pα‖p,α(2)

= ‖X‖B(H)‖Y ‖p,I .

Finally, Condition (P) implies that

‖X‖p,I ≤ ‖X‖B(H), ∀X ∈ M.

From (1) and (2) it follows that M(p, I) is a Banach quasi ∗-algebra. It
is clear that ‖ ‖B(H) satisfies conditions (a.1)–(a.4) of Section 1. Therefore
(M(p, I), M) is a CQ∗-algebra.

The next step consists in investigating the Banach space M(p, I)[‖·‖p,I ].
In particular we are interested in whether M(p, I)[‖ · ‖p,I ] can be identified
with a space of operators affiliated with M. For brevity, whenever no ambi-
guity can arise, we write Mp instead of M(p, I).

Let F = {ϕα}α∈I be a sufficient family of normal, finite traces on the
von Neumann algebra M satisfying Condition (P). The traces ϕα are not
necessarily faithful. Put Mα = MPα, where, as before, Pα denotes the sup-
port of ϕα. Each Mα is a von Neumann algebra and ϕα is faithful in MPα

[14, Proposition V. 2.10].
More precisely,

Mα := MPα = {Z = XPα for some X ∈ M}.

The positive cone M+
α of Mα equals

{Z = XPα for some X ∈ M+}.

For Z = XPα ∈ M+
α , we put

σα(Z) := ϕα(XPα).
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The definition of σα(Z) does not depend on the particular choice of X. Each
σα is a normal finite faithful trace on Mα. It is then possible to consider
the spaces Lp(Mα, σα), p ≥ 1, in the usual way. The norm of Lp(Mα, σα) is
indicated as ‖ · ‖p,α.

Let now (Xk) be a Cauchy sequence in M[‖ · ‖p,I ]. For each α ∈ I, we

put Z
(α)
k = XkPα. Then, for each α ∈ I, (Z

(α)
k ) is a Cauchy sequence in

Mα[‖ · ‖p,α]. Indeed, since |Z
(α)
k − Z

(α)
h |p = |Xk − Xh|

pPα, we have

‖Z
(α)
k − Z

(α)
h ‖p,α = σα(|Z

(α)
k − Z

(α)
h |p)1/p = ϕα(|Xk − Xh|

pPα)1/p

= ϕα(|Xk − Xh|
p)1/p → 0.

Therefore, for each α ∈ I, there exists an operator Z(α) ∈ Lp(Mα, σα) such
that

Z(α) = ‖ · ‖p,α- lim
k→∞

Z
(α)
k .

It is now natural to ask whether there exists an operator X, closed,
densely defined, affiliated with M, which reduces to Z(α) on Mα. To begin
with, we assume that the projections Pα are mutually orthogonal. In this
case, putting Hα = PαH, we have

H =
⊕

α∈I

Hα =
{
(fα) : fα ∈ Hα,

∑

α∈I

‖fα‖
2 < ∞

}
.

We put

D(X) =
{
(fα) ∈ H : fα ∈ D(Z(α)),

∑

α∈I

‖Z(α)fα‖
2 < ∞

}

and for f = (fα) ∈ D(X) we define

Xf = (Z(α)fα).

Then

(i) D(X) is dense in H. Indeed, D(X) contains all f = (fα) with fα = 0
except for a finite subset of indices.

(ii) X is closed in H. Indeed, let fn = (fn,α) be a sequence of elements
of D(X) with fn → g = (gα) ∈ H and Xfn → h. Since

fn → g ⇔ fn,α → gα ∈ Hα, ∀α ∈ I,

and

Xfn → h ⇔ (Xfn)α → hα ∈ Hα, ∀α ∈ I,

the equalities (Xfn)α = Z(α)fn,α and the closedness of each Z(α) in
Hα yield

gα ∈ D(Z(α)) and hα = Z(α)gα.
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It remains to check that
∑

α∈I ‖Z
(α)gα‖

2 < ∞; but this is clear,

since both (Z(α)gα) and h = (hα) are in H.
(iii) XηM. Let Y ∈ M′. Then Y f = (Y Pαf) for all f ∈ H and Y Pα ∈

(MPα)′ = M′Pα. Therefore

XY f = ((XY )Pαf) = (Y XPαf) = Y Xf.

