Quasi *-algebras of measurable operators

by
Fabio Bagarello, Camillo Trapani and Salvatore Triolo (Palermo)

Abstract

Non-commutative L^{p}-spaces are shown to constitute examples of a class of Banach quasi ${ }^{*}$-algebras called $C Q^{*}$-algebras. For $p \geq 2$ they are also proved to possess a sufficient family of bounded positive sesquilinear forms with certain invariance properties. $C Q^{*}$-algebras of measurable operators over a finite von Neumann algebra are also constructed and it is proven that any abstract $C Q^{*}$-algebra ($\mathfrak{X}, \mathfrak{A}_{0}$) with a sufficient family of bounded positive tracial sesquilinear forms can be represented as a $C Q^{*}$-algebra of this type.

1. Introduction and preliminaries. A quasi ${ }^{*}$-algebra is a couple $\left(\mathfrak{X}, \mathfrak{A}_{0}\right)$, where \mathfrak{X} is a vector space with involution *, \mathfrak{A}_{0} is a ${ }^{*}$-algebra and a vector subspace of \mathfrak{X}, and \mathfrak{X} is an \mathfrak{A}_{0}-bimodule whose module operations and involution extend those of \mathfrak{A}_{0}. Quasi *-algebras were introduced by Lassner $[8,9,11]$ to provide an appropriate mathematical framework for certain quantum physical systems for which the usual algebraic approach in terms of C^{*}-algebras turned out to be insufficient. In these applications they usually arise by taking the completion of the C^{*}-algebra of observables in a weaker topology satisfying certain physical requirements. The case where this weaker topology is a norm topology has been considered in a series of previous papers [3]-[2], where $C Q^{*}$-algebras were introduced: a $C Q^{*}$-algebra is, indeed, a quasi ${ }^{*}$-algebra $\left(\mathfrak{X}, \mathfrak{A}_{0}\right)$ where \mathfrak{X} is a Banach space with respect to a norm $\left\|\|\right.$ possessing an isometric involution and \mathfrak{A}_{0} is a C^{*}-algebra with respect to a norm $\|\cdot\|_{0}$, which is dense in $\mathfrak{X}[\|\cdot\|]$.

Since any C^{*}-algebra \mathfrak{A}_{0} has a faithful *-representation π, it is natural to ask if this completion can also be realized as a quasi ${ }^{*}$-algebra of operators affiliated to $\pi\left(\mathfrak{A}_{0}\right)^{\prime \prime}$. The Segal-Nelson theory [12, 10] of non-commutative integration provides a number of mathematical tools for dealing with this problem.

[^0]The paper is organized as follows. In Section 2 we consider non-commutative L^{p}-spaces constructed starting from a von Neumann algebra \mathfrak{M} and a normal, semifinite, faithful trace τ as Banach quasi ${ }^{*}$-algebras. In particular if φ is finite, then it is shown that $\left(L^{p}(\varphi), \mathfrak{M}\right)$ is a $C Q^{*}$-algebra. If $p \geq 2$, they even possess a sufficient family of positive sesquilinear forms enjoying certain invariance properties.

In Section 3, starting from a family \mathfrak{F} of normal finite traces on a von Neumann algebra \mathfrak{M}, we prove that the completion of \mathfrak{M} with respect to a norm defined in a natural way by \mathfrak{F} is indeed a $C Q^{*}$-algebra consisting of measurable operators, in Segal's sense, and therefore affiliated with \mathfrak{M}.

Finally, in Section 4, we prove that any $C Q^{*}$-algebra ($\mathfrak{X}, \mathfrak{A}_{0}$) with a sufficient family of bounded positive tracial sesquilinear forms can be continuously embedded into the $C Q^{*}$-algebra of measurable operators constructed in Section 3.

To keep the paper sufficiently self-contained, we collect below some preliminary definitions and propositions that will be used in what follows.

Let $\left(\mathfrak{X}, \mathfrak{A}_{0}\right)$ be a quasi ${ }^{*}$-algebra. The unit of $\left(\mathfrak{X}, \mathfrak{A}_{0}\right)$ is an element $e \in \mathfrak{A}_{0}$ such that $x e=e x=x$ for every $x \in \mathfrak{X}$. A quasi ${ }^{*}$-algebra $\left(\mathfrak{X}, \mathfrak{A}_{0}\right)$ is said to be locally convex if \mathfrak{X} is endowed with a topology τ which makes of \mathfrak{X} a locally convex space and such that the involution $a \mapsto a^{*}$ and the multiplications $a \mapsto a b, a \mapsto b a, b \in \mathfrak{A}_{0}$, are continuous. If τ is a norm topology and the involution is isometric with respect to the norm, we say that ($\mathfrak{X}, \mathfrak{A}_{0}$) is a normed quasi *-algebra and, if it is complete, we say it is a Banach quasi *-algebra.

Definition 1.1. Let $\left(\mathfrak{X}, \mathfrak{A}_{0}\right)$ be a Banach quasi ${ }^{*}$-algebra with norm $\|\cdot\|$ and involution ${ }^{*}$. Assume that a second norm $\|\cdot\|_{0}$ is defined on \mathfrak{A}_{0}, satisfying the following conditions:

$$
\begin{aligned}
& \text { (a.1) }\left\|a^{*} a\right\|_{0}=\|a\|_{0}^{2}, \forall a \in \mathfrak{A}_{0} ; \\
& \text { (a.2) }\|a\| \leq\|a\|_{0}, \forall a \in \mathfrak{A}_{0} ; \\
& \text { (a.3) }\|a x\| \leq\|a\|_{0}\|x\|, \forall a \in \mathfrak{A}_{0}, x \in \mathfrak{X} ; \\
& \text { (a.4) } \mathfrak{A}_{0}\left[\|\cdot\|_{0}\right] \text { is complete. }
\end{aligned}
$$

Then we say that $\left(\mathfrak{X}, \mathfrak{A}_{0}\right)$ is a $C Q^{*}$-algebra.
Remark 1.2. (1) If $\mathfrak{A}_{0}\left[\|\cdot\|_{0}\right]$ is not complete, we say that $\left(\mathfrak{X}, \mathfrak{A}_{0}\right)$ is a pre- $C Q^{*}$-algebra.
(2) In previous papers the name of $C Q^{*}$-algebra was given to a more complicated structure where two different involutions were considered on \mathfrak{A}_{0}. When these involutions coincide, we spoke of a proper $C Q^{*}$-algebra. In this paper only this case will be considered and so we systematically omit the word proper.

The following basic definitions and results on non-commutative measure theory are also needed in what follows.

Let \mathfrak{M} be a von Neumann algebra and φ a normal faithful semifinite trace defined on \mathfrak{M}_{+}. Put

$$
\mathcal{J}=\{X \in \mathfrak{M}: \varphi(|X|)<\infty\}
$$

Then \mathcal{J} is a *-ideal of \mathfrak{M}. We denote by $\operatorname{Proj}(\mathfrak{M})$ the lattice of projections of \mathfrak{M}.

Definition 1.3. A vector subspace \mathcal{D} of \mathcal{H} is said to be strongly dense (resp., strongly φ-dense) if

- $U^{\prime} \mathcal{D} \subset \mathcal{D}$ for any unitary U^{\prime} in \mathfrak{M}^{\prime},
- there exists a sequence $P_{n} \in \operatorname{Proj}(\mathfrak{M})$ such that $P_{n} \mathcal{H} \subset \mathcal{D}, P_{n}^{\perp} \downarrow 0$ and P_{n}^{\perp} is a finite projection (resp., $\varphi\left(P_{n}^{\perp}\right)<\infty$).

Clearly, every strongly φ-dense domain is strongly dense.
Throughout this paper, when we say that an operator T is affiliated with a von Neumann algebra \mathfrak{M}, written $T \eta \mathfrak{M}$, we always mean that T is closed, densely defined and $T U \supseteq U T$ for every unitary operator $U \in \mathfrak{M}^{\prime}$.

Definition 1.4. An operator $T \eta \mathfrak{M}$ is called

- measurable (with respect to \mathfrak{M}) if its domain $D(T)$ is strongly dense;
- φ-measurable if its domain $D(T)$ is strongly φ-dense.

From the very definition it follows that, if T is φ-measurable, then there exists $P \in \operatorname{Proj}(\mathfrak{M})$ such that $T P$ is bounded and $\varphi\left(P^{\perp}\right)<\infty$.

We recall that any operator affiliated with a finite von Neumann algebra is measurable [12, Cor. 4.1] but it is not necessarily φ-measurable.
2. Non-commutative L^{p}-spaces as $C Q^{*}$-algebras. In this section we will discuss the structure of non-commutative L^{p}-spaces as quasi *-algebras. We begin by recalling the basic definitions.

