Quasi *-algebras of measurable operators

by

FABIO BAGARELLO, CAMILLO TRAPANI and SALVATORE TRIOLO (Palermo)

Abstract. Non-commutative L^p -spaces are shown to constitute examples of a class of Banach quasi *-algebras called CQ^* -algebras. For $p \ge 2$ they are also proved to possess a sufficient family of bounded positive sesquilinear forms with certain invariance properties. CQ^* -algebras of measurable operators over a finite von Neumann algebra are also constructed and it is proven that any abstract CQ^* -algebra $(\mathfrak{X}, \mathfrak{A}_0)$ with a sufficient family of bounded positive tracial sesquilinear forms can be represented as a CQ^* -algebra of this type.

1. Introduction and preliminaries. A quasi *-algebra is a couple $(\mathfrak{X}, \mathfrak{A}_0)$, where \mathfrak{X} is a vector space with involution *, \mathfrak{A}_0 is a *-algebra and a vector subspace of \mathfrak{X} , and \mathfrak{X} is an \mathfrak{A}_0 -bimodule whose module operations and involution extend those of \mathfrak{A}_0 . Quasi *-algebras were introduced by Lassner [8, 9, 11] to provide an appropriate mathematical framework for certain quantum physical systems for which the usual algebraic approach in terms of C^* -algebras turned out to be insufficient. In these applications they usually arise by taking the completion of the C^* -algebra of observables in a weaker topology is a norm topology has been considered in a series of previous papers [3]–[2], where CQ^* -algebras were introduced: a CQ^* -algebra is, indeed, a quasi *-algebra ($\mathfrak{X}, \mathfrak{A}_0$) where \mathfrak{X} is a Banach space with respect to a norm $\| \cdot \|_0$, which is dense in $\mathfrak{X}[\| \cdot \|]$.

Since any C^* -algebra \mathfrak{A}_0 has a faithful *-representation π , it is natural to ask if this completion can also be realized as a quasi *-algebra of operators affiliated to $\pi(\mathfrak{A}_0)''$. The Segal–Nelson theory [12, 10] of non-commutative integration provides a number of mathematical tools for dealing with this problem.

²⁰⁰⁰ Mathematics Subject Classification: Primary 46L08; Secondary 46L51, 47L60.

Key words and phrases: Banach C^* -modules, non-commutative integration, partial algebras of operators.

The paper is organized as follows. In Section 2 we consider non-commutative L^p -spaces constructed starting from a von Neumann algebra \mathfrak{M} and a normal, semifinite, faithful trace τ as Banach quasi *-algebras. In particular if φ is finite, then it is shown that $(L^p(\varphi), \mathfrak{M})$ is a CQ^* -algebra. If $p \geq 2$, they even possess a sufficient family of positive sesquilinear forms enjoying certain invariance properties.

In Section 3, starting from a family \mathfrak{F} of normal finite traces on a von Neumann algebra \mathfrak{M} , we prove that the completion of \mathfrak{M} with respect to a norm defined in a natural way by \mathfrak{F} is indeed a CQ^* -algebra consisting of measurable operators, in Segal's sense, and therefore affiliated with \mathfrak{M} .

Finally, in Section 4, we prove that any CQ^* -algebra $(\mathfrak{X}, \mathfrak{A}_0)$ with a sufficient family of bounded positive tracial sesquilinear forms can be continuously embedded into the CQ^* -algebra of measurable operators constructed in Section 3.

To keep the paper sufficiently self-contained, we collect below some preliminary definitions and propositions that will be used in what follows.

Let $(\mathfrak{X}, \mathfrak{A}_0)$ be a quasi *-algebra. The *unit* of $(\mathfrak{X}, \mathfrak{A}_0)$ is an element $e \in \mathfrak{A}_0$ such that xe = ex = x for every $x \in \mathfrak{X}$. A quasi *-algebra $(\mathfrak{X}, \mathfrak{A}_0)$ is said to be *locally convex* if \mathfrak{X} is endowed with a topology τ which makes of \mathfrak{X} a locally convex space and such that the involution $a \mapsto a^*$ and the multiplications $a \mapsto ab, a \mapsto ba, b \in \mathfrak{A}_0$, are continuous. If τ is a norm topology and the involution is isometric with respect to the norm, we say that $(\mathfrak{X}, \mathfrak{A}_0)$ is a *normed quasi* *-algebra and, if it is complete, we say it is a Banach quasi *-algebra.

DEFINITION 1.1. Let $(\mathfrak{X}, \mathfrak{A}_0)$ be a Banach quasi *-algebra with norm $\|\cdot\|$ and involution *. Assume that a second norm $\|\cdot\|_0$ is defined on \mathfrak{A}_0 , satisfying the following conditions:

- (a.1) $||a^*a||_0 = ||a||_0^2, \forall a \in \mathfrak{A}_0;$
- (a.2) $||a|| \leq ||a||_0, \forall a \in \mathfrak{A}_0;$
- (a.3) $||ax|| \leq ||a||_0 ||x||, \forall a \in \mathfrak{A}_0, x \in \mathfrak{X};$
- (a.4) $\mathfrak{A}_0[\|\cdot\|_0]$ is complete.

Then we say that $(\mathfrak{X}, \mathfrak{A}_0)$ is a CQ^* -algebra.

REMARK 1.2. (1) If $\mathfrak{A}_0[\|\cdot\|_0]$ is not complete, we say that $(\mathfrak{X},\mathfrak{A}_0)$ is a pre- CQ^* -algebra.

(2) In previous papers the name of CQ^* -algebra was given to a more complicated structure where two different involutions were considered on \mathfrak{A}_0 . When these involutions coincide, we spoke of a proper CQ^* -algebra. In this paper only this case will be considered and so we systematically omit the word proper. The following basic definitions and results on non-commutative measure theory are also needed in what follows.

Let \mathfrak{M} be a von Neumann algebra and φ a normal faithful semifinite trace defined on \mathfrak{M}_+ . Put

$$\mathcal{J} = \{ X \in \mathfrak{M} : \varphi(|X|) < \infty \}.$$

Then \mathcal{J} is a *-ideal of \mathfrak{M} . We denote by $\operatorname{Proj}(\mathfrak{M})$ the lattice of projections of \mathfrak{M} .

DEFINITION 1.3. A vector subspace \mathcal{D} of \mathcal{H} is said to be *strongly dense* (resp., *strongly* φ -*dense*) if

- $U'\mathcal{D} \subset \mathcal{D}$ for any unitary U' in \mathfrak{M}' ,
- there exists a sequence $P_n \in \operatorname{Proj}(\mathfrak{M})$ such that $P_n \mathcal{H} \subset \mathcal{D}$, $P_n^{\perp} \downarrow 0$ and P_n^{\perp} is a finite projection (resp., $\varphi(P_n^{\perp}) < \infty$).

Clearly, every strongly φ -dense domain is strongly dense.

Throughout this paper, when we say that an operator T is affiliated with a von Neumann algebra \mathfrak{M} , written $T\eta\mathfrak{M}$, we always mean that T is closed, densely defined and $TU \supseteq UT$ for every unitary operator $U \in \mathfrak{M}'$.

DEFINITION 1.4. An operator $T\eta\mathfrak{M}$ is called

- measurable (with respect to \mathfrak{M}) if its domain D(T) is strongly dense;
- φ -measurable if its domain D(T) is strongly φ -dense.

From the very definition it follows that, if T is φ -measurable, then there exists $P \in \operatorname{Proj}(\mathfrak{M})$ such that TP is bounded and $\varphi(P^{\perp}) < \infty$.

We recall that any operator affiliated with a finite von Neumann algebra is measurable [12, Cor. 4.1] but it is not necessarily φ -measurable.

2. Non-commutative L^p -spaces as CQ^* -algebras. In this section we will discuss the structure of non-commutative L^p -spaces as quasi *-algebras. We begin by recalling the basic definitions.