In conclusion, X is a measurable operator.
Thus, we have proved the following

Proposition 3.4. Let F = {ϕα}α∈I be a sufficient family of normal

finite traces on the von Neumann algebra M. Assume that Condition (P)
is fulfilled and that the ϕα’s have mutually orthogonal supports. Then Mp,
p ≥ 1, consists of measurable operators.

The analysis of the general case would be much simplified if, from a given
sufficient family F of normal finite traces, one could extract (or construct)
a sufficient subfamily G of traces with mutually orthogonal supports. Apart
from quite simple situations (for instance when F is finite or countable),
we do not know if this is possible or not. There is however a relevant case
where this can be fairly easily done. This occurs when F is a convex and
w∗-compact family of traces on M.

Lemma 3.5. Let F be a convex w∗-compact family of normal finite traces

on a von Neumann algebra M; assume that for each central operator Z with

0 ≤ Z ≤ I and each η ∈ F the functional ηZ(X) := η(XZ) belongs to F. Let

EF be the set of extreme elements of F. If η1, η2 ∈ EF, η1 6= n2, and P1 and

P2 are their respective supports, then P1 and P2 are orthogonal.

Proof. Let P1, P2 be, respectively, the supports of η1 and η2. We begin
by proving that either P1 = P2 or P1P2 = 0. Indeed, assume that P1P2 6= 0.
We define

η1,2(X) = η1(XP2), X ∈ M.

Were η1,2 = 0, then, in particular η1,2(P2) = 0, i.e. η1(P2) = 0 and therefore,
by definition of support, P2 ≤ 1 − P1. This implies that P1P2 = 0, contrary
to the assumption. We now show that the support of η1,2 is P1P2. Let, in
fact, Q be a projection such that η1,2(Q) = 0. Then

η1(QP2) = 0 ⇒ QP2 ≤ 1 − P1 ⇒ QP2(1 − P1) = QP2 ⇒ QP2P1 = 0.

Thus the largest Q for which this happens is 1−P2P1. We conclude that the
support of the trace η1,2 is P1P2. Finally, by definition, one has η1,2(X) =
η1(XP2), and, since XP2 ≤ X,

η1,2(X) = η1(XP2) ≤ η1(X), ∀X ∈ M.

Thus η1 majorizes η1,2. But η1 is extreme in F. Therefore η1,2 has the form
λη1 with λ ∈ ]0, 1]. This implies that η1,2 has the same support as η1;
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therefore P1P2 = P1, i.e. P1 ≤ P2. Starting from η2,1(X) = η2(XP1), we get,
in a similar way, P2 ≤ P1. Therefore, P1P2 6= 0 implies P1 = P2. However,
two different traces of EF cannot have the same support. Indeed, assume
that there exist η1, η2 ∈ F having the same support P. Since P is central,
we can consider the von Neumann algebra MP . The restrictions of η1, η2 to
MP are normal faithful semifinite traces. By [14, Prop. V.2.31] there exists
a central element Z in MP with 0 ≤ Z ≤ P (P is here considered as the
unit of MP ) such that

(3) η1(X) = (η1 + η2)(ZX), ∀X ∈ (MP )+.

Then Z also belongs to the center of M, since for every V ∈ M,

ZV = Z(V P + V P⊥) = ZV P = V ZP = V Z.

Therefore the functionals

η1,Z(X) := η1(XZ), η2,Z(X) := η2(XZ), X ∈ M,

belong to the family F and are majorized, respectively, by the extreme ele-
ments η1, η2. Then there exist λ, µ ∈ [0, 1] such that

η1(XZ) = λη1(X), η2(XZ) = µη1(X), ∀X ∈ M.

If λ = 1 we would have, from (3), η2(ZX) = 0 for every X ∈ (MP )+; in
particular, η2(|Z|2) = 0; this implies that Z = 0. Thus λ 6= 1. Analogously,
µ 6= 0: indeed, if µ = 0, then η1(X) = λη1(X) and thus λ = 1. Therefore
there exist λ, µ ∈ (0, 1) such that

η1(X) = λη1(X) + µη2(X), ∀X ∈ MP,

which in turn implies

η1(X) = λη1(X) + µη2(X), ∀X ∈ M.

Hence,
(1 − λ)η1(X) = µη2(X), ∀X ∈ M.