Let \mathfrak{M} be a von Neumann algebra and φ a normal faithful semifinite trace defined on \mathfrak{M}_{+}. For each $p \geq 1$, let

$$
\mathcal{J}_{p}=\left\{X \in \mathfrak{M}: \varphi\left(|X|^{p}\right)<\infty\right\} .
$$

Then \mathcal{J}_{p} is a ${ }^{*}$-ideal of \mathfrak{M}. Following [10], we denote by $L^{p}(\varphi)$ the Banach space completion of \mathcal{J}_{p} with respect to the norm

$$
\|X\|_{p}:=\varphi\left(|X|^{p}\right)^{1 / p}, \quad X \in \mathcal{J}_{p}
$$

One usually defines $L^{\infty}(\varphi)=\mathfrak{M}$. Thus, if φ is a finite trace, then $L^{\infty}(\varphi) \subset$ $L^{p}(\varphi)$ for every $p \geq 1$. As shown in [10], if $X \in L^{p}(\varphi)$, then X is a measurable operator.

Proposition 2.1. Let \mathfrak{M} be a von Neumann algebra and φ a normal faithful semifinite trace on \mathfrak{M}_{+}. Then $\left(L^{p}(\varphi), L^{\infty}(\varphi) \cap L^{p}(\varphi)\right)$ is a Banach quasi ${ }^{*}$-algebra. If φ is a finite trace and $\varphi(\mathbb{I})=1$, then $\left(L^{p}(\varphi), L^{\infty}(\varphi)\right)$ is a $C Q^{*}$-algebra.

Proof. Indeed, it is easily seen that the norms $\|\cdot\|_{\infty}$ of $L^{\infty}(\varphi) \cap L^{p}(\varphi)$ and $\|\cdot\|_{p}$ on $L^{p}(\varphi)$ satisfy conditions (a.1)-(a.2) of Definition 1.1. Moreover, if φ is finite, then $L^{\infty}(\varphi) \subset L^{p}(\varphi)$ and thus $\left(L^{p}(\varphi), L^{\infty}(\varphi)\right)$ is a $C Q^{*}$-algebra. -

REMARK 2.2. Of course the condition $\varphi(\mathbb{I})=1$ can be easily removed by rescaling the trace.

Definition 2.3. Let $\left(\mathfrak{X}, \mathfrak{A}_{0}\right)$ be a Banach quasi ${ }^{*}$-algebra. We denote by $\mathcal{S}(\mathfrak{X})$ the set of all sesquilinear forms Ω on $\mathfrak{X} \times \mathfrak{X}$ with the following properties:
(i) $\Omega(x, x) \geq 0, \forall x \in \mathfrak{X}$,
(ii) $\Omega(x a, b)=\Omega\left(a, x^{*} b\right), \forall x \in \mathfrak{X}, a, b \in \mathfrak{A}_{0}$,
(iii) $|\Omega(x, y)| \leq\|x\|\|y\|, \forall x, y \in \mathfrak{X}$.

A subfamily \mathcal{A} of $\mathcal{S}(\mathfrak{X})$ is called sufficient if the conditions $x \in \mathfrak{X}$ and $\Omega(x, x)=0$ for every $\Omega \in \mathcal{A}$ imply $x=0$.

If $\left(\mathfrak{X}, \mathfrak{A}_{0}\right)$ is a Banach quasi ${ }^{*}$-algebra, then the Banach dual space \mathfrak{X}^{\sharp} of \mathfrak{X} can be made into a Banach \mathfrak{A}_{0}-bimodule with norm

$$
\|f\|^{\sharp}=\sup _{\|x\| \leq 1}|\langle x, f\rangle|, \quad f \in \mathfrak{X}^{\sharp}
$$

by defining, for $f \in \mathfrak{X}^{\sharp}, a \in \mathfrak{A}_{0}$, the module operations in the following way:

$$
\begin{array}{ll}
\langle x, f \circ a\rangle:=\langle a x, f\rangle, & x \in \mathfrak{X} \\
\langle x, a \circ f\rangle:=\langle x a, f\rangle, & x \in \mathfrak{X}
\end{array}
$$

As usual, an involution $f \mapsto f^{*}$ can be defined on \mathfrak{X}^{\sharp} by $\left\langle x, f^{*}\right\rangle=\overline{\left\langle x^{*}, f\right\rangle}$ for $x \in \mathfrak{X}$. With these notations we can easily prove the following (see also [15]):

Proposition 2.4. Let $\left(\mathfrak{X}, \mathfrak{A}_{0}\right)$ be a Banach quasi ${ }^{*}$-algebra and Ω a positive sesquilinear form on $\mathfrak{X} \times \mathfrak{X}$. The following statements are equivalent:
(i) $\Omega \in \mathcal{S}(\mathfrak{X})$;
(ii) there exists a bounded conjugate linear operator $T: \mathfrak{X} \rightarrow \mathfrak{X}^{\sharp}$ with the properties:
(ii.1) $\langle x, T x\rangle \geq 0, \forall x \in \mathfrak{X}$;
(ii.2) $T(a x)=(T x) \circ a^{*}, \forall a \in \mathfrak{A}_{0}, x \in \mathfrak{X}$;
(ii.3) $\|T\|_{\mathcal{B}\left(\mathfrak{X}, \mathfrak{X}^{\sharp}\right)} \leq 1$;
(ii.4) $\Omega(x, y)=\langle x, T y\rangle, \forall x, y \in \mathfrak{X}$.

We will now focus on the question whether for the Banach quasi ${ }^{*}$-algebra $\left(L^{p}(\varphi), L^{\infty}(\varphi) \cap L^{p}(\varphi)\right)$, the family $\mathcal{S}\left(L^{p}(\varphi)\right)$, which we are going to describe in more detail, is or is not sufficient.

Before going forth, we recall that many of the familiar results of the ordinary theory of L^{p}-spaces hold in the very same form for non-commutative L^{p}-spaces. This is the case, for instance, of Hölder's inequality and also of the characterization of the dual of L^{p} : the form defining the duality is an extension of φ (denoted by the same symbol) to products of the type $X Y$ with $X \in L^{p}(\varphi), Y \in L^{p^{\prime}}(\varphi)$ with $p^{-1}+p^{\prime-1}=1$, and one has $\left(L^{p}(\varphi)\right)^{\sharp} \simeq L^{p^{\prime}}(\varphi)$.

In order to study $\mathcal{S}\left(L^{p}(\varphi)\right.$), we introduce, for $p \geq 2$, the following notation:

$$
\mathcal{B}_{+}^{p}=\left\{X \in L^{p /(p-2)}(\varphi): X \geq 0,\|X\|_{p /(p-2)} \leq 1\right\}
$$

where $p /(p-2)=\infty$ if $p=2$.
For each $W \in \mathcal{B}_{+}^{p}$, we consider the right multiplication operator

$$
R_{W}: L^{p}(\varphi) \rightarrow L^{p /(p-1)}(\varphi), \quad R_{W} X=X W, \quad X \in L^{p}(\varphi)
$$

Since $L^{\infty}(\varphi) \cap L^{p}(\varphi)=\mathcal{J}_{p}$, we use, for brevity, the latter notation.
Lemma 2.5. The following statements hold.
(i) Let $p \geq 2$. For every $W \in \mathcal{B}_{+}^{p}$, the sesquilinear form $\Omega(X, Y)=$ $\varphi\left[X\left(R_{W} Y\right)^{*}\right]$ is an element of $\mathcal{S}\left(L^{p}(\varphi)\right)$.
(ii) If φ is finite, then for each $\Omega \in \mathcal{S}\left(L^{p}(\varphi)\right)$, there exists $W \in \mathcal{B}_{+}^{p}$ such that

$$
\Omega(X, Y)=\varphi\left[X\left(R_{W} Y\right)^{*}\right], \quad \forall X, Y \in L^{p}(\varphi)
$$

Proof. (i) We check that the sesquilinear form $\Omega(X, Y)=\varphi\left[X\left(R_{W} Y\right)^{*}\right]$, $X, Y \in L^{p}(\varphi)$, satisfies conditions (i)-(iii) of Definition 2.3. For every $X \in$ $L^{p}(\varphi)$ we have

$$
\Omega(X, X)=\varphi\left[X\left(R_{W} X\right)^{*}\right]=\varphi\left[X(X W)^{*}\right]=\varphi\left[(X W)^{*} X\right]=\varphi\left[W|X|^{2}\right] \geq 0
$$

For every $X \in L^{p}(\varphi), A, B \in \mathcal{J}_{p}$, we get

$$
\begin{aligned}
\Omega(X A, B) & =\varphi\left(X A(B W)^{*}\right)=\varphi\left(W B^{*} X A\right)=\varphi\left(A\left(X^{*} B W\right)^{*}\right) \\
& =\Omega\left(A, X^{*} B\right)
\end{aligned}
$$

Finally, for every $X, Y \in L^{p}(\varphi)$,

$$
|\Omega(X, Y)| \leq\|X\|_{p}\|Y\|_{p}\|W\|_{p /(p-2)} \leq\|X\|_{p}\|Y\|_{p}
$$

(ii) Let $\Omega \in \mathcal{S}\left(L^{p}(\varphi)\right)$. Let $T: L^{p}(\varphi) \rightarrow L^{p^{\prime}}(\varphi)$ be the operator which represents Ω in the sense of Proposition 2.4. The finiteness of φ implies that $\mathcal{J}_{p}=\mathfrak{M}$; thus we can put $W=T(\mathbb{I})$. It is easy to check that $R_{W}=T$. This concludes the proof.

