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On Hartman almost periodic functions

by

Guy Cohen (Jerusalem) and Viktor Losert (Wien)

Abstract. We consider multi-dimensional Hartman almost periodic functions and
sequences, defined with respect to different averaging sequences of subsets in R

d or Z
d.

We consider the behavior of their Fourier–Bohr coefficients and their spectrum, depend-
ing on the particular averaging sequence, and we demonstrate this dependence by several
examples. Extensions to compactly generated, locally compact, abelian groups are con-
sidered. We define generalized Marcinkiewicz spaces based upon arbitrary measure spaces
and general averaging sequences of subsets. We extend results of Urbanik to locally com-
pact abelian groups.

1. Introduction. Let f be a locally integrable function on R
+, and

assume that the limit

σf (λ) = lim
T→∞

1

T

T\
0

f(t)e−iλt dt

exists for every λ ∈ R. Following Kahane [9], such functions are called
Hartman almost periodic. (σf (λ) : λ ∈ R) is called the family of Fourier–

Bohr coefficients of f , and the set {λ : σf (λ) 6= 0} is called the spec-

trum of f . Answering a question of Hartman (see [6] for further exposition
and motivations), J.-P. Kahane proved in [8] that the spectrum is count-
able.

Similar statements are true in the discrete case. More precisely, let (an)
be a complex sequence for which the limit

σa(λ) = lim
N→∞

1

N

N∑

n=1

ane−iλn
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exists for every λ ∈ [−π, π] (such a sequence is called Hartman almost pe-

riodic in [10, p. 72]). Then the spectrum of (an), i.e., {λ : σa(λ) 6= 0}, is
countable.

An easy method to generate Hartman almost periodic sequences is as
follows. Let θ be a measure preserving transformation on some probability
space and take g ∈ L1. For each ω in the space define the sequence an(ω) =
g(θnω). The Wiener–Wintner theorem [20] shows that for almost every ω
the sequence (an(ω)) is Hartman almost periodic.

More recently, the study of Hartman almost periodic sequences was moti-
vated by weighted ergodic theorems (pointwise and in norm). Many authors,
like Tempelman [18], Ryll-Nardzewski [17], Bellow and Losert [2], Lin, Olsen
and Tempelman [12], Çömez, Lin and Olsen [5], Lin and Tempelman [13],
Berend et al. [3], have developed various results in this direction. Some of
these results ([18], [13], and [3]) extend to actions of locally compact abelian
groups, and in some cases, identification of the limit is possible by using
the Fourier–Bohr coefficients of the sequence. The description of the limit
is considerably simplified because the spectrum is countable.

One of the aims of our paper is to investigate properties of multi-dimen-
sional Hartman almost periodic functions and sequences. In Sec. 4 we con-
sider two-dimensional generalizations of Hartman almost periodic functions
and sequences. We give a generalization of Kahane’s [8, Theorem 1] when
the Fourier–Bohr coefficients are defined by unrestricted convergence, using
averages over the family of subsets [0, S] × [0, T ] in R

2, with S, T > 0 (or-
dered by inclusion). It is shown that for any locally integrable function f
the set of λ ∈ R

2 for which σf (λ) exists and is non-zero can be at most
countable. If f is Hartman almost periodic, the set {λ ∈ R

2 : |σf (λ)| ≥ ε}
is scattered for every ε > 0. The proof uses some slight extensions of the
method of Kahane. We also consider a corresponding result for Hartman
almost periodic sequences, and discuss various generalizations, in particu-
lar to functions defined on compactly generated, locally compact, abelian
groups.

On the other hand, for Fourier–Bohr coefficients obtained by considering
convergence along squares (in Z

2), we give an example of a Hartman almost
periodic function in this weaker sense (even belonging to M1—see below)
with uncountable spectrum.

In Sec. 5 we discuss related results (positive and negative) in the one-
dimensional case, concerning convergence along subsequences.

In some sense, Hartman almost periodicity is a minimal requirement
for reasonable weights in ergodic theorems. But most of the results in the
papers mentioned above need additional growth or regularity properties.
Marcinkiewicz [15] has investigated the “Besicovitch spaces” which for
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1 ≤ p < ∞ consist of locally integrable functions on R satisfying

‖f‖p := lim sup
T→∞

(
1

2T

T\
−T

|f(t)|p dt

)1/p

< ∞.

He proved that for every 1 ≤ p < ∞ the corresponding space is complete.
These are now called Marcinkiewicz spaces and we denote them by Mp.
In Sec. 2, we define generalized Marcinkiewicz spaces based upon arbitrary
measure spaces and limits of averages over more general families of sets. We
give a sufficient condition for completeness, and conclude that section by
several examples for which our sufficient condition holds. We also give an
example of a non-complete space.

Then in Sec. 3 we consider the case of a non-compact, locally compact,
abelian group G with Haar measure and a family of sets of “Følner’s type”.
We denote by Bp the space of (generalized) p-Besicovitch almost periodic

functions (or sequences), i.e., the closure in Mp of the continuous almost
periodic functions (sequences) on G.

Urbanik [19] has shown (for R) that if a Hartman almost periodic func-
tion f is in Mp for some p > 1, then (σf (λ) : λ ∈ R) is the family of
Fourier–Bohr coefficients of a Besicovitch almost periodic function from Bp.
Equivalently, it is the family of (the usual) Fourier coefficients of a function
h∗ ∈ Lp(R

∗), where R
∗ denotes the Bohr compactification of R. Here the def-

inition of σf (λ) can be extended by using “generalized mean values” (which
covers, e.g., all kinds of subsequential convergence). This can be generalized
to arbitrary G (without much difficulty).

2. Generalized Marcinkiewicz spaces

Definition 2.1. Let (Ω, µ) be an infinite measure space, and let
(Ωi : i ∈ I) be a family of measurable subsets in Ω of finite measure,
where I is some directed index set. Let f be a measurable complex-valued
function on Ω, and for 1 ≤ p < ∞ define

‖f‖p = lim sup
i∈I

(
1

µ(Ωi)

\
Ωi

|f(x)|p µ(dx)

)1/p

.

We call Mp := {f : ‖f‖p < ∞} a generalized Marcinkiewicz space (with
respect to the family (Ωi)).

By elementary arguments, Mp is a linear space, ‖ · ‖p is a seminorm
on Mp. Furthermore, we have ‖·‖p ≤ ‖·‖p′ and in particular Mp′ ⊆ Mp for
p ≤ p′. For 1/p+1/q = 1, we have ‖fg‖1 ≤ ‖f‖p‖g‖q, hence Mp ·Mq ⊆ M1.