From the last equality, dividing by max{1 − λ, µ} one finds that one of the
two elements is a convex combination of the other and of 0, which is absurd.
In conclusion, different supports of extreme traces of F are orthogonal.

Since, for every X ∈ M, ‖X‖p,I remains the same if computed either
with respect to F or to EF, we can deduce the following

Theorem 3.6. Let F be a convex and w∗-compact sufficient family of

normal finite traces on the von Neumann algebra M. Assume that F satisfies

Condition (P) and that for each central operator Z with 0 ≤ Z ≤ I and each

η ∈ F the functional ηZ(X) := η(XZ) belongs to F. Then the completion

Mp[‖ · ‖p,I ] consists of measurable operators.

Families of traces satisfying the assumptions of Theorem 3.6 will be
constructed in the next section.



Quasi ∗-algebras of measurable operators 299

4. A representation theorem. Once we have constructed some CQ∗-
algebras of operators affiliated to a given von Neumann algebra, it is natural
to ask under which conditions an abstract CQ∗-algebra (X, A0) can be re-
alized as a CQ∗-algebra of this type.

Let (X[‖ · ‖], A0[‖ · ‖0]) be a CQ∗-algebra with unit e and let

T (X) = {Ω ∈ S(X) : Ω(x, x) = Ω(x∗, x∗), ∀x ∈ X}.

We remark that if Ω ∈ T (X) then, by polarization, Ω(y∗, x∗) = Ω(x, y) for
all x, y ∈ X. It is easy to prove that the set T (X) is convex.

For each Ω ∈ T (X), we define a linear functional ωΩ on A0 by

ωΩ(a) := Ω(a, e), a ∈ A0.

We have

ωΩ(a∗a) = Ω(a∗a, e) = Ω(a, a) = Ω(a∗, a∗) = ωΩ(aa∗) ≥ 0.

This shows at once that ωΩ is positive and tracial. We put

MT (A0) = {ωΩ : Ω ∈ T (X)}.

From the convexity of T (X) it follows easily that MT (A0) is also convex. If
we denote by ‖f‖♯ the norm of the bounded functional f on A0, we also get

‖ωΩ‖
♯ = ωΩ(e) = Ω(e, e) ≤ ‖e‖2.

Therefore

MT (A0) ⊆ {ω ∈ A
♯
0 : ‖ω‖♯ ≤ ‖e‖2},

where A
♯
0 denotes the topological dual of A0[‖ · ‖0]. Setting

fΩ(a) :=
ωΩ(a)

‖e‖2

we get

fΩ ∈ {ω ∈ A
♯
0 : ‖ω‖♯ ≤ 1}.

By the Banach–Alaglou theorem, the set {ω ∈ A
♯
0 : ‖ω‖♯ ≤ 1} is w∗-compact

in A
♯
0 . Then {ω ∈ A

♯
0 : ‖ω‖♯ ≤ ‖e‖2} is also w∗-compact.

Proposition 4.1. MT (A0) is w∗-closed and , therefore, w∗-compact.

Proof. Let (ωΩα) be a net in MT (A0) w∗-converging to a functional

ω ∈ A
♯
0. We will show that ω = ωΩ for some Ω ∈ T (X). Let us begin

by defining Ω0(a, b) = ω(b∗a), a, b ∈ A0. By the very definition, ωΩα(a) →
ω(a) = Ω0(a, e). Moreover, for every a, b ∈ A0,

Ω0(a, b) = ω(b∗a) = lim
α

ωΩα(b∗a) = lim
α

Ωα(a, b).

Therefore

Ω0(a, a) = lim
α

Ωα(a, a) ≥ 0.
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We also have
|Ω0(a, b)| = lim

α
|Ωα(a, b)| ≤ ‖a‖ ‖b‖.

Hence Ω0 can be extended by continuity to X × X. Indeed, let

x = ‖ · ‖- lim
n

an, y = ‖ · ‖- lim
n

bn, (an), (bn) ⊆ A0.