Let \mathfrak{M} be a von Neumann algebra and φ a normal faithful semifinite trace defined on \mathfrak{M}_+ . For each $p \geq 1$, let

$$\mathcal{J}_p = \{ X \in \mathfrak{M} : \varphi(|X|^p) < \infty \}.$$

Then \mathcal{J}_p is a *-ideal of \mathfrak{M} . Following [10], we denote by $L^p(\varphi)$ the Banach space completion of \mathcal{J}_p with respect to the norm

$$||X||_p := \varphi(|X|^p)^{1/p}, \quad X \in \mathcal{J}_p.$$

One usually defines $L^{\infty}(\varphi) = \mathfrak{M}$. Thus, if φ is a finite trace, then $L^{\infty}(\varphi) \subset L^{p}(\varphi)$ for every $p \geq 1$. As shown in [10], if $X \in L^{p}(\varphi)$, then X is a measurable operator.

PROPOSITION 2.1. Let \mathfrak{M} be a von Neumann algebra and φ a normal faithful semifinite trace on \mathfrak{M}_+ . Then $(L^p(\varphi), L^{\infty}(\varphi) \cap L^p(\varphi))$ is a Banach quasi *-algebra. If φ is a finite trace and $\varphi(\mathbb{I}) = 1$, then $(L^p(\varphi), L^{\infty}(\varphi))$ is a CQ^* -algebra.

Proof. Indeed, it is easily seen that the norms $\|\cdot\|_{\infty}$ of $L^{\infty}(\varphi) \cap L^{p}(\varphi)$ and $\|\cdot\|_{p}$ on $L^{p}(\varphi)$ satisfy conditions (a.1)–(a.2) of Definition 1.1. Moreover, if φ is finite, then $L^{\infty}(\varphi) \subset L^{p}(\varphi)$ and thus $(L^{p}(\varphi), L^{\infty}(\varphi))$ is a CQ^{*} -algebra.

REMARK 2.2. Of course the condition $\varphi(\mathbb{I}) = 1$ can be easily removed by rescaling the trace.

DEFINITION 2.3. Let $(\mathfrak{X}, \mathfrak{A}_0)$ be a Banach quasi *-algebra. We denote by $\mathcal{S}(\mathfrak{X})$ the set of all sesquilinear forms Ω on $\mathfrak{X} \times \mathfrak{X}$ with the following properties:

- (i) $\Omega(x,x) \ge 0, \ \forall x \in \mathfrak{X},$
- (ii) $\Omega(xa,b) = \Omega(a,x^*b), \ \forall x \in \mathfrak{X}, a, b \in \mathfrak{A}_0,$
- (iii) $|\Omega(x,y)| \le ||x|| ||y||, \forall x, y \in \mathfrak{X}.$

A subfamily \mathcal{A} of $\mathcal{S}(\mathfrak{X})$ is called *sufficient* if the conditions $x \in \mathfrak{X}$ and $\Omega(x, x) = 0$ for every $\Omega \in \mathcal{A}$ imply x = 0.

If $(\mathfrak{X}, \mathfrak{A}_0)$ is a Banach quasi *-algebra, then the Banach dual space \mathfrak{X}^{\sharp} of \mathfrak{X} can be made into a Banach \mathfrak{A}_0 -bimodule with norm

$$||f||^{\sharp} = \sup_{||x|| \le 1} |\langle x, f \rangle|, \quad f \in \mathfrak{X}^{\sharp},$$

by defining, for $f \in \mathfrak{X}^{\sharp}$, $a \in \mathfrak{A}_0$, the module operations in the following way:

$$\begin{aligned} \langle x, f \circ a \rangle &:= \langle ax, f \rangle, \quad x \in \mathfrak{X}, \\ \langle x, a \circ f \rangle &:= \langle xa, f \rangle, \quad x \in \mathfrak{X}. \end{aligned}$$

As usual, an involution $f \mapsto f^*$ can be defined on \mathfrak{X}^{\sharp} by $\langle x, f^* \rangle = \overline{\langle x^*, f \rangle}$ for $x \in \mathfrak{X}$. With these notations we can easily prove the following (see also [15]):

PROPOSITION 2.4. Let $(\mathfrak{X}, \mathfrak{A}_0)$ be a Banach quasi *-algebra and Ω a positive sesquilinear form on $\mathfrak{X} \times \mathfrak{X}$. The following statements are equivalent:

- (i) $\Omega \in \mathcal{S}(\mathfrak{X});$
- (ii) there exists a bounded conjugate linear operator $T : \mathfrak{X} \to \mathfrak{X}^{\sharp}$ with the properties:
 - (ii.1) $\langle x, Tx \rangle \ge 0, \ \forall x \in \mathfrak{X};$
 - (ii.2) $T(ax) = (Tx) \circ a^*, \ \forall a \in \mathfrak{A}_0, x \in \mathfrak{X};$
 - (ii.3) $||T||_{\mathcal{B}(\mathfrak{X},\mathfrak{X}^{\sharp})} \leq 1;$
 - (ii.4) $\Omega(x,y) = \langle x, Ty \rangle, \ \forall x, y \in \mathfrak{X}.$

We will now focus on the question whether for the Banach quasi *-algebra $(L^p(\varphi), L^{\infty}(\varphi) \cap L^p(\varphi))$, the family $\mathcal{S}(L^p(\varphi))$, which we are going to describe in more detail, is or is not sufficient.

Before going forth, we recall that many of the familiar results of the ordinary theory of L^p -spaces hold in the very same form for non-commutative L^p -spaces. This is the case, for instance, of Hölder's inequality and also of the characterization of the dual of L^p : the form defining the duality is an extension of φ (denoted by the same symbol) to products of the type XY with $X \in L^p(\varphi), Y \in L^{p'}(\varphi)$ with $p^{-1} + {p'}^{-1} = 1$, and one has $(L^p(\varphi))^{\sharp} \simeq L^{p'}(\varphi)$.

In order to study $\mathcal{S}(L^p(\varphi))$, we introduce, for $p \geq 2$, the following notation:

$$\mathcal{B}^p_+ = \{ X \in L^{p/(p-2)}(\varphi) : X \ge 0, \, \|X\|_{p/(p-2)} \le 1 \}$$

where $p/(p-2) = \infty$ if p = 2.

For each $W \in \mathcal{B}^p_+$, we consider the right multiplication operator

$$R_W: L^p(\varphi) \to L^{p/(p-1)}(\varphi), \quad R_W X = XW, \quad X \in L^p(\varphi).$$

Since $L^{\infty}(\varphi) \cap L^{p}(\varphi) = \mathcal{J}_{p}$, we use, for brevity, the latter notation.

LEMMA 2.5. The following statements hold.

- (i) Let $p \geq 2$. For every $W \in \mathcal{B}^p_+$, the sesquilinear form $\Omega(X,Y) = \varphi[X(R_WY)^*]$ is an element of $\mathcal{S}(L^p(\varphi))$.
- (ii) If φ is finite, then for each $\Omega \in \mathcal{S}(L^p(\varphi))$, there exists $W \in \mathcal{B}^p_+$ such that

$$\Omega(X,Y) = \varphi[X(R_WY)^*], \quad \forall X, Y \in L^p(\varphi).$$

Proof. (i) We check that the sesquilinear form $\Omega(X, Y) = \varphi[X(R_WY)^*]$, $X, Y \in L^p(\varphi)$, satisfies conditions (i)–(iii) of Definition 2.3. For every $X \in L^p(\varphi)$ we have

 $\Omega(X,X) = \varphi[X(R_WX)^*] = \varphi[X(XW)^*] = \varphi[(XW)^*X] = \varphi[W|X|^2] \ge 0.$ For every $X \in L^p(\varphi), A, B \in \mathcal{J}_p$, we get

$$\begin{split} \Omega(XA,B) &= \varphi(XA(BW)^*) = \varphi(WB^*XA) = \varphi(A(X^*BW)^*) \\ &= \Omega(A,X^*B). \end{split}$$

Finally, for every $X, Y \in L^p(\varphi)$,

$$|\Omega(X,Y)| \le ||X||_p ||Y||_p ||W||_{p/(p-2)} \le ||X||_p ||Y||_p.$$

(ii) Let $\Omega \in \mathcal{S}(L^p(\varphi))$. Let $T: L^p(\varphi) \to L^{p'}(\varphi)$ be the operator which represents Ω in the sense of Proposition 2.4. The finiteness of φ implies that $\mathcal{J}_p = \mathfrak{M}$; thus we can put $W = T(\mathbb{I})$. It is easy to check that $R_W = T$. This concludes the proof. \blacksquare

PROPOSITION 2.6. If $p \geq 2$, then $\mathcal{S}(L^p(\varphi))$ is sufficient.