The question of completeness of the Marcinkiewicz spaces has turned
out to be somewhat subtle. We give some partial results.
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Proposition 2.2. Assume that for some 1 ≤ p < ∞, the family

(Ωi : i ∈ I) of measurable subsets of Ω satisfies the following condition:

(M) For any f with ‖f‖p > 0 there exists f∗ such that

‖f − f∗‖p = 0, sup
i∈I

(
1

µ(Ωi)

\
Ωi

|f∗(x)|p µ(dx)

)1/p

≤ 2‖f‖p.

Then the Marcinkiewicz space Mp is complete.

Proof. A well known characterization says that a normed (or semi-
normed) space is complete iff every absolutely converging series converges
(i.e., convergence of

∑
‖vn‖ implies convergence of

∑
vn). Assume that∑

n ‖fn‖p converges. By property (M), there exists a sequence {f∗
n} such

that ‖fn − f∗
n‖p = 0 and for every n ≥ 1,

sup
i∈I

(
1

µ(Ωi)

\
Ωi

|f∗
n(x)|pµ(dx)

)1/p

≤ 2‖fn‖p.

Clearly, norm convergence of
∑

n f∗
n is equivalent to norm convergence of∑

n fn (to the same limit), so it is enough to show convergence of
∑

n f∗
n.

For each ω ∈ Ω, define f(ω) =
∑

n f∗
n(ω) if the series converges, otherwise

put f(ω) = 0. By property (M) and by the Beppo Levi theorem, for a.e.
ω ∈ Ωi the series

∑
n f∗

n(ω) is absolutely convergent. It easily follows that
‖
∑n

k=1 f∗
k − f‖p →n 0.

We will now give several natural examples where property (M) is satis-
fied.

Examples 2.3. (i) Let I = N (with natural order) and let (Ωn) be
any (not necessarily increasing) sequence of measurable subsets satisfying
µ(Ωn) → ∞. For f ∈ Mp, let n0 > 0 be an integer for which

sup
n>n0

(
1

µ(Ωn)

\
Ωn

|f(x)|p µ(dx)

)1/p

≤ 2‖f‖p.

Define f∗ as follows: f∗(x) = 0 if x ∈
⋃

n≤n0
Ωn, otherwise put f∗(x) = f(x).

A specific example is the following: Let (bi ≥ 1) (ni ≥ 0) be sequences
of integers, and assume that bi → ∞. Let Ω = N, Ωi = {ni +1, . . . , ni + bi},
and let µ be the counting measure. The authors of [1] (and others) consid-

ered “moving averages” of the form (1/bi)
∑ni+bi

k=ni+1 ak, giving rise to subse-
quential ergodic theorems. Now, we see that the corresponding generalized
Marcinkiewicz spaces are complete.

(ii) Given an arbitrary measure space, assume that we have a subset I0

of I, i1 ∈ I and c > 0 such that for any i ∈ I with i ≥ i1 there exists
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i0 ∈ I0 with i ≤ i0, Ωi ⊆ Ωi0 and µ(Ωi) ≥ cµ(Ωi0) (i.e., I0 is cofinal and
“sufficiently dense” in some tail of I). Then (Ωi : i ∈ I) and (Ωi : i ∈ I0)
define the same Marcinkiewicz spaces Mp (with equivalent seminorms ‖·‖p).
Furthermore, if I0 is countable and linearly ordered and µ(Ωi) → ∞, then
(compare (i)) property (M) holds for (Ωi : i ∈ I0) (essentially, it holds also
for (Ωi : i ∈ I, i ≥ i1), but possibly with a different constant), in particular
the spaces Mp are complete.

This covers the classical example of Marcinkiewicz [15], where Ω = R

and Ωt = [−t, t]. Similarly for Ωt = [0, t].

(iii) Another example arises from the setting of Theorem 4.3 below, where
Ω = R

2 with standard Lebesgue measure and one considers the family of
all rectangles [0, S]× [0, T ] with S, T > 0 (ordered by inclusion). In this case
the family is not linearly ordered.

(iv) Let Ω = R (with standard Lebesgue measure) with the family of
all intervals [a, b] where a < b. It is easy to see that property (M) does not
hold, but again (ii) applies. Passing to the subfamily defined by any subset
I1 = {i ∈ I : i ≥ i1} it follows that this gives the same Marcinkiewicz spaces
Mp as the classical family Ωt = [−t, t].

In [4, Ch. I] Marcinkiewicz spaces have been investigated for Ω = R
d

(with standard Lebesgue measure) based on the family Ωn = nΓ (n ∈ N),
where Γ is some bounded convex neighborhood of the origin (to prove com-
pleteness in this case, the authors of [4] already used the same technique as
in the proof of Proposition 2.2 above). By (ii), these spaces do not depend on
the choice of Γ (of course the seminorms will depend in general) and one can
take for Γ any bounded measurable neighborhood of the origin and also use
the family of translates {x+nΓ : x ∈ R

d, n ∈ N} (ordered by inclusion). But
for d > 1, different spaces are obtained when using the family of all bounded
convex subsets with non-empty interior, and for d = 2 these are also dif-
ferent from those obtained from the family of rectangles [−S, S] × [−T, T ]
with S, T > 0 (related to the notion of unrestricted convergence considered
in Section 4).

(v) Let G be a compactly generated locally compact group, and µ Haar
measure. If U is a symmetric, relatively compact, measurable neighborhood
of the identity, generating G (i.e., G =

⋃∞
n=1 Un), it is well known that there

exists d0 > 0 such that µ(Un+1) ≤ d0µ(Un) for all n. It follows that the
Marcinkiewicz spaces Mp defined by the family (Un : n ∈ N) are complete
and do not depend on the choice of U .

It seems unlikely that property (M) and variations like (ii) cover all the
cases where Mp is complete, but we want to give also an example where the
Marcinkiewicz space Mp is not complete:
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Example 2.4. Take Ω = N (with counting measure) and consider the
family of all sets A∪B where A, B are bounded subintervals of N (ordered by
inclusion). Then the following properties can be verified easily: any f ∈ Mp

is bounded, and in particular all the spaces Mp coincide in this case for
1 ≤ p < ∞. Define fn by fn(k) = 2n/n2 if 2n | k and fn(k) = 0 otherwise
(n = 1, 2, . . . ); then ‖fn‖1 ≤ 3/n2, but

∑∞
n=1 fn, which exists pointwise,

does not converge in M1 (since it represents an unbounded sequence). Thus
the spaces Mp are not complete in this case.