Then

|Ω0(an, bn) − Ω0(am, bm)|

= |Ω0(an, bn) − Ω0(am, bn) + Ω0(am, bn) − Ω0(am, bm)|

≤ |Ω0(an − am, bn)| + |Ω0(am, bn − bm)|

≤ ‖an − am‖ ‖bn‖ + ‖am‖ ‖bn − bm‖ → 0,

since (‖an‖) and (‖bn‖) are bounded sequences. Therefore we can define

Ω(x, y) = lim
n

Ω0(an, bn).

Clearly, Ω(x, x) ≥ 0 for all x ∈ X. It is easily checked that Ω ∈ T (X). This
concludes the proof.

Since MT (A0) is convex and w∗-compact, by the Krein–Milman theorem
it follows that it has extreme points and it coincides with the w∗-closure of
the convex hull of the set EMT (A0) of its extreme points.

By the Gelfand–Naimark theorem each C∗-algebra is isometrically ∗-
isomorphic to a C∗-algebra of bounded operators in Hilbert space. This
isometric ∗-isomorphism is called the universal ∗-representation.

Thus, let π be the universal ∗-representation of A0 and π(A0)
′′ the von

Neumann algebra generated by π(A0).
For every Ω ∈ T (X) and a ∈ A0, we put

ϕΩ(π(a)) = ωΩ(a).

Then, for each Ω ∈ T (X), ϕΩ is a positive bounded linear functional on the
operator algebra π(A0). Clearly,

ϕΩ(π(a)) = ωΩ(a) = Ω(a, e),

|ϕΩ(π(a))| = |ωΩ(a)| = |Ω(a, e)| ≤ ‖a‖ ‖e‖ ≤ ‖a‖0‖e‖
2 = ‖π(a)‖ ‖e‖2.

Thus ϕΩ is continuous on π(A0).
By [7, Theorem 10.1.2], ϕΩ is weakly continuous and so it extends

uniquely to π(A0)
′′. Moreover, since ϕΩ is a trace on π(A0), the exten-

sion ϕ̃Ω is also a trace on M := π(A0)
′′. The norm ‖ϕ̃Ω‖

♯ of ϕ̃Ω as a linear
functional on M equals the norm of ϕΩ as a functional on π(A0). We have

‖ϕ̃Ω‖
♯ = ϕ̃Ω(π(e)) = ϕΩ(π(e)) = ωΩ(e) ≤ ‖e‖2.

The set
NT (A0) = {ϕ̃Ω : Ω ∈ T (X)}
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is convex and w∗-compact in M♯, as can be easily seen by considering the
map

ωΩ ∈ MT (A0) 7→ ϕ̃Ω ∈ NT (A0),

which is linear and injective, and by taking into account the fact that, if
aα → a in A0[‖ · ‖], then ϕ̃Ω(π(aα) − π(a)) = ωΩ(aα − a) → 0.

Let ENT (A0) be the set of extreme points of NT (A0); then NT (A0)
coincides with the w∗-closure of the convex hull of ENT (A0). The extreme
elements of NT (A0) are easily characterized by the following

Proposition 4.2. ϕ̃Ω is extreme in NT (A0) if , and only if , ωΩ is ex-

treme in MT (A0).

Definition 4.3. A Banach quasi ∗-algebra (X[‖ · ‖], A0[‖ · ‖0]) is said to
be strongly regular if T (X) is sufficient and

‖x‖ = sup
Ω∈T (X)

Ω(x, x)1/2, ∀x ∈ X.

Example 4.4. If M is a von Neumann algebra with a sufficient family
F of normal finite traces, then the CQ∗-algebra (Mp, M) constructed in
Section 3 is strongly regular. This follows from the definition of the norm in
the completion.

Example 4.5. If ϕ is a normal faithful finite trace on M, then T (Lp(ϕ)),
for p ≥ 2, is sufficient. To see this, we first define Ω0 on M × M by

Ω0(X, Y ) = ϕ(Y ∗X), X, Y ∈ M.

Then
|Ω0(X, Y )| = |ϕ(Y ∗X)| ≤ ‖X‖p‖Y ‖p′ , ∀X, Y ∈ M.

Since p ≥ 2, Lp(ϕ) is continuously embedded into Lp′(ϕ). Thus, there exists
γ > 0 such that ‖Y ‖p′ ≤ γ‖Y ‖p for every Y ∈ M. Define

Ω̃(X, Y ) =
1

γ
Ω0(X, Y ), X, Y ∈ M.

