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Approximation of the Euclidean ball by polytopes

by

Monika Ludwig (Wien), Carsten Schütt (Kiel)
and Elisabeth Werner (Cleveland, OH, and Lille)

Abstract. There is a constant c such that for every n ∈ N, there is an Nn so that
for every N ≥ Nn there is a polytope P in R

n with N vertices and

voln(Bn
2 △ P ) ≤ c voln(Bn

2 )N−
2

n−1

where B
n
2 denotes the Euclidean unit ball of dimension n.

1. Main results. Let C and K be two convex bodies in R
n. The Eu-

clidean ball with center 0 and radius r is denoted by Bn
2 (r). The ball Bn

2 (1)
is denoted by Bn

2 . Let K be a convex body in R
n with C2-boundary ∂K

and everywhere strictly positive curvature κ. Then

(1) lim
N→∞

inf{voln(K \ P ) | P ⊆ K and P has at most N vertices}
N− 2

n−1

=
1

2
deln−1

( \
∂K

κ(x)
1

n+1 dµ∂K(x)
)n+1

n−1

where µ∂K denotes the surface measure of ∂K. This theorem gives asymp-
totically the order of best approximation of a convex body K by polytopes
contained in K with a fixed number of vertices. It was proved by McClure
and Vitale [McV] in dimension 2 and by Gruber [Gr2] for general n. The
constant deln−1 is positive and depends on the dimension n only. Its order
of magnitude can be computed by considering the case K = Bn

2 . This has
been done in [GRS1] and [GRS2] by Gordon, Reisner and Schütt, namely
there are numerical constants a and b such that

an ≤ deln−1 ≤ bn.
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The constant deln−1 was determined more precisely by Mankiewicz and
Schütt [MaS1], [MaS2]. They showed that

(2)
n− 1

n+ 1
(voln−1(B

n−1
2 ))−

2
n−1

≤ deln−1 ≤
(

1 +
c lnn

n

)
n− 1

n+ 1
(voln−1(B

n−1
2 ))−

2
n−1

where c is a numerical constant. In particular,

lim
n→∞

deln−1

n
=

1

2πe
.

What happens if we drop the condition that the polytopes have to be
contained in the convex body and allow all polytopes have at most N ver-
tices? How much better can we approximate the Euclidean ball?

In [Lud] it was shown that for all convex bodies K whose boundary is
twice continuously differentiable and whose curvature is everywhere strictly
positive,

lim
N→∞

inf{voln(K △ P ) | P is a polytope with at most N vertices}
N− 2

n−1

=
1

2
ldeln−1

( \
∂K

κ(x)
1

n+1 dµ∂K(x)
)n+1

n−1
.

The constant ldeln−1 is positive and depends only on n. Clearly, from the
above mentioned results it follows that ldeln−1 ≤ cn. On the other hand, it
has been shown in [Bö] that for a polytope P with at most N vertices,

voln(Bn
2 △ P) ≥ 1

67e2π

1

n
voln(Bn

2 )N− 2
n−1 .

Thus between the upper and lower estimate for ldeln−1 there is a gap of
order n2. In this paper we narrow this gap by showing that ldeln−1 ≤ c
where c is a numerical constant.

Theorem 1. There is a constant c such that for every n ∈ N there is

an Nn so that for every N ≥ Nn there is a polytope P in R
n with N vertices

such that

voln(Bn
2 △ P) ≤ c voln(Bn

2 )N− 2
n−1 .(3)

Gruber [Gr2] also showed

lim
N→∞

inf{voln(K△P ) | K ⊆P and P is a polytope with at most N facets}
N− 2

n−1

=
1

2
divn−1

( \
∂K

κ(x)
1

n+1 dµ∂K(x)
)n+1

n−1
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where divn−1 is a positive constant that depends on n only. It is easy to
show [Lud, MaS1] that there are numerical constants a and b such that
an ≤ divn−1 ≤ bn.

Ludwig [Lud] showed that for general polytopes

lim
N→∞

inf{voln(K △ P ) | P is a polytope with at most N facets}
N− 2

n−1

=
1

2
ldivn−1

( \
∂K

κ(x)
1

n+1 dµ∂K(x)
)n+1

n−1

where ldivn−1 is a positive constant that depends on n only. Clearly, ldivn−1

≤ cn and Böröczky [Bö] showed that for polytopes P with N facets,

voln(Bn
2 △ P ) ≥ 1

67e2π

1

n
voln(Bn

2 )N− 2
n−1 .

Thus again, there is a gap between the upper and lower estimates for ldivn−1

of order n2. We narrow this gap by a factor of n.

Theorem 2. There is a constant c such that for every n ∈ N and for

every M ≥ 10(n−1)/2 and all polytopes P in R
n with M facets we have

voln(Bn
2 △ P ) ≥ c voln(Bn

2 )M− 2
n−1 .(4)

For additional information on asymptotic approximation see [Gr1], [Gr3],
[Sch].

