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Finite-rank perturbations of

positive operators and isometries

by

Man-Duen Choi (Toronto) and Pei Yuan Wu (Hsinchu)

Abstract. We completely characterize the ranks of A−B and A
1/2

−B
1/2 for opera-

tors A and B on a Hilbert space satisfying A ≥ B ≥ 0. Namely, let l and m be nonnegative
integers or infinity. Then l = rank(A−B) and m = rank(A1/2

−B
1/2) for some operators

A and B with A ≥ B ≥ 0 on a Hilbert space of dimension n (1 ≤ n ≤ ∞) if and only
if l = m = 0 or 0 < l ≤ m ≤ n. In particular, this answers in the negative the question
posed by C. Benhida whether for positive operators A and B the finiteness of rank(A−B)
implies that of rank(A1/2

− B
1/2).

For two isometries, we give necessary and sufficient conditions in order that they be
finite-rank perturbations of each other. One such condition says that, for isometries A

and B, A − B has finite rank if and only if A = (I + F )B for some unitary operator
I +F with finite-rank F . Another condition is in terms of the parts in the Wold–Lebesgue
decompositions of the nonunitary isometries A and B.

A bounded linear operator A on a complex separable Hilbert space H is
said to be positive, denoted by A ≥ 0, if 〈Ax, x〉 ≥ 0 for all vectors x in H,
where 〈·, ·〉 denotes the inner product in H. If A is positive, then A1/2 denotes
the (unique) positive square root of A. In a recent paper by C. Benhida [1],
it was asked whether for two positive operators A and B, the condition
rank(A−B) < ∞ would imply rank(A1/2 −B1/2) < ∞. In Section 1 below,
we completely characterize the ranks of A−B and A1/2−B1/2 for operators
A and B satisfying A ≥ B ≥ 0. We show, in particular, that the answer to
Benhida’s question is “No”. On the other hand, if A and B are commuting
positive operators, then the rank of A − B equals that of A1/2 − B1/2.

We next consider, in Section 2, two isometries V1 and V2 and give two
different necessary and sufficient conditions in order that they be finite-
rank perturbations of each other. One condition converts the finite-rank
perturbation of V1 and V2 into a multiplicative unitary relation between
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them. Another condition is in terms of the parts in the Wold–Lebesgue
decompositions of the nonunitary V1 and V2.

For any operator A, we use kerA and rangeA to denote the kernel and
range of A, respectively. The rank of A, rank A, is the dimension of rangeA.
A (closed) subspace K of H is said to reduce the operator A on H if AK and
A∗K are contained in K, in which case A can be decomposed as A1 ⊕ A2

on H = K ⊕ K⊥.

1. Positive operators. The main result of this section is the following
theorem giving a characterization of the pairs of integers which are the ranks
of A − B and A1/2 − B1/2 for operators A and B satisfying A ≥ B ≥ 0.

Theorem 1.1. Let l and m be nonnegative integers or infinity. Then

l = rank(A − B) and m = rank(A1/2 − B1/2) for some operators A and B

with A ≥ B ≥ 0 on a Hilbert space of dimension n (1 ≤ n ≤ ∞) if and only

if l = m = 0 or 0 < l ≤ m ≤ n.

The necessity of the condition is proved in the next lemma.

Lemma 1.2.

(a) If A and B are positive operators on the same Hilbert space H, then

rank(A − B) ≤ 2 rank(A1/2 − B1/2).
(b) If A and B on H satisfy A ≥ B ≥ 0, then we have rank(A − B) ≤

rank(A1/2 −B1/2) and ker(A1/2 −B1/2) is a common reducing sub-

space of A and B.

Proof. The assertion in (a) follows from the equality

A − B = A1/2(A1/2 − B1/2) + (A1/2 − B1/2)B1/2.