Then
|Ω̃(X, Y )| ≤ ‖X‖p‖Y ‖p, ∀X, Y ∈ M.

Hence, Ω̃ has a unique extension, denoted by the same symbol, to Lp(ϕ) ×

Lp(ϕ). It is easily seen that Ω̃ ∈ T (Lp(ϕ)).
Were, for some X ∈ Lp(ϕ), Ω(X, X) = 0 for every Ω ∈ T (Lp(ϕ)), we

would have Ω̃(X, X) = ‖X‖2
2 = 0. This clearly implies X = 0. The equality

Ω̃(X, X) = ‖X‖2
2 also shows that L2(ϕ) is strongly regular.

Let now (X[‖ · ‖], A0[‖ · ‖0]) be a CQ∗-algebra with unit e and sufficient
T (X). Let π : A0 →֒ B(H) be the universal representation of A0. Assume
that the C∗algebra π(A0) := M is a von Neumann algebra. In this case,
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MT (A0) = NT (A0) and NT (A0) is a family of traces satisfying Condi-
tion (P). Therefore, by Proposition 3.3, we can construct, for p ≥ 1, the
CQ∗-algebras (Mp[‖ · ‖p,NT (A0)], M[‖ · ‖]). Clearly, A0 can be identified with
M. It is then natural to ask if X can also be identified with some Mp. The
next theorem provides the answer to this question.

Theorem 4.6. Let (X[‖ · ‖], A0[‖ · ‖0]) be a CQ∗-algebra with unit e and

and sufficient T (X). Then there exist a von Neumann algebra M and a

monomorphism

Φ : x ∈ X 7→ Φ(x) := X̃ ∈ M2

with the following properties:

(i) Φ extends the universal ∗-representation π of A0;
(ii) Φ(x∗) = Φ(x)∗ for all x ∈ X;
(iii) Φ(xy) = Φ(x)Φ(y) for every x, y ∈ X such that x ∈ A0 or y ∈ A0.

Then X can be identified with a space of operators affiliated with M.

If , in addition, (X, A0) is strongly regular , then

(iv) Φ is an isometry of X into M2;
(v) if A0 is a W ∗-algebra, then Φ is an isometric ∗-isomorphism of X

onto M2.

Proof. Let π be the universal representation of A0 and assume first that
π(A0) =: M is a von Neumann algebra. By Proposition 4.1, the family
MT (A0) of traces is convex and w∗-compact. Moreover, for each central
positive element Z with 0 ≤ Z ≤ I and for ϕ ∈ MT (A0), the trace ϕZ(X) :=
ϕ(ZX) still belongs to MT (A0). Indeed, starting from the form Ω ∈ T (X)
which generates ϕ, one can define the sesquilinear form

ΩZ(x, y) := Ω(xπ−1(Z1/2), yπ−1(Z1/2)), x, y ∈ X.

We check that ΩZ ∈ T (X):

(i) ΩZ(x, x) = Ω(xπ−1(Z1/2), xπ−1(Z1/2)) ≥ 0 for all x ∈ X.
(ii) For every x ∈ X and every a, b ∈ A0, we have

ΩZ(xa, b) = Ω(xaπ−1(Z1/2), bπ−1(Z1/2)) = Ω(aπ−1(Z1/2), x∗bπ−1(Z1/2))

= ΩZ(a, x∗b).

(iii) For every x, y ∈ X, we have

|ΩZ(x, y)| = |Ω(xπ−1(Z1/2), yπ−1(Z1/2))| ≤ ‖xπ−1(Z1/2)‖ ‖π−1(Z1/2)y‖

≤ ‖x‖ ‖π−1(Z1/2)‖0‖y‖ ‖π
−1(Z1/2)‖0 ≤ ‖x‖ ‖y‖.

(iv) For every x ∈ X,

ΩZ(x∗, x∗) = Ω(x∗π−1(Z1/2), x∗π−1(Z1/2)) = Ω(xπ−1(Z1/2), xπ−1(Z1/2))

= ΩZ(x, x).
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Moreover, ΩZ defines, for every A = π(a) ∈ M = π(A0), the following
trace:

ϕΩZ
(A) = ΩZ(a, e) = Ω(aπ−1(Z1/2), π−1(Z1/2))

= Ω(aπ−1(Z), e) = Ω(π−1(AZ), e) = ϕΩ(AZ).