Remark. Let X be a separable Banach space with norm ‖ · ‖X. Let f
be an X-valued measurable function, defined on Ω. For such functions, one
can consider a seminorm |||f |||p :=

∥∥‖f‖X

∥∥
p
. Proposition 2.2 remains true

and the generalized Marcinkiewicz spaces Mp(X) := {f : |||f |||p < ∞} are
complete if condition (M) holds.

3. The Besicovitch spaces Bp . Let G be a non-compact locally com-
pact group with Haar measure µ, let I be a directed set and let (Ai : i ∈ I)
be a family of measurable subsets of G, satisfying two conditions of “Følner’s
type”

(i) 0 < µ(Ai) < ∞ for all i ∈ I,
(ii) limi∈I µ(xAi △ Ai)/µ(Ai) = 0 for all x ∈ G.

This is sometimes called an asymptotically left invariant net (of subsets);
see [16, p. 48]. Such a net exists if and only if the group G is amenable.

Let AP(G) be the space of continuous almost periodic functions on G
and let G∗ be the Bohr compactification of G ([16, p. 284]). There is an
isometric isomorphism (denoted as g 7→ g∗) between AP(G) and the space
of continuous functions C(G∗) (with supremum norm ‖ · ‖∞).

For 1 ≤ p < ∞, we consider Mp, the generalized Marcinkiewicz spaces
as in Definition 2.1, with respect to such a family (Ai : i ∈ I). We denote by
Bp the closure of AP(G) in Mp with respect to the seminorm ‖ · ‖p. We call
Bp the space of Besicovitch almost periodic functions on G (see also [11] for
a related definition). Clearly, Bp′ ⊆ Bp for p ≤ p′ and Bp · AP(G) ⊆ Bp.

Let µ∗ be the normalized Haar measure on G∗. On the space AP(G)
there is a unique two-sided translation invariant mean m and it satisfies

m(g) =
\

G∗

g∗(x)µ∗(dx).

In addition, uniqueness implies the formula

m(g) = lim
i∈I

1

µ(Ai)

\
Ai

g(x)µ(dx) for every g ∈ AP(G)

(see, e.g., [16, Proposition 22.21]).
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In particular, ‖g‖p = ‖g∗‖p for g ∈ AP(G) (on the right side we consider
the Lp(G∗, µ∗)-norm). It follows that the correspondence g 7→ g∗ extends
to an isometric mapping (denoted in the same way) of Bp into Lp(G

∗, µ∗).
Furthermore, the mean m has a unique continuous extension to the whole
space B1. By the Hahn–Banach extension theorem the functional m can be
further extended to a linear functional on M1, without increasing its norm.
Following Urbanik [19], such an extension will be called a generalized mean

on M1. In general, there are many extensions and any such extension will
be still denoted by m.

For the next two results, we restrict to the case where G is abelian.
(Similar statements hold in the general case, when considering continuous
finite-dimensional representations instead of characters. But observe that
there are some non-abelian groups, e.g., G = SL(2, R), for which AP(G)

contains just the constant functions—see [7, 22.22].) Let Ĝ be the dual group
of G. The Bohr compactification G∗ can be identified with the group of (not

necessarily continuous) characters of G. Algebraically, Ĝ is isomorphic to
the dual group of G∗. Continuous characters on G will be denoted by χ.
We consider G as a dense subgroup of G∗. (But the topology of G is in
general strictly finer than the induced topology.) Then χ∗ is just the unique
extension of χ to a continuous character on G∗. Conversely, the restriction
to G of a continuous character on G∗ is a continuous character on G ([7,
Theorem 26.12]). Therefore we use the same letters for continuous characters
on G and those on G∗.

For a function g ∈ B1, we have gχ ∈ B1 for any χ ∈ Ĝ. The value
m(gχ) is called the Fourier–Bohr coefficient of g at χ; it is exactly the
(usual) Fourier coefficient ĝ∗(χ) =

T
G∗ g∗χdµ, using again the extension

of χ to a character of G∗ (we follow here the habits of abelian harmonic
analysis, e.g. as in [19], [7]; they are different from the definition of Fourier
transforms common in the non-abelian case). The spectrum of g is the set

{χ ∈ Ĝ : m(gχ) 6= 0}. Since for every ε > 0 the set {χ ∈ Ĝ : |ĝ∗(χ)| ≥ ε} is
finite, every Besicovitch almost periodic function (g ∈ B1) has a countable
spectrum.

The following two results are generalizations of Theorem 3 and Corol-
lary 2 of Urbanik [19].

Theorem 3.1. Let m be a generalized mean on M1. If 1 < p < ∞, then

for any f ∈ Mp, there exists f1 ∈ Lp(G
∗, µ∗) such that m(fχ) = f̂1(χ) for

every χ ∈ Ĝ. It follows that for every ε > 0 the set {χ ∈ Ĝ : |m(fχ)| ≥ ε}

is finite, in particular , m(fχ) = 0 for all χ ∈ Ĝ outside a countable subset.

Proof. Fix f ∈ Mp and let 1 < q < ∞ be the dual index of
p > 1. We define a linear functional l on C(G∗) by l(g∗) = m(fg).
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Clearly
|l(g∗)| = |m(fg)| ≤ ‖fg‖1 ≤ ‖f‖p‖g‖q = ‖f‖p‖g

∗‖q,

hence l extends to a continuous functional on Lq(G
∗, µ∗). Thus, there exists

a function f1 ∈ Lp(G
∗, µ∗) such that for any g∗ ∈ Lq(G

∗, µ∗) we have

l(g∗) =
\

G∗

f1g
∗ dµ∗.

Hence, m(fχ) = l(χ) = f̂1(χ). All the assertions on {m(fχ) : χ ∈ Ĝ} follow
from the fact that it is the set of Fourier coefficients of some function from
Lp(G

∗, µ∗).

For χ ∈ Ĝ, we put

σf (χ) = lim
i∈I

1

µ(Ai)

\
Ai

fχ dµ,

whenever the limit exists.

Corollary 3.2. Let f be a function in Mp, 1 < p < ∞, and put

σf (χ) = lim inf
i∈I

∣∣∣∣
1

µ(Ai)

\
Ai

fχ dµ

∣∣∣∣.

Then for every ε > 0, the set {χ ∈ Ĝ : σf (χ) ≥ ε} is finite. In particular ,
the set where σf (χ) 6= 0 can be at most countable.

Proof. Considering a universal refinement of the net, we can assume that

m(h) := lim
i∈I

1

µ(Ai)

\
Ai

h dµ

exists for all h ∈ M1. Clearly, m is a generalized mean, |m(fχ)| ≥ σf (χ) and
m(fχ) = σf (χ) (when the original limit exists). So, the previous theorem
yields the result.