To prove (b), let F = A1/2 −B1/2 and K = kerF . Assume that F and B1/2

are represented as

F = F1 ⊕ 0, B1/2 =

[

B1 B2

B∗
2 B3

]

on H = K⊥ ⊕ K. Then

A − B = (B1/2 + F )2 − B = B1/2F + FB1/2 + F 2

=

[

B1F1 + F1B1 + F 2
1 F1B2

B∗
2F1 0

]

≥ 0.

This implies that F1B2 = 0. Since F1 is one-to-one, we obtain B2 = 0. Thus
A−B = (B1F1 + F1B1 + F 2

1 )⊕ 0, from which we derive that ker(A−B) ⊇
ker(A1/2 − B1/2). Hence

range(A − B) ⊆ range(A1/2 − B1/2),
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and so rank(A−B) ≤ rank(A1/2−B1/2). The assertion on ker(A1/2−B1/2)
follows from the arguments above.

To prove the sufficiency of the condition in Theorem 1.1, we need the
following lemma. This should be known to experts. We include the proof for
completeness.

Lemma 1.3. If A = [aij]
n
i,j=1 is a matrix with aij 6= 0 for all i and j,

and B is a diagonal matrix diag(b1, . . . , bn) with distinct bj’s, then the only

common reducing subspaces of A and B are the trivial ones {0} and C
n. The

analogous assertion (with n replaced by infinity) holds for infinite matrices

A and B on l2.

Proof. Let M be a common reducing subspace of A and B, and let PM

be the (orthogonal) projection from C
n onto M . Since PM commutes with B

and the bj ’s are distinct, we derive that PM = diag(p1, . . . , pn) with pj = 0
or 1 for each j. On the other hand, since PM also commutes with A and
the entries of A are all nonzero, we conclude that either pj = 0 for all j or
pj = 1 for all j. Hence M can only be {0} or C

n as asserted.

Note that in the preceding lemma the requirement on the entries of A

can be considerably weakened. However, for our purposes the present form
suffices.

Proof of Theorem 1.1. We first assume that 0 < l ≤ m = n < ∞. Let
B = diag(b1, . . . , bm) be a diagonal matrix with positive and distinct bj ’s, let
x1, . . . , xl be l linearly independent vectors in C

m whose components are all
positive, let C =

∑l
j=1 xjx

∗
j , and let A = B+C. Then A ≥ B ≥ 0, rankC = l

and the entries of A are all positive. By Lemma 1.3, the only common
reducing subspaces of A and B are {0} and C

m. Since ker(A1/2 −B1/2) is a
common reducing subspace of A and B by Lemma 1.2(b), we conclude that
ker(A1/2−B1/2) = {0} or C

m. The latter is impossible since A and B are not
equal. Hence ker(A1/2 − B1/2) = {0} and thus rank(A1/2 − B1/2) = m. For
the more general case that 0 < l ≤ m ≤ n < ∞, let A and B be the m-by-m
matrices as above. Then A ⊕ 0n−m and B ⊕ 0n−m meet our requirements.
Analogous constructions of A and B work for n = ∞. This completes the
proof.

We conclude this section with two related facts. Firstly, if A and B are
commuting positive operators, then rank(A−B) = rank(A1/2 −B1/2). This
can be deduced from the spectral theory of the normal operator A + iB. In
the next proposition, we prove this from some easily derived facts.

Proposition 1.4. If A and B are commuting positive operators, then

range(A − B) = range(A1/2 − B1/2).
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Proof. The commuting of A and B implies that of A1/2 and B1/2. Hence
A − B = (A1/2 + B1/2)(A1/2 − B1/2). From this, we deduce the inclusion
ker(A1/2 − B1/2) ⊆ ker(A − B). On the other hand, from

0 ≤ (A1/2 − B1/2)4 = (A − B)2 − 4A1/2B1/2(A1/2 − B1/2)2 ≤ (A − B)2,

we obtain ker(A−B) ⊆ ker(A1/2−B1/2). Thus ker(A−B) = ker(A1/2−B1/2)
and our assertion follows.