Thus, the family of traces NT (A0) (= MT (A0)) satisfies the assumptions of
Lemma 3.5; therefore, if η1, η2 ∈ ENT (A0), and if P1 and P2 denote their
respective supports, one has P1P2 = 0.

By the sufficiency of T (X) we get

‖X‖2,MT (A0) := sup
ϕ∈MT (A0)

‖X‖2,ϕ = sup
ϕ∈EMT (A0)

‖X‖2,ϕ, ∀X ∈ π(A0).

By Proposition 3.3, the Banach space M2, completion of M with respect to
the norm ‖ · ‖2, NT (A0) , is a CQ∗-algebra. Moreover, since the supports of
the extreme traces satisfy the assumptions of Theorem 3.6, the CQ∗-algebra
(M2[‖ · ‖2,NT (A0)], M[‖ · ‖]) consists of operators affiliated with M.

We now define the map Φ. For every x ∈ X, there exists a sequence (an)
of elements of A0 converging to x with respect to the norm of X(‖ · ‖). Put
Xn = π(an), n ∈ N. Then

‖Xn − Xm‖2,NT (A0) := sup
ϕ∈NT (A0)

‖π(an) − π(am)‖2,ϕ

= sup
Ω∈T (X)

[Ω((an − am)∗(an − am), e)]1/2

= sup
Ω∈T (X)

[Ω(an − am, an − am)]1/2 ≤ ‖an − am‖ → 0.

Let X̃ be the ‖ · ‖2,MT (A0)-limit of the sequence (Xn) in M2. We define

Φ(x) := X̃.

For each x ∈ X, we put

pT (X)(x) = sup
Ω∈T (X)

Ω(x, x)1/2.

Owing to the sufficiency of T (X), pT (X) is a norm on X weaker than ‖ · ‖.
This implies that

‖X̃‖2
2,NT (A0)

= lim
n→∞

sup
Ω∈T (X)

Ω(an, an) = lim
n→∞

pT (X)(an)2 = pT (X)(x)2.

From this equality it follows easily that the linear map Φ is well defined and
injective. Condition (iii) can be easily proved. If (X, A0) is strongly regular,
then pT (X)(x) = ‖x‖ for every x ∈ X. Thus Φ is isometric. Moreover, in this
case, Φ is surjective: indeed, if T ∈ M2, then there exists a sequence (Tn) of
bounded operators on π(A0) which converges to T with respect to the norm
‖ · ‖2,NT (A0). The corresponding sequence (tn) ⊂ A0, Tn = Φ(tn), converges
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to t with respect to the norm of X and Φ(t) = T by definition. Therefore Φ
is an isometric ∗-isomorphism.

To complete the proof, it is enough to prove that the given CQ∗-algebra
(X, A0) can be embedded in a CQ∗-algebra (K, B0) where B0 is a W ∗-
algebra. Of course, we may directly work with π(A0) with π the universal
representation of A0. The family of traces NT (A0) defined on π(A0)

′′ is not
necessarily sufficient. Let PΩ, Ω ∈ T (X), denote the support of ϕ̃Ω and let

P =
∨

Ω∈T (X)

PΩ.

Then B0 := π(A0)
′′P is a von Neumann algebra that we can complete with

respect to the norm

‖X‖2,NT (A0) = sup
Ω∈T (X)

ϕ̃Ω(X∗X), X ∈ π(A0)
′′P.

We obtain in this way a CQ∗-algebra (K, B0) with B0 a W ∗-algebra. The
faithfulness of π on A0 implies that

π(a)P = π(a), ∀a ∈ A0.

It remains to prove that X can be identified with a subspace of K. But this
can be shown as in the first part: for each x ∈ X there exists a sequence
(an) ⊂ A0 such that ‖x − an‖ → 0 as n → ∞. We now put Xn = π(an).

Then, proceeding as before, we determine the element X̂ ∈ K, where

X̂ = ‖ · ‖2,NT (A0)-limπ(an)P.

It is easy to see that the map x ∈ X 7→ X̂ ∈ K is injective. If (X, A0) is
regular, but π(A0) ⊂ π(A0)

′′, then Φ is an isometry of X into M2, but need
not be surjective.
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