Remarks. 1. Theorem 3.1 and Corollary 3.2 were proved in Urbanik [19]
more generally for Orlicz space type Marcinkiewicz spaces on R. One can
prove the above results similarly for generalized Orlicz–Marcinkiewicz spaces
over G.

2. If G is a locally compact, σ-compact amenable group, there always
exists a sequence of measurable subsets (An) of G, satisfying (i) and (ii)
above ([16, Proposition 16.11], these are called “averaging sequences”; see
also [7, Theorem 18.13] for the abelian case). For such a sequence, it follows
from Proposition 2.2 that the generalized Marcinkiewicz spaces Mp are all
complete, hence the same is true for the spaces Bp, and Bp is isomorphic to
Lp(G

∗, µ∗). In particular, one can conclude in Theorem 3.1 that f1 = h∗ for
some h ∈ Bp.
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Typical examples of applications of Theorem 3.1 and Corollary 3.2 are
given by considering G = R

d (or G = Z
d), µ the Lebesgue measure (or the

counting measure), and At = [−t, t]d (or An = [−n, n]d).

In the σ-compact case, one can always take (An) to be open subsets with
compact closure such that A1 ⊆ A2 ⊆ · · · and

⋃∞
n=1 An = G (as above).

Observe that if G is any non-compact locally compact group and (An) is
a sequence of measurable sets satisfying (i) and (ii) above, then necessarily
µ(A−1

n ) → ∞. Indeed, consider

φn(x) =
µ(xAn ∩ An)

µ(An)
.

This is a sequence of continuous positive definite functions on G which by
(ii) converges pointwise to 1, hence by Lebesgue’s theorem, it converges for
the weak∗-topology σ(L∞, L1); but then by a classical theorem of Raikov,
we get uniform convergence on compact sets. Thus (ii) holds uniformly for
x in a compact subset of G. Let U be a compact subset of G; then, denoting
the indicator functions by cAn

, cU and convolution by ∗, it follows that

1

µ(An)

∥∥∥∥
cU

µ(U)
∗ cAn

− cAn

∥∥∥∥
1

→ 0.

Hence, for n large enough, there exists x ∈ An such that µ(U ∩ xA−1
n ) =

cU ∗ cAn
(x) ≥ 1

2µ(U), proving our claim.

Of course, if G is unimodular, it follows that µ(An) → ∞, but if G is
not unimodular, one can use right translations to make µ(An) as small or
large as one likes. On the other hand, if the underlying discrete group of G is
amenable, one can always construct a net satisfying (i), (ii) and µ(Ai) → 0.

In the non-σ-compact case, sequences cannot be sufficient, and presum-
ably the Besicovitch spaces will show a rather pathological behavior.

3. Corollary 3.2 in general fails to hold for p = 1 (but of course, it stays
true when f ∈ B1). Considering G = R and the intervals An = [−n!, n!],
Urbanik [19, Theorem 2] has constructed a function f ∈ M1 such that
σf (χt) 6= 0 for uncountably many t (where χt(x) = eitx; but in this example
σf (χt) does not exist for some t). The limit of the averages extends (as above)
to a generalized mean m on M1, and this also gives a counter-example to
Theorem 3.1 when p = 1.

4. Hartman almost periodic functions

Definition 4.1. Let G be a locally compact, abelian group, and let µ
be a Haar measure on G. Let (Ai : i ∈ I) be a family of measurable subsets
of G, satisfying conditions (i) and (ii) of Section 3, where I is some directed
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index set. A measurable complex-valued function f on G for which

σf (χ) = lim
i∈I

1

µ(Ai)

\
Ai

fχ dµ

exists for every χ ∈ Ĝ will be called a Hartman almost periodic function

(this goes back to Kahane: see [9] for G = R with At = [−t, t], t ∈ R
+, and

[10, p. 72] for G = Z with Ak = [−k, k], k ∈ N). The spectrum of f is the

set {χ ∈ Ĝ : σf (χ) 6= 0}.

As mentioned before, every Besicovitch almost periodic function (f ∈B1)
is Hartman almost periodic and σf (χ) has the same properties as in
Corollary 3.2. Furthermore, if f is Hartman almost periodic and in addition
f ∈ Mp holds for some p with 1 < p < ∞, then Corollary 3.2 applies as well,

i.e., in these cases {χ ∈ Ĝ : |σf (χ)| ≥ ε} is finite for every ε > 0 (without
further assumptions on the family (Ai), and for arbitrary locally compact
abelian groups).

In [9] Kahane has shown that there are quite many functions outside B1

that are Hartman almost periodic (in particular, there is no hope to recover
f from σf (χ), in general). Kahane [8, Théorème 1] proved that all Hartman
almost periodic functions on R, with At = [0, t], t ∈ R

+, have countable
spectrum. It turns out that such general properties of σf (χ) depend very
much on the choice of the family (Ai) (loosely speaking: if (Ai) fills out the
space more regularly, one gets a more restricted class of coefficients σf (χ)).
Some examples on this in the one-dimensional case will be given in the
Remarks of Section 5.

In this section we concentrate on the case G = R
2, looking for gener-

alizations of Kahane’s theorem. Results for R
d, d > 2, can be shown in a

similar manner (with some more notational effort). Identifying R̂2 with R
2,

we write σf (λ) instead of σf (χλ), where for λ = (λ(1), λ(2)) ∈ R2, χλ(s, t) =

ei(λ(1)s+λ(2)t). Again the choice of (Ai) is essential.

Definition 4.2. Let h(s, t) be a complex-valued function on R
2. We say

that L is the unrestricted limit of h(s, t) as s, t → ∞ if for every ε > 0 there
exists M > 0 such that for every s, t ≥ M we have |h(s, t) − L| ≤ ε.

From now on, all the limits considered will be unrestricted limits. In
our general notation, this means that we consider Example 2.3(iii), where
I = R

+ × R
+ and AST = [0, S] × [0, T ]. Clearly, we can always restrict to

functions on R
+ × R

+.

Theorem 4.3. Let f(s, t) be a locally integrable function on [0,∞) ×
[0,∞), and let F ⊂ R

2 be closed. Suppose that for each λ = (λ(1), λ(2)) ∈ F
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the limit

σf (λ) := lim
S,T→∞

1

ST

S\
0

T\
0

f(s, t)e−i(λ(1)s+λ(2)t) ds dt

exists. Then σf (λ) = 0 for all λ ∈ F outside a countable subset. Further-

more, given ε > 0, the set Fε := {λ ∈ F : |σf (λ)| ≥ ε} does not contain any

subset which is dense in itself , i.e., Fε is a scattered set.