Proposition 2.6. If $p \geq 2$, then $\mathcal{S}\left(L^{p}(\varphi)\right)$ is sufficient.

Proof. Let $X \in L^{p}(\varphi)$ be such that $\Omega(X, X)=0$ for every $\Omega \in \mathcal{S}\left(L^{p}(\varphi)\right)$. By the previous lemma, since $|X|^{p-2} \in L^{p /(p-2)}(\varphi)$, the right multiplication operator R_{W} with $W=|X|^{p-2} / \alpha, \alpha \in \mathbb{R}$, satisfying $\left\||X|^{p-2} / \alpha\right\|_{p /(p-2)} \leq 1$ represents a sesquilinear form $\Omega \in \mathcal{S}\left(L^{p}(\varphi)\right)$. By assumption, $\Omega(X, X)=0$. We then have

$$
\begin{aligned}
\Omega(X, X) & =\varphi\left[X\left(R_{W} X\right)^{*}\right]=\frac{\varphi\left[X\left(X|X|^{p-2}\right)^{*}\right]}{\alpha}=\frac{\varphi\left[\left(X|X|^{p-2}\right)^{*} X\right]}{\alpha} \\
& =\frac{\varphi\left[|X|^{p}\right]}{\alpha}=0
\end{aligned}
$$

so $X=0$, by the faithfulness of φ.
3. $C Q^{*}$-algebras over finite von Neumann algebras. Let \mathfrak{M} be a von Neumann algebra and $\mathfrak{F}=\left\{\varphi_{\alpha}: \alpha \in \mathcal{I}\right\}$ be a family of normal finite traces on \mathfrak{M}. As usual, we say that the family \mathfrak{F} is sufficient if the conditions $X \in \mathfrak{M}, X \geq 0$ and $\varphi_{\alpha}(X)=0$ for every $\alpha \in \mathcal{I}$ imply $X=0$ (clearly, if $\mathfrak{F}=\{\varphi\}$, then \mathfrak{F} is sufficient if, and only if, φ is faithful). In this case, \mathfrak{M} is a finite von Neumann algebra [13, Ch. 7]. We assume in addition that the following condition (P) is satisfied:

$$
\begin{equation*}
\varphi_{\alpha}(\mathbb{I}) \leq 1, \quad \forall \alpha \in \mathcal{I} \tag{P}
\end{equation*}
$$

Then we define

$$
\|X\|_{p, \mathcal{I}}=\sup _{\alpha \in \mathcal{I}}\|X\|_{p, \varphi_{\alpha}}=\sup _{\alpha \in \mathcal{I}} \varphi_{\alpha}\left(|X|^{p}\right)^{1 / p}
$$

Since \mathfrak{F} is sufficient, $\|\cdot\|_{p, \mathcal{I}}$ is a norm on \mathfrak{M}.
We will need the following lemmas whose simple proofs will be omitted.
Lemma 3.1. Let \mathfrak{M} be a von Neumann algebra in a Hilbert space \mathcal{H}, and $\left\{P_{\alpha}\right\}_{\alpha \in \mathcal{I}}$ a family of projections of \mathfrak{M} with

$$
\bigvee_{\alpha \in \mathcal{I}} P_{\alpha}=\bar{P}
$$

If $A \in \mathfrak{M}$ and $A P_{\alpha}=0$ for every $\alpha \in \mathcal{I}$, then $A \bar{P}=0$.
Lemma 3.2. Let $\mathfrak{F}=\left\{\varphi_{\alpha}\right\}_{\alpha \in \mathcal{I}}$ be a sufficient family of normal finite traces on the von Neumann algebra \mathfrak{M} and let P_{α} be the support of φ_{α}. Then $\bigvee P_{\alpha}=\mathbb{I}$, where \mathbb{I} denotes the identity of \mathfrak{M}.

It is well known that the support of each φ_{α} enjoys the following properties:
(i) $P_{\alpha} \in \mathcal{Z}(\mathfrak{M})$, the center of \mathfrak{M}, for each $\alpha \in I$;
(ii) $\varphi_{\alpha}(X)=\varphi_{\alpha}\left(X P_{\alpha}\right)$ for each $\alpha \in I$.

From the preceding two lemmas it follows that, if the P_{α} 's are as in Lemma 3.2, then

$$
A P_{\alpha}=0, \forall \alpha \in \mathcal{I} \Rightarrow A=0
$$

If Condition (P) is fulfilled, then

$$
\|X\|_{p, \mathcal{I}}=\sup _{\alpha \in \mathcal{I}}\left\|X P_{\alpha}\right\|_{p, \alpha}, \quad \forall X \in \mathfrak{M}
$$

Clearly, the sufficiency of the family of traces and Condition (P) imply that $\|\cdot\|_{p, \mathcal{I}}$ is a norm on \mathfrak{M}.

Proposition 3.3. Let $\mathfrak{M}(p, \mathcal{I})$ denote the Banach space completion of \mathfrak{M} with respect to the norm $\|\cdot\|_{p, \mathcal{I}}$. Then $\left(\mathfrak{M}(p, \mathcal{I})\left[\|\cdot\|_{p, \mathcal{I}}\right], \mathfrak{M}\left[\|\cdot\|_{\mathcal{B}(\mathcal{H})}\right]\right)$ is a $C Q^{*}$-algebra.

Proof. Indeed, we have

$$
\begin{equation*}
\left\|X^{*}\right\|_{p, \mathcal{I}}=\sup _{\alpha \in \mathcal{I}}\left\|X^{*} P_{\alpha}\right\|_{p, \alpha}=\sup _{\alpha \in \mathcal{I}}\left\|\left(X P_{\alpha}\right)^{*}\right\|_{p, \alpha}=\|X\|_{p, \mathcal{I}}, \quad \forall X \in \mathfrak{M} \tag{1}
\end{equation*}
$$

Furthermore, for every $X, Y \in \mathfrak{M}$,

$$
\begin{align*}
\|X Y\|_{p, \mathcal{I}} & =\sup _{\alpha \in \mathcal{I}}\left\|X Y P_{\alpha}\right\|_{p, \alpha} \leq\|X\|_{\mathcal{B}(\mathcal{H})} \sup _{\alpha \in \mathcal{I}}\left\|Y P_{\alpha}\right\|_{p, \alpha} \tag{2}\\
& =\|X\|_{\mathcal{B}(\mathcal{H})}\|Y\|_{p, \mathcal{I}} .
\end{align*}
$$

Finally, Condition (P) implies that

$$
\|X\|_{p, \mathcal{I}} \leq\|X\|_{\mathcal{B}(\mathcal{H})}, \quad \forall X \in \mathfrak{M}
$$

From (1) and (2) it follows that $\mathfrak{M}(p, \mathcal{I})$ is a Banach quasi *-algebra. It is clear that $\left\|\|_{\mathcal{B}(\mathcal{H})}\right.$ satisfies conditions (a.1)-(a.4) of Section 1. Therefore $(\mathfrak{M}(p, \mathcal{I}), \mathfrak{M})$ is a $C Q^{*}$-algebra.

The next step consists in investigating the Banach space $\mathfrak{M}(p, \mathcal{I})\left[\|\cdot\|_{p, \mathcal{I}}\right]$. In particular we are interested in whether $\mathfrak{M}(p, \mathcal{I})\left[\|\cdot\|_{p, \mathcal{I}}\right]$ can be identified with a space of operators affiliated with \mathfrak{M}. For brevity, whenever no ambiguity can arise, we write \mathfrak{M}_{p} instead of $\mathfrak{M}(p, \mathcal{I})$.

Let $\mathfrak{F}=\left\{\varphi_{\alpha}\right\}_{\alpha \in \mathcal{I}}$ be a sufficient family of normal, finite traces on the von Neumann algebra \mathfrak{M} satisfying Condition (P). The traces φ_{α} are not necessarily faithful. Put $\mathfrak{M}_{\alpha}=\mathfrak{M} P_{\alpha}$, where, as before, P_{α} denotes the support of φ_{α}. Each \mathfrak{M}_{α} is a von Neumann algebra and φ_{α} is faithful in $\mathfrak{M} P_{\alpha}$ [14, Proposition V. 2.10].

