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Finite-rank perturbations of
positive operators and isometries

by

MAN-DUEN CHot (Toronto) and PEI YUAN WU (Hsinchu)

Abstract. We completely characterize the ranks of A— B and A2 _ B2 for opera-
tors A and B on a Hilbert space satisfying A > B > 0. Namely, let [ and m be nonnegative
integers or infinity. Then [ = rank(A — B) and m = rank(A'/? — B'/?) for some operators
A and B with A > B > 0 on a Hilbert space of dimension n (1 < n < o0) if and only
ifl=m=0o0r 0<l<m < n.In particular, this answers in the negative the question
posed by C. Benhida whether for positive operators A and B the finiteness of rank(A — B)
implies that of rank(A/2 — B/2).

For two isometries, we give necessary and sufficient conditions in order that they be
finite-rank perturbations of each other. One such condition says that, for isometries A
and B, A — B has finite rank if and only if A = (I + F)B for some unitary operator
I+ F with finite-rank F'. Another condition is in terms of the parts in the Wold—Lebesgue
decompositions of the nonunitary isometries A and B.

A bounded linear operator A on a complex separable Hilbert space H is
said to be positive, denoted by A > 0, if (Az,x) > 0 for all vectors x in H,
where (-, -) denotes the inner product in H. If A is positive, then A'/? denotes
the (unique) positive square root of A. In a recent paper by C. Benhida [1],
it was asked whether for two positive operators A and B, the condition
rank(A — B) < co would imply rank(A'/? — BY/?) < co. In Section 1 below,
we completely characterize the ranks of A— B and A2 _ B1/2 for operators
A and B satisfying A > B > 0. We show, in particular, that the answer to
Benhida’s question is “No”. On the other hand, if A and B are commuting
positive operators, then the rank of A — B equals that of AY/2 — BY/2,

We next consider, in Section 2, two isometries V7 and V, and give two
different necessary and sufficient conditions in order that they be finite-
rank perturbations of each other. One condition converts the finite-rank
perturbation of V7 and V5 into a multiplicative unitary relation between
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them. Another condition is in terms of the parts in the Wold-Lebesgue
decompositions of the nonunitary V7 and V5.

For any operator A, we use ker A and range A to denote the kernel and
range of A, respectively. The rank of A, rank A, is the dimension of range A.
A (closed) subspace K of H is said to reduce the operator A on H if AK and
A*K are contained in K, in which case A can be decomposed as Ay @ As
on H=K & K*.

1. Positive operators. The main result of this section is the following
theorem giving a characterization of the pairs of integers which are the ranks
of A— B and A'/2 — BY/2 for operators A and B satisfying A > B > 0.

THEOREM 1.1. Let I and m be nonnegative integers or infinity. Then
| = rank(A — B) and m = rank(AY? — BY?) for some operators A and B
with A > B >0 on a Hilbert space of dimensionn (1 <n < o) if and only
ifl=m=0o0r0<lI<m<n.

The necessity of the condition is proved in the next lemma.
LEMMA 1.2.

(a) If A and B are positive operators on the same Hilbert space H, then
rank(A — B) < 2rank(A'/2 — B1/2).

(b) If A and B on H satisfy A > B > 0, then we have rank(A — B) <
rank(A'/2 — BY/2) and ker(AY/? — BY/?) is a common reducing sub-
space of A and B.

Proof. The assertion in (a) follows from the equality
A~ B = AYV2(AV? _ BV/2) 4 (AY? _ BY/2)B1/2,

To prove (b), let ' = AY? _ BY2 and K = ker F. Assume that F and B'/?2
are represented as
B B
F=F a0, 31/2:[ 1 2}
B3 Bs
on H=K"' @& K. Then
A—B= (B1/2+F)2—B:Bl/2F+FBl/2—|—F2
| Bili+ FiBy + F? F1Bs ] -0
B;Fl 0 -

This implies that F; By = 0. Since F} is one-to-one, we obtain Bs = 0. Thus
A— B = (B1F; + FiB; + F?) @0, from which we derive that ker(4 — B) D
ker(AY/2 — BY/2). Hence

range(A — B) C range(A'/2 — B1/2),
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and so rank(A — B) < rank(A'/2 — BY/2). The assertion on ker(A'/2 — B1/2)
follows from the arguments above. =

To prove the sufficiency of the condition in Theorem 1.1, we need the
following lemma. This should be known to experts. We include the proof for
completeness.

LEMMA 1.3. If A = [aij]?’jzl is a matriz with a;; # 0 for all © and j,
and B is a diagonal matriz diag(by, ..., b,) with distinct b;’s, then the only
common reducing subspaces of A and B are the trivial ones {0} and C™. The
analogous assertion (with n replaced by infinity) holds for infinite matrices

A and B on 2.