Proof. Recall that a scattered subset of R
2 is countable (since the plane

satisfies the second-countability axiom), thus it will be enough to show the
second statement.

For every λ ∈ F define

σf (λ, S, T ) :=
1

ST

S\
0

T\
0

f(s, t)e−i(λ(1)s+λ(2)t) ds dt.

More generally, we consider

σf (λ, S, T, S0, T0) :=
1

ST

S\
S0

T\
T0

f(s, t)e−i(λ(1)s+λ(2)t) ds dt

ελ(S, T, S0, T0) := σf (λ, S, T, S0, T0) − σf (λ)

σf (λ, S0, T0) := sup
S>S0

|σf (λ, S, T0)| + sup
T>T0

|σf (λ, S0, T )|.

Observe that convergence of σf (λ, S, T ) implies that σf (λ, S0, T0) is finite
as soon as S0, T0 are sufficiently large (the starting point for finiteness may
depend on λ). Furthermore, an easy computation shows that

σf (λ, S, T, S0, T0) = σf (λ, S, T ) −
S0

S
σf (λ, S0, T )(#)

−
T0

T
σf (λ, S, T0) +

S0T0

ST
σf (λ, S0, T0).

Consequently, σf (λ, S0, T0)<∞ implies σf (λ)=limS,T→∞ σf (λ,S,T,S0,T0),
i.e., limS,T→∞ ελ(S, T, S0, T0) = 0 (and it is not hard to see that the condi-
tion is necessary as well to be able to drop the “initial segment”; see also
Remark 1 below).

Our next aim will be (see (∗∗) below) to derive an asymptotic expression
for σf (λ + µ, S, T, S0, T0) when λ, S0, T0 are fixed. First, we assume that f
is continuous. For brevity, we write ελ(S, T ) instead of ελ(S, T, S0, T0) and

eλ(s, t) = e−i(λ(1)s+λ(2)t).

Since stελ(s, t) =
Ts
S0

Tt
T0

f(u, v)eλ(u, v) du dv − stσf (λ), we obtain by
Fubini’s theorem

∂2(stελ(s, t))

∂s∂t
=

∂2(stελ(s, t))

∂t∂s
= f(s, t)eλ(s, t) − σf (λ).
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Fix λ ∈ F and take any µ = (µ(1), µ(2)) ∈ R
2. We have

(∗) σf (λ + µ, S, T, S0, T0)

=
σf (λ)

ST

S\
S0

T\
T0

eµ(s, t) ds dt +
1

ST

S\
S0

T\
T0

∂2stελ(s, t)

∂s∂t
eµ(s, t) ds dt.

We denote the second integral of (∗) by I and we use integration by parts
in order to bring it to a convenient form:

STI =

S\
S0

[ T\
T0

∂

∂t

∂(stελ(s, t))

∂s
eµ(s, t) dt

]
ds

=

S\
S0

[
∂(stελ(s, t))

∂s
eµ(s, t)

∣∣∣∣
T

t=T0

]
ds

+ iµ(2)
T\
T0

[ S\
S0

∂(stελ(s, t))

∂s
eµ(s, t) ds

]
dt.

By the definition of partial differentiation, for every t0 we have

∂(stελ(s, t))

∂s

∣∣∣∣
t=t0

=
∂(st0ελ(s, t0))

∂s
.

Considering this equality and using another integration by parts for the
second integral above, we obtain

STI =

S\
S0

∂(sTελ(s, T ))

∂s
eµ(s, T ) ds + iµ(2)

T\
T0

[sελ(s, t)eµ(s, t)|Ss=S0
]t dt

− µ(1)µ(2)
S\
S0

T\
T0

stελ(s, t)eµ(s, t) dt ds.

Another integration by parts for the first integral above yields

I =

(
ελ(S, T )eµ(S, T ) −

S0

S
ελ(S0, T )eµ(S0, T )

)

+
iµ(1)

S

S\
S0

sελ(s, T )eµ(s, T ) ds +
iµ(2)

ST

T\
T0

[sελ(s, t)eµ(s, t)|Ss=S0
]t dt

−
µ(1)µ(2)

ST

S\
S0

T\
T0

stελ(s, t)eµ(s, t) dt ds.

Put

K(x) = i
e−ix − 1

x

(
= 2e−ix/2 sin(x/2)

x

)
,
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with K(0) = 1 for continuity. Clearly we have |K(x)| < 1 for x 6= 0. Using
(∗) and the computation of I = I(S, T, S0, T0, λ, µ) above, we get

(∗∗) σf (λ + µ, S, T, S0, T0)

= σf (λ)K(µ(1)S)K(µ(2)T ) + R(S, T, S0, T0, λ, µ),

where

R(S, T, S0, T0, λ, µ) = σf (λ)

(
S0T0

ST
K(µ(1)S0)K(µ(2)T0)

−
S0

S
K(µ(1)S0)K(µ(2)T ) −

T0

T
K(µ(1)S)K(µ(2)T0)

)
+ I(S, T, S0, T0, λ, µ).

Since the final expressions are compatible with approximations in the L1-
norm, (∗∗) holds for arbitrary locally integrable f .

Write I = I1 + I2 + I3 + I4 and assume that σf (λ, S0, T0) < ∞. Then
limS,T→∞ ελ(S, T ) = 0, and simple computations, using summability argu-
ments, show that

lim
S,T→∞

sup
{|µ(1)|≤2π/S, |µ(2)|≤2π/T}

|Ij(S, T, S0, T0, λ, µ)| = 0, j = 1, 2, 3, 4,

and finally, it follows that σf (λ, S0, T0) < ∞ implies

lim
S,T→∞

sup
{|µ(1)|≤2π/S, |µ(2)|≤2π/T}

|R(S, T, S0, T0, λ, µ)| = 0.

Put

d = inf
max(|x|,|y|)=1

|K(x)K(y) − 1|

and recall that d > 0. Given λ and S0, T0 such that σf (λ, S0, T0) < ∞, it
follows from (∗∗) and the uniform estimate for the remainder R described
above that for any preassigned δ > 0 we can find η > 0 such that for any
µ with 0 < max(|µ(1)|, |µ(2)|) < η there exist S ≥ S0/δ, T ≥ T0/δ satisfying
max(|µ(1)S|, |µ(2)T |) = 1 and |σf (λ)K(µ(1)S)K(µ(2)T ) − σf (λ + µ, S, T )|
< δ. Then the definition of d implies

(##) |σf (λ) − σf (λ + µ, S, T, S0, T0)| > |σf (λ)|d − δ.