2. Proof of Theorem 1. We need the following lemmas.

Lemma 3 (Stirling’s formula). For all x > 0,
√

2πxxxe−x < Γ (x+ 1) <
√

2πxxxe−xe1/12x.

The following lemma is due to J. Müller [Mü].

Lemma 4 ([Mü]). Let E(∂Bn
2 , N) be the expected volume of a random

polytope of N points that are independently chosen on the boundary of the

Euclidean ball Bn
2 with respect to the normalized surface measure. Then

lim
N→∞

voln(Bn
2 ) − E(∂Bn

2 , N)

N− 2
n−1

=
(n− 1)

n+1
n−1 (voln−1(∂B

n
2 ))

n+1
n−1

(voln−2(∂B
n−1
2 ))

2
n−1

Γ
(
n+ 1 + 2

n−1

)

2(n+ 1)!
.

The following lemma can be found in [Mil], [SW, p. 317], and [Zä]. Let
[xn, . . . , xn] be the convex hull of x1, . . . , xn.
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Lemma 5 ([Mil]).

(5) dµ∂Bn
2
(x1) · · · dµ∂Bn

2
(xn)

= (n− 1)!
voln−1([x1, . . . , xn])

(1 − p2)n/2
dµ∂Bn

2 ∩H(x1) · · · dµ∂Bn
2 ∩H(xn) dp dµ∂Bn

2
(ξ)

where ξ is the normal to the plane H through x1, . . . , xn and p is the distance

of the plane H to the origin.

Lemma 6 ([Mil]).

(6)
\

∂Bn
2 (r)

· · ·
\

∂Bn
2 (r)

(voln([x1, . . . , xn+1]))
2 dµ∂Bn

2 (r)(x1) · · · dµ∂Bn
2 (r)(xn+1)

=
(n+ 1)rn2+2n−1

n!nn
(voln−1(∂B

n
2 ))n+1.

For a given hyperplane H that does not contain the origin we denote
by H+ the halfspace containing the origin and by H− the halfspace not
containing the origin. A cap C of the Euclidean ball Bn

2 is the intersection
of a halfspace H− with Bn

2 . The radius of such a cap is the radius of the
(n− 1)-dimensional ball Bn

2 ∩H.

Lemma 7 ([SW]). Let H be a hyperplane, p its distance from the origin

and s the normalized surface area of ∂Bn
2 ∩H−, i.e.

s =
voln−1(∂B

n
2 ∩H−)

voln−1(∂Bn
2 )

.

Then
dp

ds
= − 1

(1 − p2)
n−3

2

voln−1(∂B
n
2 )

voln−2(∂B
n−1
2 )

.(7)

Lemma 8 ([SW, Lemma 3.13]). Let C be a cap of a Euclidean ball with

radius 1. Let u be the surface area of this cap and r its radius. Then

(8)

(
u

voln−1(B
n−1
2 )

) 1
n−1

− 1

2(n+ 1)

(
u

voln−1(B
n−1
2 )

) 3
n−1

− c

(
u

voln−1(B
n−1
2 )

) 5
n−1

≤ r(u) ≤
(

u

voln−1(B
n−1
2 )

) 1
n−1

where c is a numerical constant.

The right hand inequality is immediate, since u ≥ rn−1 voln−1(B
n−1
2 ).

Proof of Theorem 1. The approximating polytope is obtained in a proba-
bilistic way. We consider a Euclidean ball that is slightly bigger than the ball
with radius 1, by a carefully chosen factor. We choose N points randomly in
the bigger ball and we take their convex hull. With large probability there
is a random polytope that fits our requirements.
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For technical reasons we choose random points in a Euclidean ball of
radius 1 and we approximate a slightly smaller Euclidean ball, say with
radius 1 − c where c = cn,N depends on n and N only.

We now compute the expected volume difference between Bn
2 (1 − c)

and a random polytope [x1, . . . , xN ] whose vertices are chosen randomly
from the boundary of Bn

2 . Note that random polytopes are simplicial with
probability 1. We want to estimate the expected volume difference

(9) E voln(Bn
2 (1 − c) △ PN )

=
\

∂Bn
2

· · ·
\

∂Bn
2

voln(Bn
2 (1 − c) △ [x1, . . . , xN ]) dP(x1) · · · dP(xN )

where P denotes the uniform probability measure on ∂Bn
2 . Since the volume

difference between Bn
2 (1 − c) and a polytope PN = [x1, . . . , xN ] is

voln(Bn
2 (1 − c) △ PN )

= voln(Bn
2 \Bn

2 (1 − c)) − voln(Bn
2 \ PN ) + 2 voln(Bn

2 (1 − c) ∩ P c
N ),

the above expression equals

voln(Bn
2 \Bn

2 (1 − c))

−
\

∂Bn
2

· · ·
\

∂Bn
2

voln(Bn
2 \ [x1, . . . , xN ]) dP(x1) · · · dP(xN)

+ 2
\

∂Bn
2

· · ·
\

∂Bn
2

voln(Bn
2 (1 − c) ∩ [x1, . . . , xN ]c) dP(x1) · · · dP(xN ).