Secondly, it is known that the compactness of A−B for positive operators
A and B implies that of A1/2 − B1/2. Not being able to find a precise
reference, we provide a proof below.

Proposition 1.5. Let A and B be positive operators on the same space.

If A − B is compact , then so is A1/2 − B1/2.

Proof. It is easily seen that if A−B is compact, then so is p(A)−p(B) for
any polynomial p. Let pn, n = 1, 2, . . . , be a sequence of polynomials which
converges uniformly to the square-root function f(t) =

√
t on σ(A) ∪ σ(B).

Then pn(A) and pn(B) converge in norm to A1/2 and B1/2, respectively.
Hence A1/2 −B1/2, being the norm limit of the compact operators pn(A)−
pn(B), is also compact.

2. Isometries. An operator A is an isometry if ‖Ax‖ = ‖x‖ for any
vector x. In this section, we obtain two different kinds of necessary and
sufficient conditions for two isometries to be finite-rank perturbations of
each other. The first of these is one which converts the additive finite-rank
perturbation into a “left” multiplicative unitary perturbation.

Theorem 2.1. Let V1, V2 be isometries on a separable Hilbert space H.

Then rank(V1 − V2) < ∞ if and only if there is a unitary operator U of the

form I + F with rankF < ∞ such that V1 = UV2. Moreover , in this case,
F can be chosen with rankF ≤ 2 rank(V1 − V2).

Proof. Assume that K ≡ range(V ∗
1 − V ∗

2 ) is finite-dimensional. Then so
is L ≡ V1(K) + V2(K). Obviously, we have Vj(K) ⊆ L for j = 1, 2. On the
other hand, since for any x in K⊥ and y in K the equalities

〈Vjx, Vjy〉 = 〈x, V ∗
j Vjy〉 = 〈x, y〉 = 0

hold, we obtain Vj(K
⊥) ⊆ (VjK)⊥. Together with the fact that V1 = V2 on

ker(V1 − V2) = K⊥, this yields Vj(K
⊥) ⊆ (V1K)⊥ ∩ (V2K)⊥ = L⊥, j = 1, 2.

Consider the 2-by-2 operator matrix representation

Vj =

[

Wj 0

0 R

]

of Vj from H = K ⊕ K⊥ to H = L ⊕ L⊥, where Wj : K → L and R :
K⊥ → L⊥ are isometries. Since W2W

∗
1 |W1K is an isometry mapping W1K
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onto W2K, it can be extended to a unitary operator U0 on the (finite-
dimensional) space L. Let U = U0 ⊕ I on H = L ⊕ L⊥. Then U is unitary
with rank(U − I) ≤ 2 rank(V1 − V2) and satisfies

UV1 =

[

U0 0

0 I

][

W1 0

0 R

]

=

[

U0W1 0

0 R

]

=

[

W2W
∗
1 W1 0

0 R

]

=

[

W2 0

0 R

]

= V2,

completing the proof.

It is easier to prove the corresponding “right” multiplicative unitary
perturbation for isometries.

Proposition 2.2. Let V1 and V2 be isometries on a common Hilbert

space. Then there exists a unitary operator U of the form I + F with finite-

rank F such that V1 =V2U if and only if rangeV1 =range V2 and rank(V1−V2)
< ∞. Moreover , in this case, rank F is equal to rank(V1 − V2).

Proof. If V1 = V2U as above, then obviously range V1 = range V2 and
also

rank(V1 − V2) = rank V2(U − I) = rankV2F = rankF < ∞.

Conversely, if rangeV1 = rangeV2, then Douglas’s factorization theorem
[5, Problem 59] implies that V1 = V2U for some invertible operator U .
Since both V1 and V2 are isometries, so is U . Hence U is unitary. Moreover,
rank(U − I) = rank(V1 − V2) < ∞ follows as above. This completes the
proof.