Next, we claim that given any λ ∈ F with σf (λ) 6= 0 and S0, T0 such
that σf (λ, S0, T0) < ∞, we can find η (= η(λ, S0, T0)) > 0 such that for any

µ with 0 < max(|µ(1)|, |µ(2)|) < η there exist S′ ≥ S0, T ′ ≥ T0 satisfying

(∗∗∗) |σf (λ) − σf (λ + µ, S′, T ′)| > |σf (λ)|
d

2
.

For this, we choose δ > 0 so that δ(1+3|σf (λ)|(1+d/2)) < (d/2)|σf (λ)|, and
a corresponding η > 0 leading to (##). Then, if S, T satisfy (##), we want
to show that at least one (S′, T ′) ∈ {(S, T ), (S0, T ), (S, T0), (S0, T0)} must



94 G. Cohen and V. Losert

satisfy (∗∗∗). We argue by contradiction, i.e., we assume that the converse
of inequality (∗∗∗) holds for these four points. Using (#), this implies
∣∣∣∣
(

1 −
S0

S

)(
1 −

T0

T

)
σf (λ) − σf (λ + µ, S, T, S0, T0)

∣∣∣∣

=

∣∣∣∣(σf (λ) − σf (λ + µ, S, T )) −
S0

S
(σf (λ) − σf (λ + µ, S0, T ))

−
T0

T
(σf (λ) − σf (λ + µ, S, T0)) +

S0T0

ST
(σf (λ) − σf (λ + µ, S0, T0))

∣∣∣∣

≤

(
1 +

S0

S

)(
1 +

T0

T

)
|σf (λ)|

d

2
.

Combining this with the lower bounds for S, T and with (##), we arrive at

|σf (λ)|d − δ < |σf (λ) − σf (λ + µ, S, T, S0, T0)|

< 3δ|σf (λ)| + (1 + 3δ)|σf (λ)|
d

2
= |σf (λ)|

(
3δ + (1 + 3δ)

d

2

)
;

but this contradicts our choice of δ, proving (∗∗∗).

Now for ε > 0 given, we show that Fε is scattered. Assume the contrary;
then Fε contains a (necessarily infinite) subset A which is dense in itself
(i.e., every point of A is an accumulation point of A). We will construct
inductively a decreasing sequence (Bj) of open balls in the plane which
intersect A, and two non-decreasing sequences (Sj) and (Tj) tending to
infinity, with the property that

|σf (λ, S2j , T2j) − σf (λ, S2j+1, T2j+1)| > ε
d

4
for all λ ∈ Bj, j ≥ 1.

Let B0 be the whole plane and choose S1, T1 arbitrarily. For j > 0,
assume we have already defined Bj−1, S2j−1, T2j−1. Take an arbitrary
λj ∈ Bj−1 ∩ A and choose S2j > S2j−1 + 1, T2j > T2j−1 + 1 satisfying
σf (λj , S2j , T2j) < ∞ and |σf (λj) − σf (λj , S2j , T2j)| < εd/8. Now consider
an open ball B′ around λj of radius η > 0 such that B′ ⊆ Bj−1, η ≤
η(λj , S2j, T2j) and |σf (λj)− σf (λ, S2j , T2j)| < εd/8 for all λ ∈ B′ (observe
that σf (λ, S, T ) depends continuously on λ). Since A is dense in itself, there
exists µ 6= 0 such that λ′ = λj + µ ∈ B′ ∩A. Then (with λ = λj , S0 = S2j ,
T0 = T2j) choose S2j+1 (= S′), T2j+1 (= T ′) satisfying (∗∗∗). Finally, take
for Bj an open ball around λ′ such that Bj ⊆ B′ and |σf (λ, S2j+1, T2j+1)−
σf (λ′, S2j+1, T2j+1)| < εd/8 for all λ ∈ Bj . Then it is easy to see that
Bj , S2j , T2j , S2j+1, T2j+1 have the properties stated above.

Take λ ∈
⋂

j≥1 Bj . Our construction implies that limj→∞ σf (λ, Sj , Tj)
does not exist, giving a contradiction. Hence Fε is scattered and the theorem
is proved.
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Corollary 4.4. Let f(s, t) be a locally integrable function on [0,∞)×
[0,∞). Then the set of λ ∈ R

2 where the limit σf (λ) exists and has a value

different from zero is at most countable.

Proof. This follows from Theorem 4.3 in the same way as in [8, Théo-
rème 2].

Remarks. 1. For a fixed value of λ, say λ = 0, it is easy to give examples
of functions f for which σf (0) exists and σf (0, S, T ) = ∞ for some S, T .
Take, e.g., f(s, t) = n for (s, t) ∈ [n − 1, n) × [0, 1), f(s, t) = −n for (s, t) ∈
[n − 1, n) × [1, 2), f(s, t) = 0 otherwise. Then σf (0, S, 1) = ∞ for all S and
limS,T→∞ σf (λ, S, T, S0, 1) exists for no S0. But of course, in this example

σf (0, λ(2)) does not exist for λ(2) 6= 0, 2π, . . . .

In the discrete case, one can show in a similar way to Proposition 5.1
below that if f is Hartman almost periodic on N

2 (with ANM = [0, N ] ×
[0, M ], N, M > 0), then σf (λ, N, M) < ∞ for all λ, N, M .

On the other hand, on [0,∞)2 (the setting of Theorem 4.3), one can use
constructions as in Remark 1 of Section 5 to find Hartman almost periodic
functions f for which σf (λ, S, 1) = ∞ for all λ, S and σf (λ, S, T ) < ∞ for
all λ, S when T ≥ 2.

2. The proof gets easier when σf (λ, S, T ) < ∞ for all λ, S, T (and one can
follow more closely the pattern of [8]). This holds in particular if f ∈ M1.
More generally, the weaker condition

sup
S,T>0

sup
λ(1),λ(2)∈R

∣∣∣∣
1

ST

S\
0

T\
0

f(s, t)e−i(λ(1)s+λ(2)t) ds dt

∣∣∣∣ < ∞

is sufficient (this is a special case of the condition in Berend et al. [3, Theo-
rem 4.2]).

3. With some further arguments, the same conclusions as in Theorem 4.3
and Corollary 4.4 can be shown for AST = [−S, S]×[−T, T ], (S, T )∈R

+×R
+

(even in the one-dimensional case, the extension of Kahane’s theorem to
symmetric averages over [−T, T ] or [−N, N ] requires some additional tech-
niques).

4. Another notion of almost periodicity in the two-dimensional case was
considered by Hartman in [6, p. 350], providing also a generalization of
Kahane’s theorem ([6, Satz 5]). It is based on iterated limits limS→∞ limT→∞

and does not fit into the general scheme of our definition.