For given N we choose c such that

(10) voln(Bn
2 \Bn

2 (1 − c))

=
\

∂Bn
2

· · ·
\

∂Bn
2

voln(Bn
2 \ [x1, . . . , xN ]) dP(x1) · · · dP(xN ).

For this particular c we have\
∂Bn

2

· · ·
\

∂Bn
2

voln(Bn
2 (1 − c) △ [x1, . . . , xN ]) dP(x1) · · · dP(xN )

= 2
\

∂Bn
2

· · ·
\

∂Bn
2

voln(Bn
2 (1 − c) ∩ [x1, . . . , xN ]c) dP(x1) · · · dP(xN ).

By Lemma 4 the quantity c is for large N asymptotically equal to

N− 2
n−1 (n− 1)

n+1
n−1

(
voln−1(∂B

n
2 )

voln−2(∂B
n−1
2 )

) 2
n−1 Γ

(
n+ 1 + 2

n−1

)

2(n+ 1)!
.(11)
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In particular, for large enough N ,

c ≤
(

1 +
1

n2

)
N− 2

n−1 (n− 1)
n+1
n−1(12)

×
(

voln−1(∂B
n
2 )

voln−2(∂B
n−1
2 )

) 2
n−1 Γ

(
n+ 1 + 2

n−1

)

2(n+ 1)!

and

(13)

(
1 − 1

n2

)
N− 2

n−1 (n− 1)
n+1
n−1

×
(

voln−1(∂B
n
2 )

voln−2(∂B
n−1
2 )

) 2
n−1 Γ

(
n+ 1 + 2

n−1

)

2(n+ 1)!
≤ c.

Thus there are constants a and b such that

aN− 2
n−1 ≤ c ≤ bN− 2

n−1 .(14)

We continue the computation of the expected volume difference:\
∂Bn

2

· · ·
\

∂Bn
2

voln(Bn
2 (1 − c) △ [x1, . . . , xN ]) dP(x1) · · · dP(xN )

= 2
\

∂Bn
2

· · ·
\

∂Bn
2

voln(Bn
2 (1 − c) ∩ [x1, . . . , xN ]c)

× χ{0∈[x1,...,xN ]◦} dP(x1) · · · dP(xN )

+ 2
\

∂Bn
2

· · ·
\

∂Bn
2

voln(Bn
2 (1 − c) ∩ [x1, . . . , xN ]c)

× χ{0/∈[x1,...,xN ]◦} dP(x1) · · · dP(xN )

≤ 2
\

∂Bn
2

· · ·
\

∂Bn
2

voln(Bn
2 (1 − c) ∩ [x1, . . . , xN ]c)

× χ{0∈[x1,...,xN ]◦} dP(x1) · · · dP(xN )

+ voln(Bn
2 )
\

∂Bn
2

· · ·
\

∂Bn
2

χ{0/∈[x1,...,xN ]◦} dP(x1) · · · dP(xN ).

By a result of [Wen] the second summand equals

voln(Bn
2 )2−N+1

n−1∑

k=0

(
N − 1

k

)
≤ voln(Bn

2 )2−N+1nNn,

so it is of much smaller order (essentially 2−N ) than the first summand,
which, as we shall see, is of the order of N−2/(n−1). Therefore, in what
follows we consider the first summand.

We introduce Φj1,...,jn : ∂Bn
2 × · · · × ∂Bn

2 → R where

Φj1,...,jn(x1, . . . , xN ) = 0
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if [xj1 , . . . , xjn ] is not an (n − 1)-dimensional face of [x1, . . . , xN ] or if 0 is
not in [x1, . . . , xN ], and

Φj1,...,jn(x1, . . . , xN )

= voln(Bn
2 (1 − c) ∩ [x1, . . . , xN ]c ∩ cone(xj1 , . . . , xjn))χ{0∈[x1,...,xN ]◦}

if [xj1 , . . . , xjn ] is a facet of [x1, . . . , xN ] and if 0 ∈ [x1, . . . , xN ]. Here

cone(x1, . . . , xn) =
{ n∑

i=1

aixi

∣∣∣ ∀i : ai ≥ 0
}
.

For all random polytopes [x1, . . . , xN ] that contain 0 as an interior point,

R
n =

⋃

[xj1
,...,xjn ] is a facet of [x1,...,xn]

cone(xj1 , . . . , xjn).