More precisely,

$$
\mathfrak{M}_{\alpha}:=\mathfrak{M} P_{\alpha}=\left\{Z=X P_{\alpha} \text { for some } X \in \mathfrak{M}\right\}
$$

The positive cone $\mathfrak{M}_{\alpha}^{+}$of \mathfrak{M}_{α} equals

$$
\left\{Z=X P_{\alpha} \text { for some } X \in \mathfrak{M}^{+}\right\}
$$

For $Z=X P_{\alpha} \in \mathfrak{M}_{\alpha}^{+}$, we put

$$
\sigma_{\alpha}(Z):=\varphi_{\alpha}\left(X P_{\alpha}\right) .
$$

The definition of $\sigma_{\alpha}(Z)$ does not depend on the particular choice of X. Each σ_{α} is a normal finite faithful trace on \mathfrak{M}_{α}. It is then possible to consider the spaces $L^{p}\left(\mathfrak{M}_{\alpha}, \sigma_{\alpha}\right), p \geq 1$, in the usual way. The norm of $L^{p}\left(\mathfrak{M}_{\alpha}, \sigma_{\alpha}\right)$ is indicated as $\|\cdot\|_{p, \alpha}$.

Let now $\left(X_{k}\right)$ be a Cauchy sequence in $\mathfrak{M}\left[\|\cdot\|_{p, \mathcal{I}}\right]$. For each $\alpha \in \mathcal{I}$, we put $Z_{k}^{(\alpha)}=X_{k} P_{\alpha}$. Then, for each $\alpha \in \mathcal{I},\left(Z_{k}^{(\alpha)}\right)$ is a Cauchy sequence in $\mathfrak{M}_{\alpha}\left[\|\cdot\|_{p, \alpha}\right]$. Indeed, since $\left|Z_{k}^{(\alpha)}-Z_{h}^{(\alpha)}\right|^{p}=\left|X_{k}-X_{h}\right|^{p} P_{\alpha}$, we have

$$
\begin{aligned}
\left\|Z_{k}^{(\alpha)}-Z_{h}^{(\alpha)}\right\|_{p, \alpha} & =\sigma_{\alpha}\left(\left|Z_{k}^{(\alpha)}-Z_{h}^{(\alpha)}\right|^{p}\right)^{1 / p}=\varphi_{\alpha}\left(\left|X_{k}-X_{h}\right|^{p} P_{\alpha}\right)^{1 / p} \\
& =\varphi_{\alpha}\left(\left|X_{k}-X_{h}\right|^{p}\right)^{1 / p} \rightarrow 0
\end{aligned}
$$

Therefore, for each $\alpha \in \mathcal{I}$, there exists an operator $Z^{(\alpha)} \in L^{p}\left(\mathfrak{M}_{\alpha}, \sigma_{\alpha}\right)$ such that

$$
Z^{(\alpha)}=\|\cdot\|_{p, \alpha^{-}} \lim _{k \rightarrow \infty} Z_{k}^{(\alpha)}
$$

It is now natural to ask whether there exists an operator X, closed, densely defined, affiliated with \mathfrak{M}, which reduces to $Z^{(\alpha)}$ on \mathfrak{M}_{α}. To begin with, we assume that the projections P_{α} are mutually orthogonal. In this case, putting $\mathcal{H}_{\alpha}=P_{\alpha} \mathcal{H}$, we have

$$
\mathcal{H}=\bigoplus_{\alpha \in \mathcal{I}} \mathcal{H}_{\alpha}=\left\{\left(f_{\alpha}\right): f_{\alpha} \in \mathcal{H}_{\alpha}, \sum_{\alpha \in I}\left\|f_{\alpha}\right\|^{2}<\infty\right\}
$$

We put

$$
D(X)=\left\{\left(f_{\alpha}\right) \in \mathcal{H}: f_{\alpha} \in D\left(Z^{(\alpha)}\right), \sum_{\alpha \in I}\left\|Z^{(\alpha)} f_{\alpha}\right\|^{2}<\infty\right\}
$$

and for $f=\left(f_{\alpha}\right) \in D(X)$ we define

$$
X f=\left(Z^{(\alpha)} f_{\alpha}\right)
$$

Then
(i) $D(X)$ is dense in \mathcal{H}. Indeed, $D(X)$ contains all $f=\left(f_{\alpha}\right)$ with $f_{\alpha}=0$ except for a finite subset of indices.
(ii) X is closed in \mathcal{H}. Indeed, let $f_{n}=\left(f_{n, \alpha}\right)$ be a sequence of elements of $D(X)$ with $f_{n} \rightarrow g=\left(g_{\alpha}\right) \in \mathcal{H}$ and $X f_{n} \rightarrow h$. Since

$$
f_{n} \rightarrow g \Leftrightarrow f_{n, \alpha} \rightarrow g_{\alpha} \in \mathcal{H}_{\alpha}, \forall \alpha \in \mathcal{I}
$$

and

$$
X f_{n} \rightarrow h \Leftrightarrow\left(X f_{n}\right)_{\alpha} \rightarrow h_{\alpha} \in \mathcal{H}_{\alpha}, \forall \alpha \in \mathcal{I}
$$

the equalities $\left(X f_{n}\right)_{\alpha}=Z^{(\alpha)} f_{n, \alpha}$ and the closedness of each $Z^{(\alpha)}$ in \mathcal{H}_{α} yield

$$
g_{\alpha} \in D\left(Z^{(\alpha)}\right) \quad \text { and } \quad h_{\alpha}=Z^{(\alpha)} g_{\alpha}
$$

It remains to check that $\sum_{\alpha \in \mathcal{I}}\left\|Z^{(\alpha)} g_{\alpha}\right\|^{2}<\infty$; but this is clear, since both $\left(Z^{(\alpha)} g_{\alpha}\right)$ and $h=\left(h_{\alpha}\right)$ are in \mathcal{H}.
(iii) $X \eta \mathfrak{M}$. Let $Y \in \mathfrak{M}^{\prime}$. Then $Y f=\left(Y P_{\alpha} f\right)$ for all $f \in \mathcal{H}$ and $Y P_{\alpha} \in$ $\left(\mathfrak{M} P_{\alpha}\right)^{\prime}=\mathfrak{M}^{\prime} P_{\alpha}$. Therefore

$$
X Y f=\left((X Y) P_{\alpha} f\right)=\left(Y X P_{\alpha} f\right)=Y X f .
$$

In conclusion, X is a measurable operator.
Thus, we have proved the following
Proposition 3.4. Let $\mathfrak{F}=\left\{\varphi_{\alpha}\right\}_{\alpha \in \mathcal{I}}$ be a sufficient family of normal finite traces on the von Neumann algebra \mathfrak{M}. Assume that Condition (P) is fulfilled and that the φ_{α} 's have mutually orthogonal supports. Then \mathfrak{M}_{p}, $p \geq 1$, consists of measurable operators.

The analysis of the general case would be much simplified if, from a given sufficient family \mathfrak{F} of normal finite traces, one could extract (or construct) a sufficient subfamily \mathcal{G} of traces with mutually orthogonal supports. Apart from quite simple situations (for instance when \mathfrak{F} is finite or countable), we do not know if this is possible or not. There is however a relevant case where this can be fairly easily done. This occurs when \mathfrak{F} is a convex and w^{*}-compact family of traces on \mathfrak{M}.

Lemma 3.5. Let \mathfrak{F} be a convex w^{*}-compact family of normal finite traces on a von Neumann algebra \mathfrak{M}; assume that for each central operator Z with $0 \leq Z \leq \mathbb{I}$ and each $\eta \in \mathfrak{F}$ the functional $\eta_{Z}(X):=\eta(X Z)$ belongs to \mathfrak{F}. Let $\mathfrak{E} \mathfrak{F}$ be the set of extreme elements of \mathfrak{F}. If $\eta_{1}, \eta_{2} \in \mathfrak{E} \mathfrak{F}, \eta_{1} \neq n_{2}$, and P_{1} and P_{2} are their respective supports, then P_{1} and P_{2} are orthogonal.