Corollary 4.5. Let (anm) be a (double) sequence of complex numbers.

For λ in [−π, π]2 (λ = (λ(1), λ(2))) consider the unrestricted limit

σa(λ) := lim
N,M→∞

1

NM

N∑

n=1

M∑

m=1

anme−i(λ(1)n+λ(2)m).
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Then the set of λ ∈ [−π, π]2 where the limit σa(λ) exists and has a value

different from zero is at most countable. Furthermore, if F is a closed subset

of [−π, π]2 and σa(λ) exists for each λ ∈ F , then given ε > 0, the set

Fε := {λ ∈ F : |σa(λ)| ≥ ε} is scattered.

Proof. Again, we write eλ(s, t) = e−i(λ(1)s+λ(2)t). Take some λ for which
σa(λ) exists. Then it follows from the discrete counterpart of (#) that

lim
N,M→∞

aNM

NM
= 0, lim

N,M→∞

1

NM

M∑

m=1

aNmeλ(N, m) = 0,

lim
N,M→∞

1

NM

N∑

n=1

anMeλ(n, M) = 0.

Denote by [x] the greatest integer not exceeding x and note that [x]/x → 1
as x → ∞.

Put f(s, t) = anm for (s, t) ∈ [n − 1, n) × [m − 1, m), extending (anm)
to a function f on [0,∞)2. Now, for λ(1), λ(2) 6= 0, easy computations show
that

N\
0

M\
0

f(s, t)eλ(s, t) ds dt =
(1 − eiλ(1)

)(1 − eiλ(2)
)

−λ(1)λ(2)

N∑

n=1

M∑

m=1

anmeλ(n, m),

S\
0

T\
0

f(s, t)eλ(s, t) ds dt =

[S]\
0

[T ]\
0

f(s, t)eλ(s, t) ds dt + o(ST ).

It follows that σf (λ) exists if and only if σa(λ) exists and that

σf (λ) =
(1 − eiλ(1)

)(1 − eiλ(2)
)

−λ(1)λ(2)
σa(λ).

The case where λ(1) or λ(2) are equal to zero can be handled in a similar
way. Now we can apply Theorem 4.3 and Corollary 4.4.

Remarks. 5. A further generalization of Theorem 4.3 is to replace f
by a finite measure ϕ on the ring of bounded Borel sets in [0,∞) × [0,∞)
which is σ-additive on the subsets of [0, N ]2 for all N . Then formula (∗∗)

still holds (by w∗-approximation) if
TS
S0

TT
T0

is interpreted as the integral over

the closed rectangle [S0, S]× [T0, T ]. This also contains Corollary 4.5 above.

6. If G is a compactly generated, locally compact, abelian group, then
a classical structure theorem ([7, Theorem II.9.8]) gives an isomorphism
G ∼= R

a× Z
b × K, where a, b ≥ 0 and K is compact. This can be used

to define a family (Ai) (indexed by (R+)a × N
b) so that the conclusions of

Theorem 4.3 and Corollary 4.4 hold for the corresponding class of Hartman
almost periodic functions (or measures). On the other hand, the following
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example shows that this does not hold for other families (Ai) that are com-
mon when defining limits in multi-dimensional harmonic analysis (compare
Example 2.3(iv)).

Example 4.6. For G = Z
2, AN = [1, N ]2 (N = 1, 2, . . . ), there exists a

(double) sequence a = (anm) ∈ M1 for which the limit

σa(λ
(1), λ(2)) := lim

N→∞

1

N2

N∑

n=1

N∑

m=1

anme−i(λ(1)n+λ(2)m)

exists for every (λ(1), λ(2)) ∈ [−π, π]2 (thus a is Hartman almost periodic),
but |σa(0, λ(2))| = 1/2 for every λ(2) ∈ [−π, π].

Define anm as follows: put an1 = n for any n ≥ 1, otherwise put anm = 0.
Clearly, we have

σa(0, λ(2)) = lim
N→∞

e−iλ(2)

N2

N∑

n=1

n =
1

2
.

On the other hand, Dn(µ) =
∑n

k=1 eiµk satisfies |Dn(µ)| ≤ 4/|µ| for 0 <
|µ| ≤ π, hence Abel’s summation by parts gives

∣∣∣
N∑

n=1

neiµn
∣∣∣ =

∣∣∣NDN (µ) −
N−1∑

n=1

Dn(µ)
∣∣∣ ≤

8N

|µ|
.

Thus σa(λ
(1), λ(2)) = 0 if λ(1) 6= 0.

5. Some final observations. We discuss some further results in the
one-dimensional case, concerning subsequential convergence with respect to
various families of subsets (Ai).

Proposition 5.1. Let (an) be a sequence of complex numbers. Let (Nk)
be a subsequence of N with bounded gaps, i.e.,

M = lim sup
k≥1

(Nk+1 − Nk) < ∞,

and assume that the limit

σa(λ) := lim
k→∞

1

Nk

Nk∑

j=1

aje
−iλj

exists for every λ ∈ F , where F ⊆ [0, 2π] has at least M elements.

Then the limit σa(λ) = limN→∞ N−1
∑N

j=1 aje
−iλj exists for all λ ∈ F .

Therefore, σa(λ) has the same properties as in Theorem 4.3 and Corol-

lary 4.5.

Proof. Let λ1, . . . , λM ∈ F be distinct elements. By the existence of the
limit at these points, and since Nk+1/Nk → 1, we have
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1

Nk+1

Nk+1∑

j=1

aje
−iλvj −

1

Nk+1

Nk∑

j=1

aje
−iλvj =

1

Nk+1
e−iλv(Nk+1)(aNk+1 +aNk+2e

−iλv + · · · + aNk+1
e−iλv(Nk+1−Nk−1)) →k 0

for v = 1, 2, . . . , Nk+1 − Nk (which is not greater than M if k ≥ k0 is large
enough). Put Mk = Nk+1 − Nk − 1; writing the above relations in matrix
form, we have

1

Nk+1




1 e−iλ1 · · · e−iλ1Mk

1 e−iλ2 · · · e−iλ2Mk

...
... · · ·

...

1 e−iλMk · · · e−iλMk
Mk

1 e−iλMk+1 · · · e−iλMk+1Mk







aNk+1

aNk+2

...

aNk+1−1

aNk+1




→ 0 as k → ∞.