Then\
∂Bn

2

· · ·
\

∂Bn
2

voln(Bn
2 (1 − c) ∩ [x1, . . . , xN ]c)χ{0∈[x1,...,xN ]◦} dP(x1) · · · dP(xN )

=
\

∂Bn
2

· · ·
\

∂Bn
2

∑

{j1,...,jn}⊆{1,...,N}

Φj1,...,jn(x1, . . . , xN ) dP(x1) · · · dP(xN )

where we sum over all different subsets {j1, . . . , jn}. The latter expression
equals (

N

n

) \
∂Bn

2

· · ·
\

∂Bn
2

Φ1,...,n(x1, . . . , xN ) dP(x1) · · · dP(xN ).

Let H be the hyperplane containing the points x1, . . . , xn. The set of points
where H is not well defined has measure 0 and

P
N−n({(xn+1, . . . , xN ) | [x1, . . . , xn] is a facet of [x1, . . . , xN ]

and 0 ∈ [x1, . . . , xN ]}) =

(
voln−1(∂B

n
2 ∩H+)

voln−1(∂Bn
2 )

)N−n

.

Therefore the above expression equals
(
N

n

) \
∂Bn

2

· · ·
\

∂Bn
2

(
voln−1(∂B

n
2 ∩H+)

voln−1(∂Bn
2 )

)N−n

× voln(Bn
2 (1 − c) ∩H− ∩ cone(x1, . . . , xn))χ{0∈[x1,...,xN ]◦} dP(x1) · · · dP(xn).

Since H− does not contain 0 this can be estimated by
(
N

n

) \
∂Bn

2

· · ·
\

∂Bn
2

(
voln−1(∂B

n
2 ∩H+)

voln−1(∂Bn
2 )

)N−n

× voln(Bn
2 (1 − c) ∩H− ∩ cone(x1, . . . , xn)) dP(x1) · · · dP(xn).
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By Lemma 5 the latter expression equals

(
N

n

)
(n− 1)!

(voln−1(∂Bn
2 ))n

\
∂Bn

2

1\
0

\
∂Bn

2 ∩H

· · ·
\

∂Bn
2 ∩H

(
voln−1(∂B

n
2 ∩H+)

voln−1(∂Bn
2 )

)N−n

× voln(Bn
2 (1 − c) ∩H− ∩ cone(x1, . . . , xn))

× voln−1([x1, . . . , xn])

(1 − p2)n/2
dµ∂Bn

2 ∩H(x1) · · · dµ∂Bn
2 ∩H(xn) dp dµ∂Bn

2
(ξ).

This in turn can be estimated by

(15)

(
N

n

)
(n− 1)!

(voln−1(∂Bn
2 ))n

×
\

∂Bn
2

1\
1−1/n

\
∂Bn

2 ∩H

· · ·
\

∂Bn
2 ∩H

(
voln−1(∂B

n
2 ∩H+)

voln−1(∂Bn
2 )

)N−n

× voln(Bn
2 (1 − c) ∩H− ∩ cone(x1, . . . , xn))

× voln−1([x1, . . . , xn])

(1 − p2)n/2
dµ∂Bn

2 ∩H(x1) · · · dµ∂Bn
2 ∩H(xn) dp dµ∂Bn

2
(ξ)

times a factor that is less than 2 provided that N is sufficiently large. Indeed,
for p ≤ 1 − 1/n,

(
voln−1(∂B

n
2 ∩H+)

voln−1(∂Bn
2 )

)N−n

≤ exp

(
−(N − n)

voln−1(∂B
n
2 ∩H−)

voln−1(∂Bn
2 )

)

≤ exp

(
−(N − n)

(
2

n
− 1

n2

)n−1
2 voln−1(B

n−1
2 )

n voln(Bn
2 )

)

≤ exp

(
− N − n

n(n+1)/2

)

and the rest of the expression is bounded. We have

voln(Bn
2 (1 − c) ∩H− ∩ cone(x1, . . . , xn))

≤ p

n
max

{
0,

(
1 − c

p

)n

− 1

}
voln−1([x1, . . . , xn]).

This holds since Bn
2 (1− c)∩H− ∩ cone(x1, . . . , xn) is contained in the cone

cone(x1, . . . , xn), truncated between H and the hyperplane parallel to H at
distance 1 − c from 0. Therefore, as p ≤ 1 the above is at most
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(
N

n

)
(n− 1)!

(voln−1(∂Bn
2 ))n

\
∂Bn

2

1\
1−1/n

\
∂Bn

2 ∩H

· · ·
\

∂Bn
2 ∩H

(
voln−1(∂B

n
2 ∩H+)

voln−1(∂Bn
2 )

)N−n

× 1

n
max

{
0,

(
1 − c

p

)n

− 1

}
(voln−1([x1, . . . , xn]))2

(1 − p2)n/2

× dµ∂Bn
2 ∩H(x1) · · · dµ∂Bn

2 ∩H(xn) dp dµ∂Bn
2
(ξ).