Proof. Let M be a common reducing subspace of A and B, and let Py
be the (orthogonal) projection from C™ onto M. Since Py commutes with B
and the b;’s are distinct, we derive that Py; = diag(p1,...,pn) with p; =0
or 1 for each j. On the other hand, since Pj; also commutes with A and
the entries of A are all nonzero, we conclude that either p; = 0 for all j or
pj =1 for all j. Hence M can only be {0} or C" as asserted. m

Note that in the preceding lemma the requirement on the entries of A
can be considerably weakened. However, for our purposes the present form
suffices.

Proof of Theorem 1.1. We first assume that 0 < [ < m =n < oo. Let
B = diag(b1, . . ., bm) be a diagonal matrix with positive and distinct b;’s, let
x1,...,2; be [l linearly independent vectors in C"™ whose components are all
positive, let C'= Y_'_, z;z%, and let A= B+C. Then A > B > 0, rank C'=1
and the entries of A are all positive. By Lemma 1.3, the only common
reducing subspaces of A and B are {0} and C™. Since ker(AY? — BY/2) is a
common reducing subspace of A and B by Lemma 1.2(b), we conclude that
ker(AY/2—B'/2) = {0} or C™. The latter is impossible since A and B are not
equal. Hence ker(A'/?2 — BY/2) = {0} and thus rank(A'/2 — BY/2) = m. For
the more general case that 0 < <m < n < o0, let A and B be the m-by-m
matrices as above. Then A ® 0,,_,, and B & 0,,_,, meet our requirements.
Analogous constructions of A and B work for n = co. This completes the
proof. m

We conclude this section with two related facts. Firstly, if A and B are
commuting positive operators, then rank(A — B) = rank(AY/? — B'/2). This
can be deduced from the spectral theory of the normal operator A + ¢B. In
the next proposition, we prove this from some easily derived facts.

PROPOSITION 1.4. If A and B are commuting positive operators, then

range(A — B) = range(Al/2 — B1/2).
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Proof. The commuting of A and B implies that of A'/2 and B'/2. Hence
A — B = (AY2 4+ B'Y/2)(AY? — BY/2). From this, we deduce the inclusion
ker(A'/?2 — BY/2) C ker(A — B). On the other hand, from

0< (A1/2 . Bl/2)4 — (A . B)2 - 4A1/2B1/2(A1/2 - B1/2)2 < (A - B)Q,
we obtain ker(A—B) C ker(A'/2—B'Y/2). Thus ker(A—B) = ker(AY/?—B1/?)

and our assertion follows. m

Secondly, it is known that the compactness of A— B for positive operators
A and B implies that of A2 — BY/2. Not being able to find a precise
reference, we provide a proof below.

PROPOSITION 1.5. Let A and B be positive operators on the same space.
If A — B is compact, then so is AY? — BY/2,

Proof. 1t is easily seen that if A— B is compact, then so is p(A) —p(B) for
any polynomial p. Let p,, n =1,2,..., be a sequence of polynomials which
converges uniformly to the square-root function f(t) = v/t on o(A4) Uo(B).
Then p,(A) and p,(B) converge in norm to A2 and B'/2, respectively.
Hence A2 — B'/2_ being the norm limit of the compact operators p,(A) —
pn(B), is also compact. =

2. Isometries. An operator A is an isometry if ||Az| = ||z| for any
vector x. In this section, we obtain two different kinds of necessary and
sufficient conditions for two isometries to be finite-rank perturbations of
each other. The first of these is one which converts the additive finite-rank
perturbation into a “left” multiplicative unitary perturbation.

THEOREM 2.1. Let V1, Vs be isometries on a separable Hilbert space H.
Then rank(V; — Vo) < oo if and only if there is a unitary operator U of the
form I + F with rank F' < oo such that Vi = UVy. Moreover, in this case,
F can be chosen with rank F' < 2rank(V; — V3).

Proof. Assume that K = range(V}" — V5) is finite-dimensional. Then so
is L = Vi(K) + Va(K). Obviously, we have V;(K) C L for j = 1,2. On the
other hand, since for any z in K+ and y in K the equalities

(Viz, Viy) = (2, V;'Vjy) = (z,y) = 0
hold, we obtain V;(K+) C (V;K)=L. Together with the fact that V; = V3 on
ker(Vy — Vo) = K+, this yields V;(K1) € (ViK)* n(VbK)t =LY, j=1,2.
Consider the 2-by-2 operator matrix representation

W; 0
o[V 1]
0 R

oijfromH:K@KLtoH:L@LL,wherer:K—>LandR:
K+ — Lt are isometries. Since WoW W1 K is an isometry mapping W1 K
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onto Wo K, it can be extended to a unitary operator Uy on the (finite-
dimensional) space L. Let U = Uy @ I on H = L @ L*. Then U is unitary
with rank(U — I) < 2rank(V; — V) and satisfies

Uo 01 Wy 0 UsW, 0

L e | R
o 7]l 0o R 0 R
_[Wng*Wlo}_[WQO}_
- 0 Rl o r| ™

completing the proof. =

It is easier to prove the corresponding “right” multiplicative unitary
perturbation for isometries.