Proof. Let $X \in L^{p}(\varphi)$ be such that $\Omega(X, X) = 0$ for every $\Omega \in \mathcal{S}(L^{p}(\varphi))$. By the previous lemma, since $|X|^{p-2} \in L^{p/(p-2)}(\varphi)$, the right multiplication operator R_{W} with $W = |X|^{p-2}/\alpha$, $\alpha \in \mathbb{R}$, satisfying $|||X|^{p-2}/\alpha||_{p/(p-2)} \leq 1$ represents a sesquilinear form $\Omega \in \mathcal{S}(L^{p}(\varphi))$. By assumption, $\Omega(X, X) = 0$. We then have

$$\Omega(X,X) = \varphi[X(R_WX)^*] = \frac{\varphi[X(X|X|^{p-2})^*]}{\alpha} = \frac{\varphi[(X|X|^{p-2})^*X]}{\alpha}$$
$$= \frac{\varphi[|X|^p]}{\alpha} = 0,$$

so X = 0, by the faithfulness of φ .

3. CQ^* -algebras over finite von Neumann algebras. Let \mathfrak{M} be a von Neumann algebra and $\mathfrak{F} = \{\varphi_{\alpha} : \alpha \in \mathcal{I}\}$ be a family of normal *finite* traces on \mathfrak{M} . As usual, we say that the family \mathfrak{F} is *sufficient* if the conditions $X \in \mathfrak{M}, X \geq 0$ and $\varphi_{\alpha}(X) = 0$ for every $\alpha \in \mathcal{I}$ imply X = 0 (clearly, if $\mathfrak{F} = \{\varphi\}$, then \mathfrak{F} is sufficient if, and only if, φ is faithful). In this case, \mathfrak{M} is a finite von Neumann algebra [13, Ch. 7]. We assume in addition that the following condition (P) is satisfied:

(P)
$$\varphi_{\alpha}(\mathbb{I}) \leq 1, \quad \forall \alpha \in \mathcal{I}.$$

Then we define

$$\|X\|_{p,\mathcal{I}} = \sup_{\alpha \in \mathcal{I}} \|X\|_{p,\varphi_{\alpha}} = \sup_{\alpha \in \mathcal{I}} \varphi_{\alpha}(|X|^p)^{1/p}.$$

Since \mathfrak{F} is sufficient, $\|\cdot\|_{p,\mathcal{I}}$ is a norm on \mathfrak{M} .

We will need the following lemmas whose simple proofs will be omitted.

LEMMA 3.1. Let \mathfrak{M} be a von Neumann algebra in a Hilbert space \mathcal{H} , and $\{P_{\alpha}\}_{\alpha \in \mathcal{I}}$ a family of projections of \mathfrak{M} with

$$\bigvee_{\alpha \in \mathcal{I}} P_{\alpha} = \overline{P}$$

If $A \in \mathfrak{M}$ and $AP_{\alpha} = 0$ for every $\alpha \in \mathcal{I}$, then $A\overline{P} = 0$.

LEMMA 3.2. Let $\mathfrak{F} = \{\varphi_{\alpha}\}_{\alpha \in \mathcal{I}}$ be a sufficient family of normal finite traces on the von Neumann algebra \mathfrak{M} and let P_{α} be the support of φ_{α} . Then $\bigvee P_{\alpha} = \mathbb{I}$, where \mathbb{I} denotes the identity of \mathfrak{M} .

It is well known that the support of each φ_{α} enjoys the following properties:

(i) P_α ∈ Z(𝔅), the center of 𝔅, for each α ∈ I;
(ii) φ_α(X) = φ_α(XP_α) for each α ∈ I.

From the preceding two lemmas it follows that, if the P_{α} 's are as in Lemma 3.2, then

$$AP_{\alpha} = 0, \, \forall \alpha \in \mathcal{I} \Rightarrow A = 0.$$

If Condition (P) is fulfilled, then

$$\|X\|_{p,\mathcal{I}} = \sup_{\alpha \in \mathcal{I}} \|XP_{\alpha}\|_{p,\alpha}, \quad \forall X \in \mathfrak{M}.$$

Clearly, the sufficiency of the family of traces and Condition (P) imply that $\|\cdot\|_{p,\mathcal{I}}$ is a norm on \mathfrak{M} .

PROPOSITION 3.3. Let $\mathfrak{M}(p,\mathcal{I})$ denote the Banach space completion of \mathfrak{M} with respect to the norm $\|\cdot\|_{p,\mathcal{I}}$. Then $(\mathfrak{M}(p,\mathcal{I})[\|\cdot\|_{p,\mathcal{I}}], \mathfrak{M}[\|\cdot\|_{\mathcal{B}(\mathcal{H})}])$ is a CQ^* -algebra.

Proof. Indeed, we have

(1)
$$\|X^*\|_{p,\mathcal{I}} = \sup_{\alpha \in \mathcal{I}} \|X^* P_\alpha\|_{p,\alpha} = \sup_{\alpha \in \mathcal{I}} \|(XP_\alpha)^*\|_{p,\alpha} = \|X\|_{p,\mathcal{I}}, \quad \forall X \in \mathfrak{M}.$$

Furthermore, for every $X, Y \in \mathfrak{M}$,

(2)
$$\|XY\|_{p,\mathcal{I}} = \sup_{\alpha \in \mathcal{I}} \|XYP_{\alpha}\|_{p,\alpha} \le \|X\|_{\mathcal{B}(\mathcal{H})} \sup_{\alpha \in \mathcal{I}} \|YP_{\alpha}\|_{p,\alpha}$$
$$= \|X\|_{\mathcal{B}(\mathcal{H})} \|Y\|_{p,\mathcal{I}}.$$

Finally, Condition (P) implies that

$$||X||_{p,\mathcal{I}} \le ||X||_{\mathcal{B}(\mathcal{H})}, \quad \forall X \in \mathfrak{M}.$$

From (1) and (2) it follows that $\mathfrak{M}(p,\mathcal{I})$ is a Banach quasi *-algebra. It is clear that $\| \|_{\mathcal{B}(\mathcal{H})}$ satisfies conditions (a.1)–(a.4) of Section 1. Therefore $(\mathfrak{M}(p,\mathcal{I}),\mathfrak{M})$ is a CQ^* -algebra.

The next step consists in investigating the Banach space $\mathfrak{M}(p,\mathcal{I})[\|\cdot\|_{p,\mathcal{I}}]$. In particular we are interested in whether $\mathfrak{M}(p,\mathcal{I})[\|\cdot\|_{p,\mathcal{I}}]$ can be identified with a space of operators affiliated with \mathfrak{M} . For brevity, whenever no ambiguity can arise, we write \mathfrak{M}_p instead of $\mathfrak{M}(p,\mathcal{I})$.

Let $\mathfrak{F} = \{\varphi_{\alpha}\}_{\alpha \in \mathcal{I}}$ be a sufficient family of normal, finite traces on the von Neumann algebra \mathfrak{M} satisfying Condition (P). The traces φ_{α} are not necessarily faithful. Put $\mathfrak{M}_{\alpha} = \mathfrak{M}P_{\alpha}$, where, as before, P_{α} denotes the support of φ_{α} . Each \mathfrak{M}_{α} is a von Neumann algebra and φ_{α} is faithful in $\mathfrak{M}P_{\alpha}$ [14, Proposition V. 2.10].

More precisely,

$$\mathfrak{M}_{\alpha} := \mathfrak{M}P_{\alpha} = \{ Z = XP_{\alpha} \text{ for some } X \in \mathfrak{M} \}.$$

The positive cone \mathfrak{M}^+_{α} of \mathfrak{M}_{α} equals

 $\{Z = XP_{\alpha} \text{ for some } X \in \mathfrak{M}^+\}.$

For $Z = XP_{\alpha} \in \mathfrak{M}_{\alpha}^+$, we put

$$\sigma_{\alpha}(Z) := \varphi_{\alpha}(XP_{\alpha}).$$

F. Bagarello et al.

The definition of $\sigma_{\alpha}(Z)$ does not depend on the particular choice of X. Each σ_{α} is a normal finite faithful trace on \mathfrak{M}_{α} . It is then possible to consider the spaces $L^{p}(\mathfrak{M}_{\alpha}, \sigma_{\alpha}), p \geq 1$, in the usual way. The norm of $L^{p}(\mathfrak{M}_{\alpha}, \sigma_{\alpha})$ is indicated as $\|\cdot\|_{p,\alpha}$.