By Lemma 6 this equals
(
N

n

)
(voln−2(∂B

n−1
2 ))n

(voln−1(∂Bn
2 ))n

n

(n− 1)n−1

\
∂Bn

2

1\
1−1/n

(
voln−1(∂B

n
2 ∩H+)

voln−1(∂Bn
2 )

)N−n

× 1

n
max

{
0,

(
1 − c

p

)n

− 1

}
rn2−2

(1 − p2)n/2
dp dµ∂Bn

2
(ξ)

where r denotes the radius of Bn
2 ∩ H. Since the integral does not depend

on the direction ξ and r2 + p2 = 1 this is
(
N

n

)
(voln−2(∂B

n−1
2 ))n

(voln−1(∂Bn
2 ))n−1

n

(n− 1)n−1

×
1\

1−1/n

(
voln−1(∂B

n
2 ∩H+)

voln−1(∂Bn
2 )

)N−n 1

n
max

{
0,

(
1 − c

p

)n

− 1

}
rn2−n−2 dp.

This equals

(16)

(
N

n

)
(voln−2(∂B

n−1
2 ))n

(voln−1(∂Bn
2 ))n−1

n

(n− 1)n−1

×
1−c\

1−1/n

(
voln−1(∂B

n
2 ∩H+)

voln−1(∂Bn
2 )

)N−n 1

n

{(
1 − c

p

)n

− 1

}
rn2−n−2 dp.

Since p ≥ 1 − 1/n and c is of the order N−2/(n−1), we have, for sufficiently
large N ,

1

n

{(
1 − c

p

)n

− 1

}
≤ 3(1 − c− p).

Therefore, the previous expression can be estimated by an absolute constant
times

(17)

(
N

n

)
(voln−2(∂B

n−1
2 ))n

(voln−1(∂Bn
2 ))n−1

n

(n− 1)n−1

×
1−c\

1−1/n

(
voln−1(∂B

n
2 ∩H+)

voln−1(∂Bn
2 )

)N−n

(1 − c− p)rn2−n−2 dp.
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We choose

s =
voln−1(∂B

n
2 ∩H−)

voln−1(∂Bn
2 )

as our new variable under the integral. We apply Lemma 7 in order to change
the variable under the integral

(18)

(
N

n

)
(voln−2(∂B

n−1
2 ))n−1

(voln−1(∂Bn
2 ))n−2

n

(n− 1)n−1

×
1/2\

s(1−c)

(1 − s)N−n(1 − c− p)r(n−1)2 ds

where the normalized surface area s of the cap is a function of the distance
p of the hyperplane to 0. Before we proceed we want to estimate s(1 − c).
The radius r and the distance p satisfy 1 = p2 + r2. We have

rn−1 voln−1(B
n−1
2 )

voln−1(∂Bn
2 )

≤ s(
√

1 − r2) ≤ 1√
1 − r2

rn−1 voln−1(B
n−1
2 )

voln−1(∂Bn
2 )
.

To show this, we compare s with the surface area of the intersection Bn
2 ∩H

of the Euclidean ball and the hyperplane H. We have

voln−1(B
n
2 ∩H)

voln−1(∂Bn
2 )

= rn−1 voln−1(B
n−1
2 )

voln−1(∂Bn
2 )
.

Since the orthogonal projection onto H maps ∂Bn
2 ∩H− onto Bn

2 ∩H the
left hand inequality follows.

The right hand inequality follows again by considering the orthogonal
projection onto H. The surface area of a surface element of ∂Bn

2 ∩H− equals
the surface area of the one it is mapped to in Bn

2 ∩H divided by the cosine
of the angle between the normal to H and the normal to ∂Bn

2 at the given
point. The cosine is always greater than

√
1 − r2.

For p = 1 − c we have r =
√

2c− c2 ≤
√

2c. Therefore by (12) we get

(19) s(1−c)≤ e1/n

1 − c

voln−1(B
n−1
2 )

voln−1(∂Bn
2 )

×
{

2N− 2
n−1 (n−1)

n+1
n−1

(
voln−1(∂B

n
2 )

voln−2(∂B
n−1
2 )

) 2
n−1 Γ

(
n+1+ 2

n−1

)

2(n+ 1)!

}n−1
2

=
e1/n

1 − c

1

N

{
Γ

(
n+ 1 + 2

n−1

)
(n− 1)

(n+ 1)!

}n−1
2

.

The quantity c is of the order N−2/(n−1), therefore 1/(1− c) is as close to 1
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as we desire for N large enough. Moreover, for large n,
(
n− 1

n+ 1

)n−1
2

is asymptotically equal to 1/e. Therefore, for both n and N large enough,

s(1 − c) ≤ e1/12 1

eN

{
Γ

(
n+ 1 + 2

n−1

)

n!

}n−1
2

.

For n sufficiently large,
{
Γ

(
n+ 1 + 2

n−1

)

n!