We now come to the second condition for the finite-rank perturbations
of nonunitary isometries.

Theorem 2.3. Let V1 and V2 be nonunitary isometries on a separable

Hilbert space. Then rank(V1 −U∗V2U) < ∞ for some unitary U if and only

if Vj is unitarily equivalent to Uj⊕W, j = 1, 2, where U1 and U2 are singular

unitary operators with finite multiplicity and W is a nonunitary isometry.

Recall that the multiplicity µ(A) of an operator A on H is the minimum
cardinality of a subset {xλ}λ∈Λ of H for which the closed linear span of the
vectors Anxλ, n ≥ 0 and λ ∈ Λ, equals H. The operator A is said to be
cyclic if µ(A) = 1. By the spectral theorem, a normal operator has finite
multiplicity if and only if it is the direct sum of finitely many cyclic operators
(cf. [4, Section IX.10]).

For the proof of Theorem 2.3, we need the Wold–Lebesgue decomposition
of isometries. This says that every isometry V can be uniquely decomposed
as the direct sum of a singular unitary operator Us, an absolutely continuous
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unitary operator Ua and a unilateral shift S(n): V = Us ⊕ Ua ⊕ S(n). Here
S(n) denotes the direct sum of n copies (0 ≤ n ≤ ∞) of the simple unilateral
shift S. The proof for the sufficiency of Theorem 2.3 is based on the following
lemma.

Lemma 2.4. Let S(n) (1 ≤ n ≤ ∞) be the direct sum of n copies of the

simple unilateral shift. Then an isometry is a rank-one perturbation of S(n)

if and only if it is unitarily equivalent to either S(n) or U ⊕ S(n), where U

is a cyclic singular unitary operator.

This is proved in [6, Theorem 2 and Proposition 2].

We are now ready to prove Theorem 2.3.

Proof of Theorem 2.3. For j = 1, 2, let Vj = Ujs ⊕ Uja ⊕ S(nj) be the
Wold–Lebesgue decomposition of Vj as above with 1 ≤ nj ≤ ∞.

To prove one direction, we may assume, for convenience, that V1 and V2

act on the same space H and F ≡ V1 − V2 has finite rank. Let x1, . . . , xk

be vectors which span the range of F and let K be the (closed) subspace
spanned by V n

1 xm, n ≥ 0 and 1 ≤ m ≤ k. Then K is also spanned by V n
2 xm,

n ≥ 0 and 1 ≤ m ≤ k, and, in particular, K is invariant for V1 and V2 and
hence for F . Thus we have the triangulations

V1 =

[

V11 ∗
0 V12

]

, V2 =

[

V21 ∗
0 V22

]

, F =

[

F1 F2

0 0

]

on H = K ⊕ K⊥. Let Uij be the singular unitary part of Vij , i, j = 1, 2. It
was shown in [8, Lemma 4.4] that U1s = U11 ⊕ U12 and U2s = U21 ⊕ U22.
We have µ(Ui1) ≤ µ(Vi1) < ∞, i = 1, 2, and U12 = U22, the latter because
V12 = V22. The unitary equivalence of U1a and U2a follows from a result of
Carey [3, Proposition], and the equality of n1 and n2 from the Fredholm
index theory [4, Theorem XI.3.11]. This proves our necessity assertion.

To prove the sufficiency, assume that Vj = Uj ⊕ W , j = 1, 2. Let n =
n1 = n2 ≥ 1. Since Uj is a singular unitary operator with finite multiplicity,
by Lemma 2.4 there is a finite-rank operator Fj such that Uj ⊕ S(n) and
S(n) + Fj are unitarily equivalent. Hence U1 ⊕ S(n) is unitarily equivalent
to a finite-rank perturbation of U2 ⊕ S(n). This yields our assertion that
rank(V1 − U∗V2U) < ∞ for some unitary U .

Related results on finite-rank perturbations of more general contractions
may be found in [7, 8, 2, 1].
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