Proof. Let P_{1}, P_{2} be, respectively, the supports of η_{1} and η_{2}. We begin by proving that either $P_{1}=P_{2}$ or $P_{1} P_{2}=0$. Indeed, assume that $P_{1} P_{2} \neq 0$. We define

$$
\eta_{1,2}(X)=\eta_{1}\left(X P_{2}\right), \quad X \in \mathfrak{M} .
$$

Were $\eta_{1,2}=0$, then, in particular $\eta_{1,2}\left(P_{2}\right)=0$, i.e. $\eta_{1}\left(P_{2}\right)=0$ and therefore, by definition of support, $P_{2} \leq 1-P_{1}$. This implies that $P_{1} P_{2}=0$, contrary to the assumption. We now show that the support of $\eta_{1,2}$ is $P_{1} P_{2}$. Let, in fact, Q be a projection such that $\eta_{1,2}(Q)=0$. Then

$$
\eta_{1}\left(Q P_{2}\right)=0 \Rightarrow Q P_{2} \leq 1-P_{1} \Rightarrow Q P_{2}\left(1-P_{1}\right)=Q P_{2} \Rightarrow Q P_{2} P_{1}=0
$$

Thus the largest Q for which this happens is $1-P_{2} P_{1}$. We conclude that the support of the trace $\eta_{1,2}$ is $P_{1} P_{2}$. Finally, by definition, one has $\eta_{1,2}(X)=$ $\eta_{1}\left(X P_{2}\right)$, and, since $X P_{2} \leq X$,

$$
\eta_{1,2}(X)=\eta_{1}\left(X P_{2}\right) \leq \eta_{1}(X), \quad \forall X \in \mathfrak{M} .
$$

Thus η_{1} majorizes $\eta_{1,2}$. But η_{1} is extreme in \mathfrak{F}. Therefore $\eta_{1,2}$ has the form $\lambda \eta_{1}$ with $\left.\left.\lambda \in\right] 0,1\right]$. This implies that $\eta_{1,2}$ has the same support as η_{1};
therefore $P_{1} P_{2}=P_{1}$, i.e. $P_{1} \leq P_{2}$. Starting from $\eta_{2,1}(X)=\eta_{2}\left(X P_{1}\right)$, we get, in a similar way, $P_{2} \leq P_{1}$. Therefore, $P_{1} P_{2} \neq 0$ implies $P_{1}=P_{2}$. However, two different traces of $\mathfrak{E F}$ cannot have the same support. Indeed, assume that there exist $\eta_{1}, \eta_{2} \in \mathfrak{F}$ having the same support P. Since P is central, we can consider the von Neumann algebra $\mathfrak{M P}$. The restrictions of η_{1}, η_{2} to $\mathfrak{M} P$ are normal faithful semifinite traces. By [14, Prop. V.2.31] there exists a central element Z in $\mathfrak{M} P$ with $0 \leq Z \leq P(P$ is here considered as the unit of $\mathfrak{M P}$) such that

$$
\begin{equation*}
\eta_{1}(X)=\left(\eta_{1}+\eta_{2}\right)(Z X), \quad \forall X \in(\mathfrak{M} P)_{+} \tag{3}
\end{equation*}
$$

Then Z also belongs to the center of \mathfrak{M}, since for every $V \in \mathfrak{M}$,

$$
Z V=Z\left(V P+V P^{\perp}\right)=Z V P=V Z P=V Z
$$

Therefore the functionals

$$
\eta_{1, Z}(X):=\eta_{1}(X Z), \quad \eta_{2, Z}(X):=\eta_{2}(X Z), \quad X \in \mathfrak{M}
$$

belong to the family \mathfrak{F} and are majorized, respectively, by the extreme elements η_{1}, η_{2}. Then there exist $\lambda, \mu \in[0,1]$ such that

$$
\eta_{1}(X Z)=\lambda \eta_{1}(X), \quad \eta_{2}(X Z)=\mu \eta_{1}(X), \quad \forall X \in \mathfrak{M}
$$

If $\lambda=1$ we would have, from $(3), \eta_{2}(Z X)=0$ for every $X \in(\mathfrak{M} P)_{+}$; in particular, $\eta_{2}\left(|Z|^{2}\right)=0$; this implies that $Z=0$. Thus $\lambda \neq 1$. Analogously, $\mu \neq 0$: indeed, if $\mu=0$, then $\eta_{1}(X)=\lambda \eta_{1}(X)$ and thus $\lambda=1$. Therefore there exist $\lambda, \mu \in(0,1)$ such that

$$
\eta_{1}(X)=\lambda \eta_{1}(X)+\mu \eta_{2}(X), \quad \forall X \in \mathfrak{M} P
$$

which in turn implies

$$
\eta_{1}(X)=\lambda \eta_{1}(X)+\mu \eta_{2}(X), \quad \forall X \in \mathfrak{M}
$$

Hence,

$$
(1-\lambda) \eta_{1}(X)=\mu \eta_{2}(X), \quad \forall X \in \mathfrak{M}
$$

From the last equality, dividing by $\max \{1-\lambda, \mu\}$ one finds that one of the two elements is a convex combination of the other and of 0 , which is absurd. In conclusion, different supports of extreme traces of \mathfrak{F} are orthogonal.

Since, for every $X \in \mathfrak{M},\|X\|_{p, \mathcal{I}}$ remains the same if computed either with respect to \mathfrak{F} or to $\mathfrak{E F}$, we can deduce the following

Theorem 3.6. Let \mathfrak{F} be a convex and w^{*}-compact sufficient family of normal finite traces on the von Neumann algebra \mathfrak{M}. Assume that \mathfrak{F} satisfies Condition (P) and that for each central operator Z with $0 \leq Z \leq \mathbb{I}$ and each $\eta \in \mathfrak{F}$ the functional $\eta_{Z}(X):=\eta(X Z)$ belongs to \mathfrak{F}. Then the completion $\mathfrak{M}_{p}\left[\|\cdot\|_{p, \mathcal{I}}\right]$ consists of measurable operators.

Families of traces satisfying the assumptions of Theorem 3.6 will be constructed in the next section.
4. A representation theorem. Once we have constructed some $C Q^{*}$ algebras of operators affiliated to a given von Neumann algebra, it is natural to ask under which conditions an abstract $C Q^{*}$-algebra ($\mathfrak{X}, \mathfrak{A}_{0}$) can be realized as a $C Q^{*}$-algebra of this type.

Let $\left(\mathfrak{X}[\|\cdot\|], \mathfrak{A}_{0}\left[\|\cdot\|_{0}\right]\right)$ be a $C Q^{*}$-algebra with unit e and let

$$
\mathcal{T}(\mathfrak{X})=\left\{\Omega \in \mathcal{S}(\mathfrak{X}): \Omega(x, x)=\Omega\left(x^{*}, x^{*}\right), \forall x \in \mathfrak{X}\right\} .
$$

We remark that if $\Omega \in \mathcal{T}(\mathfrak{X})$ then, by polarization, $\Omega\left(y^{*}, x^{*}\right)=\Omega(x, y)$ for all $x, y \in \mathfrak{X}$. It is easy to prove that the $\operatorname{set} \mathcal{T}(\mathfrak{X})$ is convex.

For each $\Omega \in \mathcal{T}(\mathfrak{X})$, we define a linear functional ω_{Ω} on \mathfrak{A}_{0} by

$$
\omega_{\Omega}(a):=\Omega(a, e), \quad a \in \mathfrak{A}_{0}
$$

We have

$$
\omega_{\Omega}\left(a^{*} a\right)=\Omega\left(a^{*} a, e\right)=\Omega(a, a)=\Omega\left(a^{*}, a^{*}\right)=\omega_{\Omega}\left(a a^{*}\right) \geq 0
$$

This shows at once that ω_{Ω} is positive and tracial. We put

$$
\mathfrak{M}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)=\left\{\omega_{\Omega}: \Omega \in \mathcal{T}(\mathfrak{X})\right\} .
$$

From the convexity of $\mathcal{T}(\mathfrak{X})$ it follows easily that $\mathfrak{M}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)$ is also convex. If we denote by $\|f\|^{\sharp}$ the norm of the bounded functional f on \mathfrak{A}_{0}, we also get

$$
\left\|\omega_{\Omega}\right\|^{\sharp}=\omega_{\Omega}(e)=\Omega(e, e) \leq\|e\|^{2} .
$$

Therefore

$$
\mathfrak{M}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right) \subseteq\left\{\omega \in \mathfrak{A}_{0}^{\sharp}:\|\omega\|^{\sharp} \leq\|e\|^{2}\right\}
$$

where $\mathfrak{A}_{0}^{\sharp}$ denotes the topological dual of $\mathfrak{A}_{0}\left[\|\cdot\|_{0}\right]$. Setting

$$
f_{\Omega}(a):=\frac{\omega_{\Omega}(a)}{\|e\|^{2}}
$$

we get

$$
f_{\Omega} \in\left\{\omega \in \mathfrak{A}_{0}^{\sharp}:\|\omega\|^{\sharp} \leq 1\right\} .
$$

By the Banach-Alaglou theorem, the set $\left\{\omega \in \mathfrak{A}_{0}^{\sharp}:\|\omega\|^{\sharp} \leq 1\right\}$ is w^{*}-compact in $\mathfrak{A}_{0}^{\sharp}$. Then $\left\{\omega \in \mathfrak{A}_{0}^{\sharp}:\|\omega\|^{\sharp} \leq\|e\|^{2}\right\}$ is also w^{*}-compact.