Let now (X_k) be a Cauchy sequence in $\mathfrak{M}[\|\cdot\|_{p,\mathcal{I}}]$. For each $\alpha \in \mathcal{I}$, we put $Z_k^{(\alpha)} = X_k P_{\alpha}$. Then, for each $\alpha \in \mathcal{I}$, $(Z_k^{(\alpha)})$ is a Cauchy sequence in $\mathfrak{M}_{\alpha}[\|\cdot\|_{p,\alpha}]$. Indeed, since $|Z_k^{(\alpha)} - Z_h^{(\alpha)}|^p = |X_k - X_h|^p P_{\alpha}$, we have

$$\begin{aligned} \|Z_k^{(\alpha)} - Z_h^{(\alpha)}\|_{p,\alpha} &= \sigma_\alpha (|Z_k^{(\alpha)} - Z_h^{(\alpha)}|^p)^{1/p} = \varphi_\alpha (|X_k - X_h|^p P_\alpha)^{1/p} \\ &= \varphi_\alpha (|X_k - X_h|^p)^{1/p} \to 0. \end{aligned}$$

Therefore, for each $\alpha \in \mathcal{I}$, there exists an operator $Z^{(\alpha)} \in L^p(\mathfrak{M}_{\alpha}, \sigma_{\alpha})$ such that

$$Z^{(\alpha)} = \| \cdot \|_{p,\alpha} \lim_{k \to \infty} Z_k^{(\alpha)}.$$

It is now natural to ask whether there exists an operator X, closed, densely defined, affiliated with \mathfrak{M} , which reduces to $Z^{(\alpha)}$ on \mathfrak{M}_{α} . To begin with, we assume that the projections P_{α} are mutually orthogonal. In this case, putting $\mathcal{H}_{\alpha} = P_{\alpha}\mathcal{H}$, we have

$$\mathcal{H} = \bigoplus_{\alpha \in \mathcal{I}} \mathcal{H}_{\alpha} = \Big\{ (f_{\alpha}) : f_{\alpha} \in \mathcal{H}_{\alpha}, \sum_{\alpha \in I} \|f_{\alpha}\|^{2} < \infty \Big\}.$$

We put

$$D(X) = \left\{ (f_{\alpha}) \in \mathcal{H} : f_{\alpha} \in D(Z^{(\alpha)}), \sum_{\alpha \in I} \|Z^{(\alpha)}f_{\alpha}\|^{2} < \infty \right\}$$

and for $f = (f_{\alpha}) \in D(X)$ we define

$$Xf = (Z^{(\alpha)}f_{\alpha}).$$

Then

- (i) D(X) is dense in \mathcal{H} . Indeed, D(X) contains all $f = (f_{\alpha})$ with $f_{\alpha} = 0$ except for a finite subset of indices.
- (ii) X is closed in \mathcal{H} . Indeed, let $f_n = (f_{n,\alpha})$ be a sequence of elements of D(X) with $f_n \to g = (g_\alpha) \in \mathcal{H}$ and $Xf_n \to h$. Since

$$f_n \to g \Leftrightarrow f_{n,\alpha} \to g_\alpha \in \mathcal{H}_\alpha, \, \forall \alpha \in \mathcal{I},$$

and

$$Xf_n \to h \iff (Xf_n)_{\alpha} \to h_{\alpha} \in \mathcal{H}_{\alpha}, \, \forall \alpha \in \mathcal{I},$$

the equalities $(Xf_n)_{\alpha} = Z^{(\alpha)}f_{n,\alpha}$ and the closedness of each $Z^{(\alpha)}$ in \mathcal{H}_{α} yield

$$g_{\alpha} \in D(Z^{(\alpha)})$$
 and $h_{\alpha} = Z^{(\alpha)}g_{\alpha}$.

It remains to check that $\sum_{\alpha \in \mathcal{I}} ||Z^{(\alpha)}g_{\alpha}||^2 < \infty$; but this is clear, since both $(Z^{(\alpha)}g_{\alpha})$ and $h = (h_{\alpha})$ are in \mathcal{H} .

(iii) $X\eta\mathfrak{M}$. Let $Y \in \mathfrak{M}'$. Then $Yf = (YP_{\alpha}f)$ for all $f \in \mathcal{H}$ and $YP_{\alpha} \in (\mathfrak{M}P_{\alpha})' = \mathfrak{M}'P_{\alpha}$. Therefore

$$XYf = ((XY)P_{\alpha}f) = (YXP_{\alpha}f) = YXf.$$

In conclusion, X is a measurable operator.

Thus, we have proved the following

PROPOSITION 3.4. Let $\mathfrak{F} = \{\varphi_{\alpha}\}_{\alpha \in \mathcal{I}}$ be a sufficient family of normal finite traces on the von Neumann algebra \mathfrak{M} . Assume that Condition (P) is fulfilled and that the φ_{α} 's have mutually orthogonal supports. Then \mathfrak{M}_p , $p \geq 1$, consists of measurable operators.

The analysis of the general case would be much simplified if, from a given sufficient family \mathfrak{F} of normal finite traces, one could extract (or construct) a *sufficient* subfamily \mathcal{G} of traces with mutually orthogonal supports. Apart from quite simple situations (for instance when \mathfrak{F} is finite or countable), we do not know if this is possible or not. There is however a relevant case where this can be fairly easily done. This occurs when \mathfrak{F} is a convex and w^* -compact family of traces on \mathfrak{M} .

LEMMA 3.5. Let \mathfrak{F} be a convex w^* -compact family of normal finite traces on a von Neumann algebra \mathfrak{M} ; assume that for each central operator Z with $0 \leq Z \leq \mathbb{I}$ and each $\eta \in \mathfrak{F}$ the functional $\eta_Z(X) := \eta(XZ)$ belongs to \mathfrak{F} . Let $\mathfrak{E}\mathfrak{F}$ be the set of extreme elements of \mathfrak{F} . If $\eta_1, \eta_2 \in \mathfrak{E}\mathfrak{F}, \eta_1 \neq n_2$, and P_1 and P_2 are their respective supports, then P_1 and P_2 are orthogonal.

Proof. Let P_1, P_2 be, respectively, the supports of η_1 and η_2 . We begin by proving that either $P_1 = P_2$ or $P_1P_2 = 0$. Indeed, assume that $P_1P_2 \neq 0$. We define

$$\eta_{1,2}(X) = \eta_1(XP_2), \quad X \in \mathfrak{M}.$$

Were $\eta_{1,2} = 0$, then, in particular $\eta_{1,2}(P_2) = 0$, i.e. $\eta_1(P_2) = 0$ and therefore, by definition of support, $P_2 \leq 1 - P_1$. This implies that $P_1P_2 = 0$, contrary to the assumption. We now show that the support of $\eta_{1,2}$ is P_1P_2 . Let, in fact, Q be a projection such that $\eta_{1,2}(Q) = 0$. Then

 $\eta_1(QP_2) = 0 \Rightarrow QP_2 \le 1 - P_1 \Rightarrow QP_2(1 - P_1) = QP_2 \Rightarrow QP_2P_1 = 0.$

Thus the largest Q for which this happens is $1 - P_2 P_1$. We conclude that the support of the trace $\eta_{1,2}$ is $P_1 P_2$. Finally, by definition, one has $\eta_{1,2}(X) = \eta_1(XP_2)$, and, since $XP_2 \leq X$,

$$\eta_{1,2}(X) = \eta_1(XP_2) \le \eta_1(X), \quad \forall X \in \mathfrak{M}.$$