}n−1
2

≤ e1/12n.

Indeed, by Lemma 3,

Γ
(
n+ 1 + 2

n−1

)

n!
≤

(
1 +

2

n(n− 1)

)n+ 1
2
(
n+

2

n− 1

) 2
n−1

e−
2

n−1 e
1

12(n+ 2
n−1 )

and
(
Γ

(
n+ 1 + 2

n−1

)

n!

)n−1
2

≤ 1

e

(
1 +

2

n(n− 1)

)n−1
2

(n+ 1
2
)(
n+

2

n− 1

)
e

n−1

24(n+ 2
n−1 ) .

The right hand expression is asymptotically equal to ne1/24. Altogether,

s(1 − c) ≤ e1/6 n

eN
.(20)

Since p =
√

1 − r2 we get, for all r with 0 ≤ r ≤ 1,

1 − c− p = 1 − c−
√

1 − r2 ≤ 1

2
r2 + r4 − c.

(The estimate is equivalent to 1− 1
2r

2 − r4 ≤
√

1 − r2. The left hand side is
negative for r ≥ .9 and thus the inequality holds for r with .9 ≤ r ≤ 1. For
r with 0 ≤ r ≤ .9 we square both sides.) Thus (18) is smaller than or equal
to

(21)

(
N

n

)
(voln−2(∂B

n−1
2 ))n−1

(voln−1(∂Bn
2 ))n−2

n

(n− 1)n−1

×
1\

s(1−c)

(1 − s)N−n

(
1

2
r2 + r4 − c

)
r(n−1)2 ds.

Now we evaluate the integral. We use Lemma 8. By differentiation we
verify that

(
1
2r

2 + r4 − c
)
r(n−1)2 is a monotone function of r. Here we use
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the fact that 1
2r

2 + r4 − c is nonnegative. Hence
1\

s(1−c)

(1 − s)N−n

(
1

2
r2 + r4 − c

)
r(n−1)2 ds

≤ 1

2

1\
0

(1 − s)N−n

(
s

voln−1(∂B
n
2 )

voln−1(B
n−1
2 )

)n−1+ 2
n−1

ds

+

1\
0

(1 − s)N−n

(
s

voln−1(∂B
n
2 )

voln−1(B
n−1
2 )

)n−1+ 4
n−1

ds

−
1\
0

(1 − s)N−nc

(
s

voln−1(∂B
n
2 )

voln−1(B
n−1
2 )

)n−1

ds

+

s(1−c)\
0

(1 − s)N−nc

(
s

voln−1(∂B
n
2 )

voln−1(B
n−1
2 )

)n−1

ds.

By (13),
1\

s(1−c)

(1 − s)N−n

(
1

2
r2 + r4 − c

)
r(n−1)2 ds

≤ 1

2

(
voln−1(∂B

n
2 )

voln−1(B
n−1
2 )

)n−1+ 2
n−1 Γ (N − n+ 1)Γ

(
n+ 2

n−1

)

Γ
(
N + 1 + 2

n−1

)

+

(
voln−1(∂B

n
2 )

voln−1(B
n−1
2 )

)n−1+ 4
n−1 Γ (N − n+ 1)Γ

(
n+ 4

n−1

)

Γ
(
N + 1 + 4

n−1

)

−
(

1 − 1

n2

)(
voln−1(∂B

n
2 )

voln−1(B
n−1
2 )

)n−1Γ (N − n+ 1)Γ (n)

Γ (N + 1)

× (n− 1)
n+1
n−1 (voln−1(∂B

n
2 ))

2
n−1

(voln−2(∂B
n−1
2 ))

2
n−1

Γ
(
n+ 1 + 2

n−1

)

2(n+ 1)!
N− 2

n−1

+ cs(1 − c)

(
voln−1(∂B

n
2 )

voln−1(B
n−1
2 )

)n−1

max
s∈[0,s(1−c)]

(1 − s)N−nsn−1.

Thus

(22)

1\
s(1−c)

(1 − s)N−n

(
1

2
r2 + r4 − c

)
r(n−1)2 ds

≤ 1

2

(
voln−1(∂B

n
2 )

voln−1(B
n−1
2 )

)n−1+ 2
n−1 Γ (N − n+ 1)Γ

(
n+ 2

n−1

)

Γ
(
N + 1 + 2

n−1

)
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+

(
voln−1(∂B

n
2 )

voln−1(B
n−1
2 )

)n−1+ 4
n−1 Γ (N − n+ 1)Γ

(
n+ 4

n−1

)

Γ
(
N + 1 + 4

n−1

)

− 1

2

(
1 − 1

n2

)
n− 1

(n+ 1)n

(
voln−1(∂B

n
2 )

voln−1(B
n−1
2 )

)n−1+ 2
n−1

×
Γ (N − n+ 1)Γ

(
n+ 1 + 2

n−1

)

Γ (N + 1)
N− 2

n−1

+ cs(1 − c)

(
voln−1(∂B

n
2 )

voln−1(B
n−1
2 )

)n−1

max
s∈[0,s(1−c)]

(1 − s)N−nsn−1.