Proposition 4.1. $\mathfrak{M}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)$ is w^{*}-closed and, therefore, w^{*}-compact.
Proof. Let $\left(\omega_{\Omega_{\alpha}}\right)$ be a net in $\mathfrak{M}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right) w^{*}$-converging to a functional $\omega \in \mathfrak{A}_{0}^{\sharp}$. We will show that $\omega=\omega_{\Omega}$ for some $\Omega \in \mathcal{T}(\mathfrak{X})$. Let us begin by defining $\Omega_{0}(a, b)=\omega\left(b^{*} a\right), a, b \in \mathfrak{A}_{0}$. By the very definition, $\omega_{\Omega_{\alpha}}(a) \rightarrow$ $\omega(a)=\Omega_{0}(a, e)$. Moreover, for every $a, b \in \mathfrak{A}_{0}$,

$$
\Omega_{0}(a, b)=\omega\left(b^{*} a\right)=\lim _{\alpha} \omega_{\Omega_{\alpha}}\left(b^{*} a\right)=\lim _{\alpha} \Omega_{\alpha}(a, b)
$$

Therefore

$$
\Omega_{0}(a, a)=\lim _{\alpha} \Omega_{\alpha}(a, a) \geq 0
$$

We also have

$$
\left|\Omega_{0}(a, b)\right|=\lim _{\alpha}\left|\Omega_{\alpha}(a, b)\right| \leq\|a\|\|b\| .
$$

Hence Ω_{0} can be extended by continuity to $\mathfrak{X} \times \mathfrak{X}$. Indeed, let

$$
x=\|\cdot\|-\lim _{n} a_{n}, \quad y=\|\cdot\|-\lim _{n} b_{n}, \quad\left(a_{n}\right),\left(b_{n}\right) \subseteq \mathfrak{A}_{0}
$$

Then

$$
\begin{aligned}
\mid \Omega_{0}\left(a_{n}, b_{n}\right)- & \Omega_{0}\left(a_{m}, b_{m}\right) \mid \\
& =\left|\Omega_{0}\left(a_{n}, b_{n}\right)-\Omega_{0}\left(a_{m}, b_{n}\right)+\Omega_{0}\left(a_{m}, b_{n}\right)-\Omega_{0}\left(a_{m}, b_{m}\right)\right| \\
& \leq\left|\Omega_{0}\left(a_{n}-a_{m}, b_{n}\right)\right|+\left|\Omega_{0}\left(a_{m}, b_{n}-b_{m}\right)\right| \\
& \leq\left\|a_{n}-a_{m}\right\|\left\|b_{n}\right\|+\left\|a_{m}\right\|\left\|b_{n}-b_{m}\right\| \rightarrow 0
\end{aligned}
$$

since $\left(\left\|a_{n}\right\|\right)$ and $\left(\left\|b_{n}\right\|\right)$ are bounded sequences. Therefore we can define

$$
\Omega(x, y)=\lim _{n} \Omega_{0}\left(a_{n}, b_{n}\right)
$$

Clearly, $\Omega(x, x) \geq 0$ for all $x \in \mathfrak{X}$. It is easily checked that $\Omega \in \mathcal{T}(\mathfrak{X})$. This concludes the proof.

Since $\mathfrak{M}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)$ is convex and w^{*}-compact, by the Krein-Milman theorem it follows that it has extreme points and it coincides with the w^{*}-closure of the convex hull of the set $\mathfrak{E M}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)$ of its extreme points.

By the Gelfand-Naimark theorem each C^{*}-algebra is isometrically *isomorphic to a C^{*}-algebra of bounded operators in Hilbert space. This isometric *-isomorphism is called the universal ${ }^{*}$-representation.

Thus, let π be the universal *-representation of \mathfrak{A}_{0} and $\pi\left(\mathfrak{A}_{0}\right)^{\prime \prime}$ the von Neumann algebra generated by $\pi\left(\mathfrak{A}_{0}\right)$.

For every $\Omega \in \mathcal{T}(\mathfrak{X})$ and $a \in \mathfrak{A}_{0}$, we put

$$
\varphi_{\Omega}(\pi(a))=\omega_{\Omega}(a)
$$

Then, for each $\Omega \in \mathcal{T}(\mathfrak{X}), \varphi_{\Omega}$ is a positive bounded linear functional on the operator algebra $\pi\left(\mathfrak{A}_{0}\right)$. Clearly,

$$
\begin{gathered}
\varphi_{\Omega}(\pi(a))=\omega_{\Omega}(a)=\Omega(a, e) \\
\left|\varphi_{\Omega}(\pi(a))\right|=\left|\omega_{\Omega}(a)\right|=|\Omega(a, e)| \leq\|a\|\|e\| \leq\|a\|_{0}\|e\|^{2}=\|\pi(a)\|\|e\|^{2}
\end{gathered}
$$

Thus φ_{Ω} is continuous on $\pi\left(\mathfrak{A}_{0}\right)$.
By [7, Theorem 10.1.2], φ_{Ω} is weakly continuous and so it extends uniquely to $\pi\left(\mathfrak{A}_{0}\right)^{\prime \prime}$. Moreover, since φ_{Ω} is a trace on $\pi\left(\mathfrak{A}_{0}\right)$, the extension $\widetilde{\varphi}_{\Omega}$ is also a trace on $\mathfrak{M}:=\pi\left(\mathfrak{A}_{0}\right)^{\prime \prime}$. The norm $\left\|\widetilde{\varphi}_{\Omega}\right\|^{\sharp}$ of $\widetilde{\varphi}_{\Omega}$ as a linear functional on \mathfrak{M} equals the norm of φ_{Ω} as a functional on $\pi\left(\mathfrak{A}_{0}\right)$. We have

$$
\left\|\widetilde{\varphi}_{\Omega}\right\|^{\sharp}=\widetilde{\varphi}_{\Omega}(\pi(e))=\varphi_{\Omega}(\pi(e))=\omega_{\Omega}(e) \leq\|e\|^{2} .
$$

The set

$$
\mathfrak{N}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)=\left\{\widetilde{\varphi}_{\Omega}: \Omega \in \mathcal{T}(\mathfrak{X})\right\}
$$

is convex and w^{*}-compact in \mathfrak{M}^{\sharp}, as can be easily seen by considering the map

$$
\omega_{\Omega} \in \mathfrak{M}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right) \mapsto \widetilde{\varphi}_{\Omega} \in \mathfrak{N}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)
$$

which is linear and injective, and by taking into account the fact that, if $a_{\alpha} \rightarrow a$ in $\mathfrak{A}_{0}[\|\cdot\|]$, then $\widetilde{\varphi}_{\Omega}\left(\pi\left(a_{\alpha}\right)-\pi(a)\right)=\omega_{\Omega}\left(a_{\alpha}-a\right) \rightarrow 0$.

Let $\mathfrak{E N}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)$ be the set of extreme points of $\mathfrak{N}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)$; then $\mathfrak{N}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)$ coincides with the w^{*}-closure of the convex hull of $\mathfrak{E} \mathfrak{N}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)$. The extreme elements of $\mathfrak{N}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)$ are easily characterized by the following

Proposition 4.2. $\widetilde{\varphi}_{\Omega}$ is extreme in $\mathfrak{N}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)$ if, and only if, ω_{Ω} is extreme in $\mathfrak{M}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)$.

Definition 4.3. A Banach quasi ${ }^{*}$-algebra $\left(\mathfrak{X}[\|\cdot\|], \mathfrak{A}_{0}\left[\|\cdot\|_{0}\right]\right)$ is said to be strongly regular if $\mathcal{T}(\mathfrak{X})$ is sufficient and

$$
\|x\|=\sup _{\Omega \in \mathcal{T}(\mathfrak{X})} \Omega(x, x)^{1 / 2}, \quad \forall x \in \mathfrak{X}
$$

Example 4.4. If \mathfrak{M} is a von Neumann algebra with a sufficient family \mathfrak{F} of normal finite traces, then the $C Q^{*}$-algebra $\left(\mathfrak{M}_{p}, \mathfrak{M}\right)$ constructed in Section 3 is strongly regular. This follows from the definition of the norm in the completion.

Example 4.5. If φ is a normal faithful finite trace on \mathfrak{M}, then $\mathcal{T}\left(L^{p}(\varphi)\right)$, for $p \geq 2$, is sufficient. To see this, we first define Ω_{0} on $\mathfrak{M} \times \mathfrak{M}$ by

$$
\Omega_{0}(X, Y)=\varphi\left(Y^{*} X\right), \quad X, Y \in \mathfrak{M}
$$

Then

$$
\left|\Omega_{0}(X, Y)\right|=\left|\varphi\left(Y^{*} X\right)\right| \leq\|X\|_{p}\|Y\|_{p^{\prime}}, \quad \forall X, Y \in \mathfrak{M} .
$$

Since $p \geq 2, L^{p}(\varphi)$ is continuously embedded into $L^{p^{\prime}}(\varphi)$. Thus, there exists $\gamma>0$ such that $\|Y\|_{p^{\prime}} \leq \gamma\|Y\|_{p}$ for every $Y \in \mathfrak{M}$. Define

$$
\widetilde{\Omega}(X, Y)=\frac{1}{\gamma} \Omega_{0}(X, Y), \quad X, Y \in \mathfrak{M}
$$

Then

$$
|\widetilde{\Omega}(X, Y)| \leq\|X\|_{p}\|Y\|_{p}, \quad \forall X, Y \in \mathfrak{M}
$$

Hence, $\widetilde{\Omega}$ has a unique extension, denoted by the same symbol, to $L^{p}(\varphi) \times$ $L^{p}(\varphi)$. It is easily seen that $\widetilde{\Omega} \in \mathcal{T}\left(L^{p}(\varphi)\right)$.