Thus η_1 majorizes $\eta_{1,2}$. But η_1 is extreme in \mathfrak{F} . Therefore $\eta_{1,2}$ has the form $\lambda\eta_1$ with $\lambda \in [0,1]$. This implies that $\eta_{1,2}$ has the same support as η_1 ;

therefore $P_1P_2 = P_1$, i.e. $P_1 \leq P_2$. Starting from $\eta_{2,1}(X) = \eta_2(XP_1)$, we get, in a similar way, $P_2 \leq P_1$. Therefore, $P_1P_2 \neq 0$ implies $P_1 = P_2$. However, two different traces of $\mathfrak{C}\mathfrak{F}$ cannot have the same support. Indeed, assume that there exist $\eta_1, \eta_2 \in \mathfrak{F}$ having the same support P. Since P is central, we can consider the von Neumann algebra $\mathfrak{M}P$. The restrictions of η_1, η_2 to $\mathfrak{M}P$ are normal faithful semifinite traces. By [14, Prop. V.2.31] there exists a central element Z in $\mathfrak{M}P$ with $0 \leq Z \leq P$ (P is here considered as the unit of $\mathfrak{M}P$) such that

(3)
$$\eta_1(X) = (\eta_1 + \eta_2)(ZX), \quad \forall X \in (\mathfrak{M}P)_+.$$

Then Z also belongs to the center of \mathfrak{M} , since for every $V \in \mathfrak{M}$,

$$ZV = Z(VP + VP^{\perp}) = ZVP = VZP = VZ.$$

Therefore the functionals

$$\eta_{1,Z}(X) := \eta_1(XZ), \quad \eta_{2,Z}(X) := \eta_2(XZ), \quad X \in \mathfrak{M},$$

belong to the family \mathfrak{F} and are majorized, respectively, by the extreme elements η_1, η_2 . Then there exist $\lambda, \mu \in [0, 1]$ such that

$$\eta_1(XZ) = \lambda \eta_1(X), \quad \eta_2(XZ) = \mu \eta_1(X), \quad \forall X \in \mathfrak{M}.$$

If $\lambda = 1$ we would have, from (3), $\eta_2(ZX) = 0$ for every $X \in (\mathfrak{M}P)_+$; in particular, $\eta_2(|Z|^2) = 0$; this implies that Z = 0. Thus $\lambda \neq 1$. Analogously, $\mu \neq 0$: indeed, if $\mu = 0$, then $\eta_1(X) = \lambda \eta_1(X)$ and thus $\lambda = 1$. Therefore there exist $\lambda, \mu \in (0, 1)$ such that

$$\eta_1(X) = \lambda \eta_1(X) + \mu \eta_2(X), \quad \forall X \in \mathfrak{M}P,$$

which in turn implies

$$\eta_1(X) = \lambda \eta_1(X) + \mu \eta_2(X), \quad \forall X \in \mathfrak{M}.$$

Hence,

$$(1-\lambda)\eta_1(X) = \mu\eta_2(X), \quad \forall X \in \mathfrak{M}$$

From the last equality, dividing by $\max\{1 - \lambda, \mu\}$ one finds that one of the two elements is a convex combination of the other and of 0, which is absurd. In conclusion, different supports of extreme traces of \mathfrak{F} are orthogonal.

Since, for every $X \in \mathfrak{M}$, $||X||_{p,\mathcal{I}}$ remains the same if computed either with respect to \mathfrak{F} or to $\mathfrak{E}\mathfrak{F}$, we can deduce the following

THEOREM 3.6. Let \mathfrak{F} be a convex and w^* -compact sufficient family of normal finite traces on the von Neumann algebra \mathfrak{M} . Assume that \mathfrak{F} satisfies Condition (P) and that for each central operator Z with $0 \leq Z \leq \mathbb{I}$ and each $\eta \in \mathfrak{F}$ the functional $\eta_Z(X) := \eta(XZ)$ belongs to \mathfrak{F} . Then the completion $\mathfrak{M}_p[\|\cdot\|_{p,\mathcal{I}}]$ consists of measurable operators.

Families of traces satisfying the assumptions of Theorem 3.6 will be constructed in the next section.

4. A representation theorem. Once we have constructed some CQ^* algebras of operators affiliated to a given von Neumann algebra, it is natural to ask under which conditions an abstract CQ^* -algebra $(\mathfrak{X}, \mathfrak{A}_0)$ can be realized as a CQ^* -algebra of this type.

Let $(\mathfrak{X}[\|\cdot\|], \mathfrak{A}_0[\|\cdot\|_0])$ be a CQ^* -algebra with unit e and let

$$\mathcal{T}(\mathfrak{X}) = \{ \Omega \in \mathcal{S}(\mathfrak{X}) : \Omega(x, x) = \Omega(x^*, x^*), \, \forall x \in \mathfrak{X} \}.$$

We remark that if $\Omega \in \mathcal{T}(\mathfrak{X})$ then, by polarization, $\Omega(y^*, x^*) = \Omega(x, y)$ for all $x, y \in \mathfrak{X}$. It is easy to prove that the set $\mathcal{T}(\mathfrak{X})$ is convex.

For each $\Omega \in \mathcal{T}(\mathfrak{X})$, we define a linear functional ω_{Ω} on \mathfrak{A}_0 by

$$\omega_{\Omega}(a) := \Omega(a, e), \quad a \in \mathfrak{A}_0.$$

We have

$$\omega_{\Omega}(a^*a) = \Omega(a^*a, e) = \Omega(a, a) = \Omega(a^*, a^*) = \omega_{\Omega}(aa^*) \ge 0.$$

This shows at once that ω_{Ω} is positive and tracial. We put

$$\mathfrak{M}_{\mathcal{T}}(\mathfrak{A}_0) = \{\omega_{\Omega} : \Omega \in \mathcal{T}(\mathfrak{X})\}.$$

From the convexity of $\mathcal{T}(\mathfrak{X})$ it follows easily that $\mathfrak{M}_{\mathcal{T}}(\mathfrak{A}_0)$ is also convex. If we denote by $||f||^{\sharp}$ the norm of the bounded functional f on \mathfrak{A}_0 , we also get

$$\|\omega_{\Omega}\|^{\sharp} = \omega_{\Omega}(e) = \Omega(e, e) \le \|e\|^{2}.$$

Therefore

$$\mathfrak{M}_{\mathcal{T}}(\mathfrak{A}_0) \subseteq \{ \omega \in \mathfrak{A}_0^{\sharp} : \|\omega\|^{\sharp} \le \|e\|^2 \},\$$

where \mathfrak{A}_0^{\sharp} denotes the topological dual of $\mathfrak{A}_0[\|\cdot\|_0]$. Setting

$$f_{\Omega}(a) := \frac{\omega_{\Omega}(a)}{\|e\|^2}$$

we get

$$f_{\Omega} \in \{ \omega \in \mathfrak{A}_0^{\sharp} : \|\omega\|^{\sharp} \le 1 \}.$$

By the Banach–Alaglou theorem, the set $\{\omega \in \mathfrak{A}_0^{\sharp} : \|\omega\|^{\sharp} \leq 1\}$ is w^* -compact in \mathfrak{A}_0^{\sharp} . Then $\{\omega \in \mathfrak{A}_0^{\sharp} : \|\omega\|^{\sharp} \leq \|e\|^2\}$ is also w^* -compact.

PROPOSITION 4.1. $\mathfrak{M}_{\mathcal{T}}(\mathfrak{A}_0)$ is w^{*}-closed and, therefore, w^{*}-compact.