The second summand is asymptotically equal to

(23)

(
voln−1(∂B

n
2 )

voln−1(B
n−1
2 )

)n−1+ 4
n−1 (N − n)!(n− 1)!n

4
n−1

N !(N + 1)
4

n−1

=

(
voln−1(∂B

n
2 )

voln−1(B
n−1
2 )

)n−1+ 4
n−1 n−1+ 4

n−1

(N
n

)
(N + 1)

4
n−1

.

This summand is of the order N− 4
n−1 while the others are of the order

N− 2
n−1 .

We consider the sum of the first and third summands:

1

2

(
voln−1(∂B

n
2 )

voln−1(B
n−1
2 )

)n−1+ 2
n−1 Γ (N − n+ 1)Γ

(
n+ 2

n−1

)

Γ
(
N + 1 + 2

n−1

)

×
(

1 −
(

1 − 1

n2

)
(n− 1)Γ

(
n+ 1 + 2

n−1

)
Γ

(
N + 1 + 2

n−1

)

n(n+ 1)Γ
(
n+ 2

n−1

)
Γ (N + 1)N

2
n−1

)

Since Γ
(
n+ 1 + 2

n−1

)
=

(
n+ 2

n−1

)
Γ

(
n+ 2

n−1

)
the latter expression equals

1

2

(
voln−1(∂B

n
2 )

voln−1(B
n−1
2 )

)n−1+ 2
n−1 Γ (N − n+ 1)Γ

(
n+ 2

n−1

)

Γ
(
N + 1 + 2

n−1

)

×
(

1 −
(

1 − 1

n2

)
(n− 1)

(
n+ 2

n−1

)
Γ

(
N + 1 + 2

n−1

)

n(n+ 1)Γ (N + 1)N
2

n−1

)
.

Since Γ
(
N + 1 + 2

n−1

)
is asymptotically equal to (N + 1)

2
n−1Γ (N + 1) the

sum of the first and third summands is for large N of the order

1

n

(
voln−1(∂B

n
2 )

voln−1(B
n−1
2 )

)n−1+ 2
n−1 Γ (N − n+ 1)Γ

(
n+ 2

n−1

)

Γ
(
N + 1 + 2

n−1

)(24)
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which in turn is of the order

1

n2

(
voln−1(∂B

n
2 )

voln−1(B
n−1
2 )

)n−1+ 2
n−1

(
N

n

)−1

N− 2
n−1 .(25)

We now consider the fourth summand. By (14) and (20) it is less than

bN− 2
n−1

n

e5/6N

(
voln−1(∂B

n
2 )

voln−1(B
n−1
2 )

)n−1

max
s∈[0,s(1−c)]

(1 − s)N−nsn−1.(26)

The maximum of the function (1−s)N−nsn−1 is attained at (n−1)/(N −1)
and the function is increasing on the interval [0, (n−1)/(N −1)]. Therefore,
by (20) we have s(1 − c) < (n − 1)/(N − 1) and the maximum of this
function over the interval [0, s(1−c)] is attained at s(1−c). By (20) we have
s(1 − c) ≤ e1/6 n

eN and thus for N sufficiently large

max
s∈[0,s(1−c)]

(1 − s)N−nsn−1 ≤
(

1 − n

e5/6N

)N−n(
e1/6 n

eN

)n−1

≤ exp

(
n− 1

6
− n(N − n)

e5/6N

)(
n

eN

)n−1

≤ exp

(
−n

6

)(
n

eN

)n−1

.

Thus we get for (26) the bound, with a new constant b,

bN− 2
n−1

(
voln−1(∂B

n
2 )

voln−1(B
n−1
2 )

)n−1

e−n/6 n
ne−n

Nn
.

This is asymptotically equal to

bN− 2
n−1

(
voln−1(∂B

n
2 )

voln−1(B
n−1
2 )

)n−1

e−n/6 1(
N
n

)√
2πn

.(27)

Altogether, (15) for N sufficiently large can be estimated by
(
N

n

)
(voln−2(∂B

n−1
2 ))n−1

(voln−1(∂Bn
2 ))n−2

n

(n− 1)n−1

×
{

1

n2

(
voln−1(∂B

n
2 )

voln−1(B
n−1
2 )

)n−1+ 2
n−1

(
N

n

)−1

N− 2
n−1

+ bN− 2
n−1

(
voln−1(∂B

n
2 )

voln−1(B
n−1
2 )

)n−1

e−n/6 1(
N
n

)√
2πn

}
.