PROPOSITION 2.2. Let Vi and V5 be isometries on a common Hilbert
space. Then there exists a unitary operator U of the form I + F with finite-
rank F such that Vi =V,U if and only if range V) =range V5 and rank(V1—V3)
< 00. Moreover, in this case, rank F' is equal to rank(Vy — V3).

Proof. If Vi = VU as above, then obviously range Vi = range Vo and
also

rank(V; — Vo) =rank Vo (U — I) = rank Vo F' = rank F' < co.

Conversely, if rangeV; = range V5, then Douglas’s factorization theorem
[5, Problem 59] implies that V4 = VLU for some invertible operator U.
Since both V; and Vs are isometries, so is U. Hence U is unitary. Moreover,
rank(U — I) = rank(V] — V3) < oo follows as above. This completes the
proof. m

We now come to the second condition for the finite-rank perturbations
of nonunitary isometries.

THEOREM 2.3. Let Vi and Vo be nonunitary isometries on a separable
Hilbert space. Then rank(V; — U*VQU) < oo for some unitary U if and only
if Vj is unitarily equivalent to U; W, j = 1,2, where Uy and Uy are singular
unitary operators with finite multiplicity and W is a nonunitary isometry.

Recall that the multiplicity 1(A) of an operator A on H is the minimum
cardinality of a subset {z)}xea of H for which the closed linear span of the
vectors A"xy, n > 0 and A € A, equals H. The operator A is said to be
cyclic if p(A) = 1. By the spectral theorem, a normal operator has finite
multiplicity if and only if it is the direct sum of finitely many cyclic operators
(cf. [4, Section IX.10]).

For the proof of Theorem 2.3, we need the Wold—Lebesgue decomposition
of isometries. This says that every isometry V can be uniquely decomposed
as the direct sum of a singular unitary operator Ug, an absolutely continuous
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unitary operator U, and a unilateral shift S™: V = U, ® U, ® S™. Here
S denotes the direct sum of n copies (0 < n < o0) of the simple unilateral
shift S. The proof for the sufficiency of Theorem 2.3 is based on the following
lemma.

LEMMA 2.4. Let S™ (1 <n <) be the direct sum of n copies of the
simple unilateral shift. Then an isometry is a rank-one perturbation of S™
if and only if it is unitarily equivalent to either S or U & S™ | where U
1s a cyclic singular unitary operator.

This is proved in [6, Theorem 2 and Proposition 2].
We are now ready to prove Theorem 2.3.

Proof of Theorem 2.3. For j = 1,2, let V; = Ujs ® Ujq @ S(5) be the
Wold-Lebesgue decomposition of V; as above with 1 < n; < oo.

To prove one direction, we may assume, for convenience, that V1 and V5
act on the same space H and F' = V; — V5 has finite rank. Let x1,...,x;
be vectors which span the range of F' and let K be the (closed) subspace
spanned by V"2, n > 0 and 1 < m < k. Then K is also spanned by V'z,,,
n > 0and 1 <m <k, and, in particular, K is invariant for V; and V5 and
hence for F. Thus we have the triangulations

V; \% F, F
as[ ] w8 ) e[ ]
0 Vig 0 Vo 0 0

on H=K@ K. Let Ui; be the singular unitary part of Vj;, 4,5 = 1,2. It
was shown in [8, Lemma 4.4] that U;s = Uy @ U2 and Uss = Uz @ Uso.
We have p(Uipn) < u(Vir) < oo, i = 1,2, and Uy = Usa, the latter because
Vis = Vao. The unitary equivalence of Uy, and Uy, follows from a result of
Carey [3, Proposition], and the equality of n; and ny from the Fredholm
index theory [4, Theorem XI.3.11]. This proves our necessity assertion.

To prove the sufficiency, assume that V; = U; @ W, j = 1,2. Let n =
n1 = ng > 1. Since Uj is a singular unitary operator with finite multiplicity,
by Lemma 2.4 there is a finite-rank operator F}; such that U; © S (") and
S 4 F; are unitarily equivalent. Hence Uy @ S (") is unitarily equivalent
to a finite-rank perturbation of Us @ S, This yields our assertion that
rank(V; — U*VLQU) < oo for some unitary U. =

Related results on finite-rank perturbations of more general contractions
may be found in [7, 8, 2, 1].
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