Were, for some $X \in L^{p}(\varphi), \Omega(X, X)=0$ for every $\Omega \in \mathcal{T}\left(L^{p}(\varphi)\right)$, we would have $\widetilde{\Omega}(X, X)=\|X\|_{2}^{2}=0$. This clearly implies $X=0$. The equality $\widetilde{\Omega}(X, X)=\|X\|_{2}^{2}$ also shows that $L^{2}(\varphi)$ is strongly regular.

Let now $\left(\mathfrak{X}[\|\cdot\|], \mathfrak{A}_{0}\left[\|\cdot\|_{0}\right]\right)$ be a $C Q^{*}$-algebra with unit e and sufficient $\mathcal{T}(\mathfrak{X})$. Let $\pi: \mathfrak{A}_{0} \hookrightarrow \mathcal{B}(\mathcal{H})$ be the universal representation of \mathfrak{A}_{0}. Assume that the C^{*} algebra $\pi\left(\mathfrak{A}_{0}\right):=\mathfrak{M}$ is a von Neumann algebra. In this case,
$\mathfrak{M}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)=\mathfrak{N}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)$ and $\mathfrak{N}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)$ is a family of traces satisfying Condition (P). Therefore, by Proposition 3.3, we can construct, for $p \geq 1$, the $C Q^{*}$-algebras $\left(\mathfrak{M}_{p}\left[\|\cdot\|_{p, \mathfrak{N}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)}\right], \mathfrak{M}[\|\cdot\|]\right)$. Clearly, \mathfrak{A}_{0} can be identified with \mathfrak{M}. It is then natural to ask if \mathfrak{X} can also be identified with some \mathfrak{M}_{p}. The next theorem provides the answer to this question.

Theorem 4.6. Let $\left(\mathfrak{X}[\|\cdot\|], \mathfrak{A}_{0}\left[\|\cdot\|_{0}\right]\right)$ be a $C Q^{*}$-algebra with unit e and and sufficient $\mathcal{T}(\mathfrak{X})$. Then there exist a von Neumann algebra \mathfrak{M} and a monomorphism

$$
\Phi: x \in \mathfrak{X} \mapsto \Phi(x):=\widetilde{X} \in \mathfrak{M}_{2}
$$

with the following properties:
(i) Φ extends the universal ${ }^{*}$-representation π of \mathfrak{A}_{0};
(ii) $\Phi\left(x^{*}\right)=\Phi(x)^{*}$ for all $x \in \mathfrak{X}$;
(iii) $\Phi(x y)=\Phi(x) \Phi(y)$ for every $x, y \in \mathfrak{X}$ such that $x \in \mathfrak{A}_{0}$ or $y \in \mathfrak{A}_{0}$.

Then \mathfrak{X} can be identified with a space of operators affiliated with \mathfrak{M}.
If, in addition, $\left(\mathfrak{X}, \mathfrak{A}_{0}\right)$ is strongly regular, then
(iv) Φ is an isometry of \mathfrak{X} into \mathfrak{M}_{2};
(v) if \mathfrak{A}_{0} is a W^{*}-algebra, then Φ is an isometric ${ }^{*}$-isomorphism of \mathfrak{X} onto \mathfrak{M}_{2}.

Proof. Let π be the universal representation of \mathfrak{A}_{0} and assume first that $\pi\left(\mathfrak{A}_{0}\right)=: \mathfrak{M}$ is a von Neumann algebra. By Proposition 4.1, the family $\mathfrak{M}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)$ of traces is convex and w^{*}-compact. Moreover, for each central positive element Z with $0 \leq Z \leq \mathbb{I}$ and for $\varphi \in \mathfrak{M}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)$, the trace $\varphi_{Z}(X):=$ $\varphi(Z X)$ still belongs to $\mathfrak{M}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)$. Indeed, starting from the form $\Omega \in \mathcal{T}(\mathfrak{X})$ which generates φ, one can define the sesquilinear form

$$
\Omega_{Z}(x, y):=\Omega\left(x \pi^{-1}\left(Z^{1 / 2}\right), y \pi^{-1}\left(Z^{1 / 2}\right)\right), \quad x, y \in \mathfrak{X}
$$

We check that $\Omega_{Z} \in \mathcal{T}(\mathfrak{X})$:
(i) $\Omega_{Z}(x, x)=\Omega\left(x \pi^{-1}\left(Z^{1 / 2}\right), x \pi^{-1}\left(Z^{1 / 2}\right)\right) \geq 0$ for all $x \in \mathfrak{X}$.
(ii) For every $x \in \mathfrak{X}$ and every $a, b \in \mathfrak{A}_{0}$, we have

$$
\begin{aligned}
\Omega_{Z}(x a, b) & =\Omega\left(x a \pi^{-1}\left(Z^{1 / 2}\right), b \pi^{-1}\left(Z^{1 / 2}\right)\right)=\Omega\left(a \pi^{-1}\left(Z^{1 / 2}\right), x^{*} b \pi^{-1}\left(Z^{1 / 2}\right)\right) \\
& =\Omega_{Z}\left(a, x^{*} b\right)
\end{aligned}
$$

(iii) For every $x, y \in \mathfrak{X}$, we have

$$
\begin{aligned}
\left|\Omega_{Z}(x, y)\right| & =\left|\Omega\left(x \pi^{-1}\left(Z^{1 / 2}\right), y \pi^{-1}\left(Z^{1 / 2}\right)\right)\right| \leq\left\|x \pi^{-1}\left(Z^{1 / 2}\right)\right\|\left\|\pi^{-1}\left(Z^{1 / 2}\right) y\right\| \\
& \leq\|x\|\left\|\pi^{-1}\left(Z^{1 / 2}\right)\right\|_{0}\|y\|\left\|\pi^{-1}\left(Z^{1 / 2}\right)\right\|_{0} \leq\|x\|\|y\|
\end{aligned}
$$

(iv) For every $x \in \mathfrak{X}$,

$$
\begin{aligned}
\Omega_{Z}\left(x^{*}, x^{*}\right) & =\Omega\left(x^{*} \pi^{-1}\left(Z^{1 / 2}\right), x^{*} \pi^{-1}\left(Z^{1 / 2}\right)\right)=\Omega\left(x \pi^{-1}\left(Z^{1 / 2}\right), x \pi^{-1}\left(Z^{1 / 2}\right)\right) \\
& =\Omega_{Z}(x, x)
\end{aligned}
$$

Moreover, Ω_{Z} defines, for every $A=\pi(a) \in \mathfrak{M}=\pi\left(\mathfrak{A}_{0}\right)$, the following trace:

$$
\begin{aligned}
\varphi_{\Omega_{Z}}(A) & =\Omega_{Z}(a, e)=\Omega\left(a \pi^{-1}\left(Z^{1 / 2}\right), \pi^{-1}\left(Z^{1 / 2}\right)\right) \\
& =\Omega\left(a \pi^{-1}(Z), e\right)=\Omega\left(\pi^{-1}(A Z), e\right)=\varphi_{\Omega}(A Z)
\end{aligned}
$$

Thus, the family of traces $\mathfrak{N}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)\left(=\mathfrak{M}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)\right)$ satisfies the assumptions of Lemma 3.5; therefore, if $\eta_{1}, \eta_{2} \in \mathfrak{E N}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)$, and if P_{1} and P_{2} denote their respective supports, one has $P_{1} P_{2}=0$.

By the sufficiency of $\mathcal{T}(\mathfrak{X})$ we get

$$
\|X\|_{2, \mathfrak{M}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)}:=\sup _{\varphi \in \mathfrak{M}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)}\|X\|_{2, \varphi}=\sup _{\varphi \in \mathfrak{E} \mathfrak{M}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)}\|X\|_{2, \varphi}, \quad \forall X \in \pi\left(\mathfrak{A}_{0}\right)
$$

By Proposition 3.3, the Banach space \mathfrak{M}_{2}, completion of \mathfrak{M} with respect to the norm $\|\cdot\|_{2, \mathfrak{N}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)}$, is a $C Q^{*}$-algebra. Moreover, since the supports of the extreme traces satisfy the assumptions of Theorem 3.6, the $C Q^{*}$-algebra $\left(\mathfrak{M}_{2}\left[\|\cdot\|_{2, \mathfrak{N}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)}\right], \mathfrak{M}[\|\cdot\|]\right)$ consists of operators affiliated with \mathfrak{M}.