This can be estimated by a constant times

(voln−1(∂B
n
2 ))n

{
1

n2
N− 2

n−1 + bN− 2
n−1 e−n/6 1√

2πn

}
.(28)
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Finally, it should be noted that we have been estimating the approximation
of Bn

2 (1 − c) and not that of Bn
2 . Therefore, we need to multiply (28) by

(1 − c)−n. By (14),

(1 − c)n ≥ 1 − b
n

N
2

n−1

so that for all N with N ≥ (2bn)
n−1

2 we have (1 − c)−n ≤ 2.

3. Proof of Theorem 2. We need another lemma.

Lemma 9. Let PM be a polytope with M facets F1, . . . , FM that is best

approximating for a convex body K in R
n with respect to the symmetric

difference metric. For k = 1, . . . ,M , let

F i
k = Fk ∩K, F a

k = Fk ∩Kc.

Then, for all j = 1, . . . ,M ,

voln−1(F
i
j) = voln−1(F

a
j ).

Proof. Let Hj , j = 1, . . . ,M , be the hyperplane containing the face Fj .
Then

PM =
M⋂

j=1

H+
j .

Suppose Hk = H(xk, ξk), i.e. Hk is the hyperplane containing xk and or-
thogonal to ξk. We consider

Pt =
⋂

j 6=k

H+
j ∩H+

(
xk +

t

‖xk‖
xk, ξk

)
.

We have

voln−1(Pt △K) = voln−1(PM △K) + t(voln−1(F
a
k ) − voln−1(F

i
k)) + ψ(t)

where ψ(t)/t2 is a bounded function.

Proof of Theorem 2. Let PM be a best approximating polytope with M
facets F1, . . . , FM for Bn

2 with respect to the symmetric difference metric.
For k = 1, . . . ,M , let

F i
k = Fk ∩Bn

2 , F a
k = Fk ∩ (Bn

2 )c,

let Hk be the hyperplane containing the facet Fk and let Ck be the cap of
Bn

2 with base Hk ∩Bn
2 . (There are actually two caps, we take the one whose

interior has empty intersection with PM .) For k = 1, . . . ,M we put

hk =

{
height of the cap Ck if Fk ∩ (Bn

2 )◦ 6= ∅,
0, if Fk ∩ (Bn

2 )◦ = ∅.
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Then

voln−1(PM △Bn
2 ) ≥ 1

n

M∑

k=1

hk voln−1(F
i
k).(29)

Let rk be such that voln−1(rkB
n−1
2 ) = voln−1(F

i
k). Thus

rk =

(
voln−1(F

i
k)

voln−1(B
n−1
2 )

) 1
n−1

.

Let h̃k be the height of the cap of Bn
2 with base rkB

n−1
2 . Then

h̃k ≤ hk for all k,(30)

and

h̃k ≥ 1

2
r2k ≥ 1

2

(
voln−1(F

i
k)

voln−1(B
n−1
2 )

) 2
n−1

.

Thus from (29) with (30) we get

voln−1(PM △Bn
2 ) ≥ 1

2n

M∑

k=1

(voln−1(F
i
k))

n+1
n−1

(voln−1(B
n−1
2 ))

2
n−1

(31)

≥ 1

8πe

M∑

k=1

(voln−1(F
i
k))

n+1
n−1 .

We consider two cases. The first case is

M∑

k=1

voln−1(F
i
k) +

M∑

k=1

voln−1(F
a
k ) ≥ c voln−1(∂B

n
2 ),(32)

where M ≥ 10(n−1)/2 and c = 9/10. It then follows from Lemma 9 that

M∑

k=1

voln−1(F
i
k) ≥

c

2
voln−1(∂B

n
2 ).(33)

By Hölder’s inequality

M∑

k=1

voln−1(F
i
k) ≤

( M∑

k=1

(voln−1(F
i
k))

p
)1/p

M1/p′ .

Therefore from (31) and (33) with p = n+1
n−1 we get

voln−1(PM △Bn
2 ) ≥ (c/2)

n+1
n−1

8πe

1

M
2

n−1

(n voln(Bn
2 ))

n+1
n−1 ≥ c

n+1
n−1

8M
2

n−1

voln(Bn
2 ).
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The second case is that (32) does not hold. Thus

M∑

k=1

voln−1(Fk) =

M∑

k=1

voln−1(F
i
k) +

M∑

k=1

voln−1(F
a
k ) < c voln−1(∂B

n
2 ).

Then, by the isoperimetric inequality,

voln(PM ) ≤
(∑M

k=1 voln−1(Fk)

voln−1(∂Bn
2 )

) n
n−1

voln(Bn
2 ) < c

n
n−1 voln(Bn

2 )

and thus

voln(PM △Bn
2 ) ≥ (1 − c

n
n−1 ) voln(Bn

2 ).

Since c = 9/10, this last expression is greater than M− 2
n−1 voln(Bn

2 ), pro-

vided M ≥ 10
n−1

2 , which holds by assumption.
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