Denote by (Vk) the sequence of matrices arising above. Vk is a Vander-
monde matrix of order at most M , for every k ≥ k0. Since λ1, . . . , λM are
all distinct, Vk is invertible, hence supk≥k0

‖V −1
k ‖ < ∞. We have

1

Nk+1
‖(aNk+1, . . . , aNk+1

)′‖ ≤ ‖V −1
k ‖ ·

1

Nk+1
‖Vk(aNk+1, · · · , aNk+1

)′‖ → 0

(where ′ denotes transpose). This yields

max
Nk<j≤Nk+1

|aj |

Nk+1
→ 0.

Now, let Nk < n ≤ Nk+1. Then

1

n

∣∣∣
n∑

j=1

aje
−iλj − σa(λ)

∣∣∣

≤
1

Nk

∣∣∣
Nk∑

j=1

aje
−iλj − σa(λ)

∣∣∣ + (Nk+1 − Nk)
1

Nk
max

Nk<j≤Nk+1

|aj |.

Combined, this gives

lim
n→∞

1

n

n∑

j=1

aje
−iλj = σa(λ),

and we may apply the original theorem of Kahane.

Remarks. 1. In the continuous one-dimensional case, the statement
corresponding to Proposition 5.1 is false. Take any strictly increasing se-
quence (Tn) of real numbers tending to infinity, and consider the real in-
tervals An = [0, Tn]. Given any continuous function g : R → C, one can
construct a locally integrable function f such that
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lim
n→∞

1

Tn

Tn\
0

f(t)e−iλt dt = g(λ) for all λ ∈ R.

This can be done as follows: let Ra,bh denote the restriction of a function
h to the interval [a, b]. By an easy duality argument, one can see that for

any finite numbers a < b, c < d the set {Ra,bf̂ : f ∈ L1([c, d])} is dense
in the space of continuous functions on [a, b] with respect to ‖ · ‖∞. Indeed:
otherwise, by the Hahn–Banach theorem, there exists a non-zero measure
µ on [a, b] such that

T
f̂ dµ = 0 for all f ∈ L1([c, d]). By the inversion

theorem this would imply that the Fourier–Stieltjes transform µ̂ vanishes
on [−d,−c]—this is impossible since µ̂ is the restriction of a non-zero entire
analytic function.

Then, by induction, assuming that fj have been defined for 1 ≤ j < n,
we can find fn ∈ L1([Tn−1, Tn]) such that

∥∥∥∥R−Tn,Tn

(
g −

1

Tn

n∑

j=1

f̂j

)∥∥∥∥
∞

<
1

n
(n = 1, 2, . . . ).

Clearly, we put fn(t) = 0 for t /∈ [Tn−1, Tn], and then f =
∑∞

j=1 fj will do
the job.

Such a behaviour cannot occur for functions f ∈ M1: see Remark 3
below.

2. In [8, Remarque 1], an example is given of a function f on R for which
σf (λ) = −i/2 for infinitely many λ (with At = [0, t] for t ∈ R, t > 0).
But with the definition of [8], σf (0) does not exist, hence f is not Hartman
almost periodic. As a remedy, this can be modified as follows. Given a strictly
decreasing sequence (εn) with εn > 0 and

∑
εn < ∞, choose an increasing

sequence (Tn), T0 = 0, such that

1

TN

N∑

n=1

1

εn
→ 0 as N → ∞

and put f(t) =
∑N

n=1 sin(εnt) for TN−1 ≤ t < TN , f(t) = 0 for t < 0.
Then f has the properties as claimed in [8], in particular f is Hartman
almost periodic and σf (±εn) = −i/2 for all n. In this example the stronger
properties of Corollary 3.2 do not hold.

More generally, one can consider f(t) =
∑N

n=1 αn sin(εnt) as above, as-
suming

∑
|αnεn| < ∞ and (Tn) is chosen so that

1

TN

N∑

n=1

∣∣∣∣
αn

εn

∣∣∣∣ → 0 as N → ∞.

Again f is Hartman almost periodic and σf (±εn) = −iαn/2 for all n.
Thus σf (λ) can be unbounded.
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3. If (Nk) is an increasing sequence of real (or integer) numbers for which
Nk+1/Nk → 1, and a function f on R (or Z) is in M1, then it can be shown
by similar techniques to those of Section 4 that σf (λ) (defined with respect
to Ak = [0, Nk], k = 1, 2, . . . ) has the same properties as described in
Theorem 4.3 and Corollary 4.5. But in general, the existence of the limit
for Ak = [0, Nk] no longer implies the existence of the limit for the “full”
family [0, t], t > 0.

4. Let (Nk) be an increasing sequence for which Nk+1/Nk → ∞ and
consider again limits defined with respect to Ak = [0, Nk] (k = 1, 2, . . . ).
Then, using Riesz products, one can define a function f on R such that
f ≥ 0, f ∈ M1, f is Hartman almost periodic and σf (λ) = 1 for uncountably
many λ.

5. If G is any locally compact abelian group, and f ∈ M1 is Hartman
almost periodic, then similar to Theorem 3.1, there exists a measure ϕ on
G∗ such that σf = ϕ̂ (thus σf is a linear combination of positive definite
functions). Furthermore, if µ(Ai) → ∞, it is easy to see that σf (χ) = 0

almost everywhere (with respect to Haar measure on Ĝ; equivalently, ϕ
vanishes on G). We restrict to sequences (Ak) with µ(Ak) → ∞ (or to
families (Ai) having a countable cofinal subfamily with this property). If ϕ
is any measure on G∗ \G , an abstract characterization for the existence of
a family (Ak) such that ϕ̂ = σf for some f ∈ M1 are the conditions a), b)
of [14, Theorem 1]. Clearly, σf has to be of first Baire class. Since σf (χ) = 0

at every point of continuity, it follows easily that {χ ∈ Ĝ : |σf (χ)| ≥ ε}
has to be a nowhere dense set of measure zero for every ε > 0 (this gives a
necessary condition for any sequence (Ak) as above and any Hartman almost
periodic f ∈ M1).

We return to the case G = R (similarly for G = Z). Fixing a particular
family (Ai) imposes further restrictions on the measures ϕ (respectively
functions ϕ̂) that can appear, e.g., in Kahane’s theorem for the “full” family
AT = [0, T ]. Even in that case one can construct (similarly to Remark 3)
a Hartman almost periodic f ∈ M1 for which {λ ∈ R : |σf (λ)| ≥ ε}
is infinite for some ε > 0. Hence, in this example ϕ /∈ L1(G

∗, µ∗), i.e.,
the analogue of Theorem 3.1 does not hold. As a further property in this
example, {λ ∈ R : |σf (λ)| > 0} need not be scattered. Remark 3 (and
also Example 4.6) shows that different families (Ai) can give less restricted
classes of measures ϕ.
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