We now define the map Φ. For every $x \in \mathfrak{X}$, there exists a sequence $\left(a_{n}\right)$ of elements of \mathfrak{A}_{0} converging to x with respect to the norm of $\mathfrak{X}(\|\cdot\|)$. Put $X_{n}=\pi\left(a_{n}\right), n \in \mathbb{N}$. Then

$$
\begin{aligned}
\left\|X_{n}-X_{m}\right\|_{2, \mathfrak{N}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)} & :=\sup _{\varphi \in \mathfrak{N}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)}\left\|\pi\left(a_{n}\right)-\pi\left(a_{m}\right)\right\|_{2, \varphi} \\
& =\sup _{\Omega \in \mathcal{T}(\mathfrak{X})}\left[\Omega\left(\left(a_{n}-a_{m}\right)^{*}\left(a_{n}-a_{m}\right), e\right)\right]^{1 / 2} \\
& =\sup _{\Omega \in \mathcal{T}(\mathfrak{X})}\left[\Omega\left(a_{n}-a_{m}, a_{n}-a_{m}\right)\right]^{1 / 2} \leq\left\|a_{n}-a_{m}\right\| \rightarrow 0
\end{aligned}
$$

Let \widetilde{X} be the $\|\cdot\|_{2, \mathfrak{M}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)}$-limit of the sequence $\left(X_{n}\right)$ in \mathfrak{M}_{2}. We define

$$
\Phi(x):=\widetilde{X}
$$

For each $x \in \mathfrak{X}$, we put

$$
p_{\mathcal{T}(\mathfrak{X})}(x)=\sup _{\Omega \in \mathcal{T}(\mathfrak{X})} \Omega(x, x)^{1 / 2} .
$$

Owing to the sufficiency of $\mathcal{T}(\mathfrak{X}), p_{\mathcal{T}(\mathfrak{X})}$ is a norm on \mathfrak{X} weaker than $\|\cdot\|$. This implies that

$$
\|\widetilde{X}\|_{2, \mathfrak{N}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)}^{2}=\lim _{n \rightarrow \infty} \sup _{\Omega \in \mathcal{T}(\mathfrak{X})} \Omega\left(a_{n}, a_{n}\right)=\lim _{n \rightarrow \infty} p_{\mathcal{T}(\mathfrak{X})}\left(a_{n}\right)^{2}=p_{\mathcal{T}(\mathfrak{X})}(x)^{2}
$$

From this equality it follows easily that the linear map Φ is well defined and injective. Condition (iii) can be easily proved. If ($\mathfrak{X}, \mathfrak{A}_{0}$) is strongly regular, then $p_{\mathcal{T}(\mathfrak{X})}(x)=\|x\|$ for every $x \in \mathfrak{X}$. Thus Φ is isometric. Moreover, in this case, Φ is surjective: indeed, if $T \in \mathfrak{M}_{2}$, then there exists a sequence $\left(T_{n}\right)$ of bounded operators on $\pi\left(\mathfrak{A}_{0}\right)$ which converges to T with respect to the norm $\|\cdot\|_{2, \mathfrak{N}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)}$. The corresponding sequence $\left(t_{n}\right) \subset \mathfrak{A}_{0}, T_{n}=\Phi\left(t_{n}\right)$, converges
to t with respect to the norm of \mathfrak{X} and $\Phi(t)=T$ by definition．Therefore Φ is an isometric ${ }^{*}$－isomorphism．

To complete the proof，it is enough to prove that the given $C Q^{*}$－algebra $\left(\mathfrak{X}, \mathfrak{A}_{0}\right)$ can be embedded in a $C Q^{*}$－algebra $\left(\mathfrak{K}, \mathfrak{B}_{0}\right)$ where \mathfrak{B}_{0} is a W^{*}－ algebra．Of course，we may directly work with $\pi\left(\mathfrak{A}_{0}\right)$ with π the universal representation of \mathfrak{A}_{0} ．The family of traces $\mathfrak{N}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)$ defined on $\pi\left(\mathfrak{A}_{0}\right)^{\prime \prime}$ is not necessarily sufficient．Let $P_{\Omega}, \Omega \in \mathcal{T}(\mathfrak{X})$ ，denote the support of $\widetilde{\varphi}_{\Omega}$ and let

$$
P=\bigvee_{\Omega \in \mathcal{T}(\mathfrak{X})} P_{\Omega}
$$

Then $\mathfrak{B}_{0}:=\pi\left(\mathfrak{A}_{0}\right)^{\prime \prime} P$ is a von Neumann algebra that we can complete with respect to the norm

$$
\|X\|_{2, \mathfrak{N}_{\mathcal{T}}\left(\mathfrak{A}_{0}\right)}=\sup _{\Omega \in \mathcal{T}(\mathfrak{X})} \widetilde{\varphi}_{\Omega}\left(X^{*} X\right), \quad X \in \pi\left(\mathfrak{A}_{0}\right)^{\prime \prime} P
$$

We obtain in this way a $C Q^{*}$－algebra $\left(\mathfrak{K}, \mathfrak{B}_{0}\right)$ with \mathfrak{B}_{0} a W^{*}－algebra．The faithfulness of π on \mathfrak{A}_{0} implies that

$$
\pi(a) P=\pi(a), \quad \forall a \in \mathfrak{A}_{0}
$$

It remains to prove that \mathfrak{X} can be identified with a subspace of \mathfrak{K} ．But this can be shown as in the first part：for each $x \in \mathfrak{X}$ there exists a sequence $\left(a_{n}\right) \subset \mathfrak{A}_{0}$ such that $\left\|x-a_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$ ．We now put $X_{n}=\pi\left(a_{n}\right)$ ． Then，proceeding as before，we determine the element $\widehat{X} \in \mathfrak{K}$ ，where

$$
\widehat{X}=\|\cdot\|_{2, \mathfrak{N}_{T}\left(\mathfrak{A}_{0}\right)}-\lim \pi\left(a_{n}\right) P
$$

It is easy to see that the map $x \in \mathfrak{X} \mapsto \widehat{X} \in \mathfrak{K}$ is injective．If $\left(\mathfrak{X}, \mathfrak{A}_{0}\right)$ is regular，but $\pi\left(\mathfrak{A}_{0}\right) \subset \pi\left(\mathfrak{A}_{0}\right)^{\prime \prime}$ ，then Φ is an isometry of \mathfrak{X} into \mathfrak{M}_{2} ，but need not be surjective．

Acknowledgments．We acknowledge the financial support of MIUR through national and local grants．

References

［1］J．－P．Antoine，A．Inoue and C．Trapani，Partial ${ }^{*}$－Algebras and Their Operator Re－ alizations，Kluwer，Dordrecht， 2002.
［2］F．Bagarello，A．Inoue and C．Trapani，Some classes of topological quasi ${ }^{*}$－algebras， Proc．Amer．Math．Soc． 129 （2001），2973－2980．
［3］F．Bagarello and C．Trapani，States and representations of CQ＊－algebras，Ann． Inst．H．Poincaré 61 （1994），103－133．
［4］—，一，L^{p}－spaces as quasi ${ }^{*}$－algebras，J．Math．Anal．Appl． 197 （1996），810－824．
［5］－，一，CQ＊－algebras：structure properties，Publ．RIMS Kyoto Univ． 32 （1996）， 85－116．
［6］－，一，Morphisms of certain Banach C^{*}－modules，ibid． 36 （2000），681－705．
[7] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras. Vol. II, Academic Press, New York, 1986.
[8] G. Lassner, Topological algebras and their applications in quantum statistics, Wiss. Z. KMU-Leipzig, Math.-Naturwiss. R. 30 (1981), 572—595.
[9] - Algebras of unbounded operators and quantum dynamics, Phys. A 124 (1984), 471-480.
[10] E. Nelson, Note on non-commutative integration, J. Funct. Anal. 15 (1974), 103-116.
[11] K. Schmüdgen, Unbounded Operator Algebras and Representation Theory, Akade-mie-Verlag, Berlin, 1990.
[12] I. E. Segal, A noncommutative extension of abstract integration, Ann. of Math. 57 (1953), 401-457.
[13] Ş. Strătilă and L. Zsidó, Lectures on von Neumann Algebras, Editura Academiei, Bucureşti, and Abacus Press, Tunbridge Wells, 1979.
[14] M. Takesaki, Theory of Operator Algebras. I, Springer, New York, 1979.
[15] C. Trapani and S. Triolo, Representations of certain Banach C^{*}-modules, Mediterr. J. Math. 1 (2004), 441-461.

F. Bagarello
Dipartimento di Metodi
e Modelli Matematici
Università di Palermo
I-90128 Palermo, Italy
E-mail: bagarell@unipa.it

C. Trapani and S. Triolo

Dipartimento di Matematica ed Applicazioni
Università di Palermo
I-90123 Palermo, Italy
E-mail: trapani@unipa.it
salvo@math.unipa.it

[^0]: 2000 Mathematics Subject Classification: Primary 46L08; Secondary 46L51, 47L60.
 Key words and phrases: Banach C^{*}-modules, non-commutative integration, partial algebras of operators.