Proof. Let $(\omega_{\Omega_{\alpha}})$ be a net in $\mathfrak{M}_{\mathcal{T}}(\mathfrak{A}_0)$ w^* -converging to a functional $\omega \in \mathfrak{A}_0^{\sharp}$. We will show that $\omega = \omega_{\Omega}$ for some $\Omega \in \mathcal{T}(\mathfrak{X})$. Let us begin by defining $\Omega_0(a,b) = \omega(b^*a), a, b \in \mathfrak{A}_0$. By the very definition, $\omega_{\Omega_{\alpha}}(a) \to \omega(a) = \Omega_0(a,e)$. Moreover, for every $a, b \in \mathfrak{A}_0$,

$$\Omega_0(a,b) = \omega(b^*a) = \lim_{\alpha} \omega_{\Omega_\alpha}(b^*a) = \lim_{\alpha} \Omega_\alpha(a,b).$$

Therefore

$$\Omega_0(a,a) = \lim_{\alpha} \Omega_\alpha(a,a) \ge 0$$

F. Bagarello et al.

We also have

$$\Omega_0(a,b)| = \lim_{\alpha} |\Omega_\alpha(a,b)| \le ||a|| \, ||b||.$$

Hence Ω_0 can be extended by continuity to $\mathfrak{X} \times \mathfrak{X}$. Indeed, let

$$x = \| \cdot \| - \lim_{n} a_n, \quad y = \| \cdot \| - \lim_{n} b_n, \quad (a_n), (b_n) \subseteq \mathfrak{A}_0.$$

Then

$$\begin{aligned} |\Omega_0(a_n, b_n) - \Omega_0(a_m, b_m)| \\ &= |\Omega_0(a_n, b_n) - \Omega_0(a_m, b_n) + \Omega_0(a_m, b_n) - \Omega_0(a_m, b_m)| \\ &\leq |\Omega_0(a_n - a_m, b_n)| + |\Omega_0(a_m, b_n - b_m)| \\ &\leq ||a_n - a_m|| \, ||b_n|| + ||a_m|| \, ||b_n - b_m|| \to 0, \end{aligned}$$

since $(||a_n||)$ and $(||b_n||)$ are bounded sequences. Therefore we can define

$$\Omega(x,y) = \lim_{n} \Omega_0(a_n, b_n).$$

Clearly, $\Omega(x, x) \geq 0$ for all $x \in \mathfrak{X}$. It is easily checked that $\Omega \in \mathcal{T}(\mathfrak{X})$. This concludes the proof.

Since $\mathfrak{M}_{\mathcal{T}}(\mathfrak{A}_0)$ is convex and w^{*}-compact, by the Krein–Milman theorem it follows that it has extreme points and it coincides with the w^* -closure of the convex hull of the set $\mathfrak{EM}_{\mathcal{T}}(\mathfrak{A}_0)$ of its extreme points.

By the Gelfand–Naimark theorem each C^* -algebra is isometrically *isomorphic to a C^* -algebra of bounded operators in Hilbert space. This isometric *-isomorphism is called the universal *-representation.

Thus, let π be the universal *-representation of \mathfrak{A}_0 and $\pi(\mathfrak{A}_0)''$ the von Neumann algebra generated by $\pi(\mathfrak{A}_0)$.

For every $\Omega \in \mathcal{T}(\mathfrak{X})$ and $a \in \mathfrak{A}_0$, we put

$$\varphi_{\Omega}(\pi(a)) = \omega_{\Omega}(a).$$

Then, for each $\Omega \in \mathcal{T}(\mathfrak{X}), \varphi_{\Omega}$ is a positive bounded linear functional on the operator algebra $\pi(\mathfrak{A}_0)$. Clearly,

$$\varphi_{\Omega}(\pi(a)) = \omega_{\Omega}(a) = \Omega(a, e),$$
$$|\varphi_{\Omega}(\pi(a))| = |\omega_{\Omega}(a)| = |\Omega(a, e)| \le ||a|| \, ||e|| \le ||a||_0 ||e||^2 = ||\pi(a)|| \, ||e||^2.$$

Thus φ_{Ω} is continuous on $\pi(\mathfrak{A}_0)$.

By [7, Theorem 10.1.2], φ_{Ω} is weakly continuous and so it extends uniquely to $\pi(\mathfrak{A}_0)''$. Moreover, since φ_{Ω} is a trace on $\pi(\mathfrak{A}_0)$, the extension $\widetilde{\varphi}_{\Omega}$ is also a trace on $\mathfrak{M} := \pi(\mathfrak{A}_0)''$. The norm $\|\widetilde{\varphi}_{\Omega}\|^{\sharp}$ of $\widetilde{\varphi}_{\Omega}$ as a linear functional on \mathfrak{M} equals the norm of φ_{Ω} as a functional on $\pi(\mathfrak{A}_0)$. We have

$$\|\widetilde{\varphi}_{\Omega}\|^{\sharp} = \widetilde{\varphi}_{\Omega}(\pi(e)) = \varphi_{\Omega}(\pi(e)) = \omega_{\Omega}(e) \le \|e\|^{2}.$$

The set

$$\mathfrak{N}_{\mathcal{T}}(\mathfrak{A}_0) = \{ \widetilde{\varphi}_{\Omega} : \Omega \in \mathcal{T}(\mathfrak{X}) \}$$

300

is convex and w^* -compact in \mathfrak{M}^{\sharp} , as can be easily seen by considering the map

$$\omega_{\Omega} \in \mathfrak{M}_{\mathcal{T}}(\mathfrak{A}_0) \mapsto \widetilde{\varphi}_{\Omega} \in \mathfrak{N}_{\mathcal{T}}(\mathfrak{A}_0),$$

which is linear and injective, and by taking into account the fact that, if $a_{\alpha} \to a$ in $\mathfrak{A}_0[\|\cdot\|]$, then $\widetilde{\varphi}_{\Omega}(\pi(a_{\alpha}) - \pi(a)) = \omega_{\Omega}(a_{\alpha} - a) \to 0$.

Let $\mathfrak{EN}_{\mathcal{T}}(\mathfrak{A}_0)$ be the set of extreme points of $\mathfrak{N}_{\mathcal{T}}(\mathfrak{A}_0)$; then $\mathfrak{N}_{\mathcal{T}}(\mathfrak{A}_0)$ coincides with the w^* -closure of the convex hull of $\mathfrak{EN}_{\mathcal{T}}(\mathfrak{A}_0)$. The extreme elements of $\mathfrak{N}_{\mathcal{T}}(\mathfrak{A}_0)$ are easily characterized by the following

PROPOSITION 4.2. $\widetilde{\varphi}_{\Omega}$ is extreme in $\mathfrak{N}_{\mathcal{T}}(\mathfrak{A}_0)$ if, and only if, ω_{Ω} is extreme in $\mathfrak{M}_{\mathcal{T}}(\mathfrak{A}_0)$.

DEFINITION 4.3. A Banach quasi *-algebra $(\mathfrak{X}[\|\cdot\|], \mathfrak{A}_0[\|\cdot\|_0])$ is said to be strongly regular if $\mathcal{T}(\mathfrak{X})$ is sufficient and

$$||x|| = \sup_{\Omega \in \mathcal{T}(\mathfrak{X})} \Omega(x, x)^{1/2}, \quad \forall x \in \mathfrak{X}.$$

EXAMPLE 4.4. If \mathfrak{M} is a von Neumann algebra with a sufficient family \mathfrak{F} of normal finite traces, then the CQ^* -algebra $(\mathfrak{M}_p, \mathfrak{M})$ constructed in Section 3 is strongly regular. This follows from the definition of the norm in the completion.

EXAMPLE 4.5. If φ is a normal faithful finite trace on \mathfrak{M} , then $\mathcal{T}(L^p(\varphi))$, for $p \geq 2$, is sufficient. To see this, we first define Ω_0 on $\mathfrak{M} \times \mathfrak{M}$ by

$$\Omega_0(X,Y) = \varphi(Y^*X), \quad X,Y \in \mathfrak{M}.$$

Then

$$|\Omega_0(X,Y)| = |\varphi(Y^*X)| \le ||X||_p ||Y||_{p'}, \quad \forall X, Y \in \mathfrak{M}.$$

Since $p \ge 2$, $L^p(\varphi)$ is continuously embedded into $L^{p'}(\varphi)$. Thus, there exists $\gamma > 0$ such that $||Y||_{p'} \le \gamma ||Y||_p$ for every $Y \in \mathfrak{M}$. Define

$$\widetilde{\Omega}(X,Y) = \frac{1}{\gamma} \Omega_0(X,Y), \quad X,Y \in \mathfrak{M}.$$

Then

$$|\Omega(X,Y)| \le ||X||_p ||Y||_p, \quad \forall X, Y \in \mathfrak{M}.$$

Hence, $\widetilde{\Omega}$ has a unique extension, denoted by the same symbol, to $L^p(\varphi) \times L^p(\varphi)$. It is easily seen that $\widetilde{\Omega} \in \mathcal{T}(L^p(\varphi))$.

Were, for some $X \in L^p(\varphi)$, $\Omega(X, X) = 0$ for every $\Omega \in \mathcal{T}(L^p(\varphi))$, we would have $\widetilde{\Omega}(X, X) = ||X||_2^2 = 0$. This clearly implies X = 0. The equality $\widetilde{\Omega}(X, X) = ||X||_2^2$ also shows that $L^2(\varphi)$ is strongly regular.

Let now $(\mathfrak{X}[\|\cdot\|], \mathfrak{A}_0[\|\cdot\|_0])$ be a CQ^* -algebra with unit e and sufficient $\mathcal{T}(\mathfrak{X})$. Let $\pi : \mathfrak{A}_0 \hookrightarrow \mathcal{B}(\mathcal{H})$ be the universal representation of \mathfrak{A}_0 . Assume that the C^* -algebra $\pi(\mathfrak{A}_0) := \mathfrak{M}$ is a von Neumann algebra. In this case,

 $\mathfrak{M}_{\mathcal{T}}(\mathfrak{A}_0) = \mathfrak{N}_{\mathcal{T}}(\mathfrak{A}_0)$ and $\mathfrak{N}_{\mathcal{T}}(\mathfrak{A}_0)$ is a family of traces satisfying Condition (P). Therefore, by Proposition 3.3, we can construct, for $p \geq 1$, the CQ^* -algebras $(\mathfrak{M}_p[\|\cdot\|_{p,\mathfrak{N}_{\mathcal{T}}}(\mathfrak{A}_0)], \mathfrak{M}[\|\cdot\|])$. Clearly, \mathfrak{A}_0 can be identified with \mathfrak{M} . It is then natural to ask if \mathfrak{X} can also be identified with some \mathfrak{M}_p . The next theorem provides the answer to this question.

THEOREM 4.6. Let $(\mathfrak{X}[\|\cdot\|], \mathfrak{A}_0[\|\cdot\|_0])$ be a CQ^* -algebra with unit e and and sufficient $\mathcal{T}(\mathfrak{X})$. Then there exist a von Neumann algebra \mathfrak{M} and a monomorphism

$$\Phi: x \in \mathfrak{X} \mapsto \Phi(x) := X \in \mathfrak{M}_2$$

with the following properties:

- (i) Φ extends the universal *-representation π of \mathfrak{A}_0 ;
- (ii) $\Phi(x^*) = \Phi(x)^*$ for all $x \in \mathfrak{X}$;
- (iii) $\Phi(xy) = \Phi(x)\Phi(y)$ for every $x, y \in \mathfrak{X}$ such that $x \in \mathfrak{A}_0$ or $y \in \mathfrak{A}_0$.

Then \mathfrak{X} can be identified with a space of operators affiliated with \mathfrak{M} . If, in addition, $(\mathfrak{X}, \mathfrak{A}_0)$ is strongly regular, then

- (iv) Φ is an isometry of \mathfrak{X} into \mathfrak{M}_2 ;
- (v) if 𝔄₀ is a W^{*}-algebra, then Φ is an isometric ^{*}-isomorphism of 𝔅 onto 𝔅₂.

Proof. Let π be the universal representation of \mathfrak{A}_0 and assume first that $\pi(\mathfrak{A}_0) =: \mathfrak{M}$ is a von Neumann algebra. By Proposition 4.1, the family $\mathfrak{M}_{\mathcal{T}}(\mathfrak{A}_0)$ of traces is convex and w^* -compact. Moreover, for each central positive element Z with $0 \leq Z \leq \mathbb{I}$ and for $\varphi \in \mathfrak{M}_{\mathcal{T}}(\mathfrak{A}_0)$, the trace $\varphi_Z(X) := \varphi(ZX)$ still belongs to $\mathfrak{M}_{\mathcal{T}}(\mathfrak{A}_0)$. Indeed, starting from the form $\Omega \in \mathcal{T}(\mathfrak{X})$ which generates φ , one can define the sequilinear form

$$\Omega_Z(x,y) := \Omega(x\pi^{-1}(Z^{1/2}), y\pi^{-1}(Z^{1/2})), \quad x, y \in \mathfrak{X}.$$

We check that $\Omega_Z \in \mathcal{T}(\mathfrak{X})$:

(i)
$$\Omega_Z(x,x) = \Omega(x\pi^{-1}(Z^{1/2}), x\pi^{-1}(Z^{1/2})) \ge 0$$
 for all $x \in \mathfrak{X}$.

(ii) For every $x \in \mathfrak{X}$ and every $a, b \in \mathfrak{A}_0$, we have

$$\Omega_Z(xa,b) = \Omega(xa\pi^{-1}(Z^{1/2}), b\pi^{-1}(Z^{1/2})) = \Omega(a\pi^{-1}(Z^{1/2}), x^*b\pi^{-1}(Z^{1/2}))$$

= $\Omega_Z(a, x^*b).$

(iii) For every $x, y \in \mathfrak{X}$, we have

$$\begin{aligned} |\Omega_Z(x,y)| &= |\Omega(x\pi^{-1}(Z^{1/2}), y\pi^{-1}(Z^{1/2}))| \le ||x\pi^{-1}(Z^{1/2})|| ||\pi^{-1}(Z^{1/2})y|| \\ &\le ||x|| ||\pi^{-1}(Z^{1/2})||_0 ||y|| ||\pi^{-1}(Z^{1/2})||_0 \le ||x|| ||y||. \end{aligned}$$

(iv) For every $x \in \mathfrak{X}$,

$$\Omega_Z(x^*, x^*) = \Omega(x^* \pi^{-1}(Z^{1/2}), x^* \pi^{-1}(Z^{1/2})) = \Omega(x \pi^{-1}(Z^{1/2}), x \pi^{-1}(Z^{1/2}))$$

= $\Omega_Z(x, x).$

Moreover, Ω_Z defines, for every $A = \pi(a) \in \mathfrak{M} = \pi(\mathfrak{A}_0)$, the following trace:

$$\varphi_{\Omega_Z}(A) = \Omega_Z(a, e) = \Omega(a\pi^{-1}(Z^{1/2}), \pi^{-1}(Z^{1/2}))$$

= $\Omega(a\pi^{-1}(Z), e) = \Omega(\pi^{-1}(AZ), e) = \varphi_\Omega(AZ)$

Thus, the family of traces $\mathfrak{N}_{\mathcal{T}}(\mathfrak{A}_0) (= \mathfrak{M}_{\mathcal{T}}(\mathfrak{A}_0))$ satisfies the assumptions of Lemma 3.5; therefore, if $\eta_1, \eta_2 \in \mathfrak{E}\mathfrak{N}_{\mathcal{T}}(\mathfrak{A}_0)$, and if P_1 and P_2 denote their respective supports, one has $P_1P_2 = 0$.

By the sufficiency of $\mathcal{T}(\mathfrak{X})$ we get

$$\|X\|_{2,\mathfrak{M}_{\mathcal{T}}(\mathfrak{A}_{0})} := \sup_{\varphi \in \mathfrak{M}_{\mathcal{T}}(\mathfrak{A}_{0})} \|X\|_{2,\varphi} = \sup_{\varphi \in \mathfrak{EM}_{\mathcal{T}}(\mathfrak{A}_{0})} \|X\|_{2,\varphi}, \quad \forall X \in \pi(\mathfrak{A}_{0}).$$

By Proposition 3.3, the Banach space \mathfrak{M}_2 , completion of \mathfrak{M} with respect to the norm $\|\cdot\|_{2,\mathfrak{N}_T(\mathfrak{A}_0)}$, is a CQ^* -algebra. Moreover, since the supports of the extreme traces satisfy the assumptions of Theorem 3.6, the CQ^* -algebra $(\mathfrak{M}_2[\|\cdot\|_{2,\mathfrak{N}_T(\mathfrak{A}_0)}], \mathfrak{M}[\|\cdot\|])$ consists of operators affiliated with \mathfrak{M} .

We now define the map Φ . For every $x \in \mathfrak{X}$, there exists a sequence (a_n) of elements of \mathfrak{A}_0 converging to x with respect to the norm of $\mathfrak{X}(\|\cdot\|)$. Put $X_n = \pi(a_n), n \in \mathbb{N}$. Then

$$\begin{aligned} \|X_n - X_m\|_{2,\mathfrak{N}_{\mathcal{T}}(\mathfrak{A}_0)} &\coloneqq \sup_{\varphi \in \mathfrak{N}_{\mathcal{T}}(\mathfrak{A}_0)} \|\pi(a_n) - \pi(a_m)\|_{2,\varphi} \\ &= \sup_{\Omega \in \mathcal{T}(\mathfrak{X})} [\Omega((a_n - a_m)^*(a_n - a_m), e)]^{1/2} \\ &= \sup_{\Omega \in \mathcal{T}(\mathfrak{X})} [\Omega(a_n - a_m, a_n - a_m)]^{1/2} \le \|a_n - a_m\| \to 0. \end{aligned}$$

Let \widetilde{X} be the $\|\cdot\|_{2,\mathfrak{M}_{\mathcal{T}}(\mathfrak{A}_0)}$ -limit of the sequence (X_n) in \mathfrak{M}_2 . We define

$$\Phi(x) := \widetilde{X}.$$

For each $x \in \mathfrak{X}$, we put

$$p_{\mathcal{T}(\mathfrak{X})}(x) = \sup_{\Omega \in \mathcal{T}(\mathfrak{X})} \Omega(x, x)^{1/2}.$$

Owing to the sufficiency of $\mathcal{T}(\mathfrak{X})$, $p_{\mathcal{T}(\mathfrak{X})}$ is a norm on \mathfrak{X} weaker than $\|\cdot\|$. This implies that

$$\|\widetilde{X}\|_{2,\mathfrak{N}_{\mathcal{T}}(\mathfrak{A}_0)}^2 = \lim_{n \to \infty} \sup_{\Omega \in \mathcal{T}(\mathfrak{X})} \Omega(a_n, a_n) = \lim_{n \to \infty} p_{\mathcal{T}(\mathfrak{X})}(a_n)^2 = p_{\mathcal{T}(\mathfrak{X})}(x)^2.$$

From this equality it follows easily that the linear map Φ is well defined and injective. Condition (iii) can be easily proved. If $(\mathfrak{X}, \mathfrak{A}_0)$ is strongly regular, then $p_{\mathcal{T}(\mathfrak{X})}(x) = ||x||$ for every $x \in \mathfrak{X}$. Thus Φ is isometric. Moreover, in this case, Φ is surjective: indeed, if $T \in \mathfrak{M}_2$, then there exists a sequence (T_n) of bounded operators on $\pi(\mathfrak{A}_0)$ which converges to T with respect to the norm $\|\cdot\|_{2,\mathfrak{M}_{\mathcal{T}}(\mathfrak{A}_0)}$. The corresponding sequence $(t_n) \subset \mathfrak{A}_0$, $T_n = \Phi(t_n)$, converges to t with respect to the norm of \mathfrak{X} and $\Phi(t) = T$ by definition. Therefore Φ is an isometric *-isomorphism.

To complete the proof, it is enough to prove that the given CQ^* -algebra $(\mathfrak{X}, \mathfrak{A}_0)$ can be embedded in a CQ^* -algebra $(\mathfrak{K}, \mathfrak{B}_0)$ where \mathfrak{B}_0 is a W^* algebra. Of course, we may directly work with $\pi(\mathfrak{A}_0)$ with π the universal representation of \mathfrak{A}_0 . The family of traces $\mathfrak{N}_{\mathcal{T}}(\mathfrak{A}_0)$ defined on $\pi(\mathfrak{A}_0)''$ is not necessarily sufficient. Let $P_{\Omega}, \ \Omega \in \mathcal{T}(\mathfrak{X})$, denote the support of $\widetilde{\varphi}_{\Omega}$ and let

$$P = \bigvee_{\Omega \in \mathcal{T}(\mathfrak{X})} P_{\Omega}.$$

Then $\mathfrak{B}_0 := \pi(\mathfrak{A}_0)''P$ is a von Neumann algebra that we can complete with respect to the norm

$$\|X\|_{2,\mathfrak{N}_{\mathcal{T}}(\mathfrak{A}_0)} = \sup_{\Omega \in \mathcal{T}(\mathfrak{X})} \widetilde{\varphi}_{\Omega}(X^*X), \quad X \in \pi(\mathfrak{A}_0)'' P.$$

We obtain in this way a CQ^* -algebra $(\mathfrak{K}, \mathfrak{B}_0)$ with \mathfrak{B}_0 a W^* -algebra. The faithfulness of π on \mathfrak{A}_0 implies that

$$\pi(a)P = \pi(a), \quad \forall a \in \mathfrak{A}_0.$$

It remains to prove that \mathfrak{X} can be identified with a subspace of \mathfrak{K} . But this can be shown as in the first part: for each $x \in \mathfrak{X}$ there exists a sequence $(a_n) \subset \mathfrak{A}_0$ such that $||x - a_n|| \to 0$ as $n \to \infty$. We now put $X_n = \pi(a_n)$. Then, proceeding as before, we determine the element $\widehat{X} \in \mathfrak{K}$, where

$$\hat{X} = \| \cdot \|_{2,\mathfrak{N}_{\mathcal{T}}(\mathfrak{A}_0)} \text{-lim}\,\pi(a_n)P$$

It is easy to see that the map $x \in \mathfrak{X} \mapsto \widehat{X} \in \mathfrak{K}$ is injective. If $(\mathfrak{X}, \mathfrak{A}_0)$ is regular, but $\pi(\mathfrak{A}_0) \subset \pi(\mathfrak{A}_0)''$, then Φ is an isometry of \mathfrak{X} into \mathfrak{M}_2 , but need not be surjective.

Acknowledgments. We acknowledge the financial support of MIUR through national and local grants.

References

- J.-P. Antoine, A. Inoue and C. Trapani, Partial *-Algebras and Their Operator Realizations, Kluwer, Dordrecht, 2002.
- F. Bagarello, A. Inoue and C. Trapani, Some classes of topological quasi *-algebras, Proc. Amer. Math. Soc. 129 (2001), 2973–2980.
- F. Bagarello and C. Trapani, States and representations of CQ*-algebras, Ann. Inst. H. Poincaré 61 (1994), 103–133.
- [4] —, —, *L^p-spaces as quasi* *-algebras, J. Math. Anal. Appl. 197 (1996), 810–824.
- [5] —, —, CQ*-algebras: structure properties, Publ. RIMS Kyoto Univ. 32 (1996), 85–116.
- [6] —, —, Morphisms of certain Banach C*-modules, ibid. 36 (2000), 681–705.

- [7] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras. Vol. II, Academic Press, New York, 1986.
- [8] G. Lassner, Topological algebras and their applications in quantum statistics, Wiss.
 Z. KMU-Leipzig, Math.-Naturwiss. R. 30 (1981), 572-595.
- [9] —, Algebras of unbounded operators and quantum dynamics, Phys. A 124 (1984), 471–480.
- [10] E. Nelson, Note on non-commutative integration, J. Funct. Anal. 15 (1974), 103–116.
- K. Schmüdgen, Unbounded Operator Algebras and Representation Theory, Akademie-Verlag, Berlin, 1990.
- I. E. Segal, A noncommutative extension of abstract integration, Ann. of Math. 57 (1953), 401–457.
- [13] Ş. Strătilă and L. Zsidó, Lectures on von Neumann Algebras, Editura Academiei, Bucureşti, and Abacus Press, Tunbridge Wells, 1979.
- [14] M. Takesaki, Theory of Operator Algebras. I, Springer, New York, 1979.
- C. Trapani and S. Triolo, Representations of certain Banach C^{*}-modules, Mediterr. J. Math. 1 (2004), 441–461.

F. Bagarello Dipartimento di Metodi e Modelli Matematici Università di Palermo I-90128 Palermo, Italy E-mail: bagarell@unipa.it C. Trapani and S. Triolo Dipartimento di Matematica ed Applicazioni Università di Palermo I-90123 Palermo, Italy E-mail: trapani@unipa.it salvo@math.unipa.it

Received October 4, 2005 Revised version November 18, 2005

(5768)