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Elementary operators on Banach algebras

and Fourier transform

by

Miloš Arsenović and Dragoljub Kečkić (Beograd)

Abstract. We consider elementary operators x 7→
∑n

j=1 ajxbj , acting on a unital
Banach algebra, where aj and bj are separately commuting families of generalized scalar
elements. We give an ascent estimate and a lower bound estimate for such an operator.
Additionally, we give a weak variant of the Fuglede–Putnam theorem for an elementary
operator with strongly commuting families {aj} and {bj}, i.e. aj = a′

j +ia′′

j (bj = b′j +ib′′j ),
where all a′

j and a′′

j (b′j and b′′j ) commute. The main tool is an L1 estimate of the Fourier
transform of a certain class of C∞

cpt functions on R
2n.

0. Introduction. The theory of generalized scalar operators on a Ba-
nach space was developed in [6]. Briefly, a ∈ A is a generalized scalar element
of a unital Banach algebra A if it has real spectrum, and if for all real t,
‖eita‖ ≤ C(1 + |t|s), for some constant C depending only on a. Also, it is
known that these two conditions are equivalent to the existence of a func-
tional calculus for a, based on R. If s = 0, we say that such an element is
pre-hermitian. In that case the condition of having real spectrum is not nec-
essary. Also we can define pre-normal elements as elements of the form h+ik
with h, k pre-hermitian. Many properties of pre-hermitian, pre-normal, and
generalized scalar elements can be found in [6] and [5]. In Section 1 we review
results concerning such elements, necessary for reading this note.

In [13], a functional calculus for several commuting operators on a Ba-
nach space, using Fourier transform, was developed. In Section 2, we prove
two results about L1 behaviour of the Fourier transforms of a family of C∞

cpt

functions. These results have a central role in further applications to the
theory of elementary operators on a unital Banach algebra.

Section 3 contains applications of the results from Section 2 to elemen-
tary operators on a unital Banach algebra A, i.e. to mappings Λ : A → A
of the form
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(1) Λ(x) =
n∑

j=1

ajxbj .

These operators were introduced by Lumer and Rosenblum [11]. They have
been investigated in many papers, first on the algebra B(H) of all bounded
operators on a separable Hilbert space H. For important results on elemen-
tary operators acting on a Banach algebra, or on the algebra of all bounded
operators on a Banach space, the reader is referred to [12], [17], [18] and
references therein.

We give three independent applications. The first of them is an as-
cent estimate for an elementary operator (1), with generalized scalar aj

and bj . For a linear mapping Λ : E → E on an arbitrary linear space
E, the ascent asc(Λ) is defined as the least positive integer k such that
ker(Λk) = ker(Λk+1). If no such positive integer exists we set asc(Λ) = +∞.
We estimate the ascent of the operator (1) in terms of the orders of aj , bj
and the dimension of the set σ(a1, . . . , an) × σ(b1, . . . , bn).

The second application is a weak variant of the Fuglede–Putnam theorem
for the operator (1), where {aj} and {bj} are strongly commuting families.
This means that aj = a′j + ia′′j , bj = b′j + ib′′j , where {a′1, a′′1, . . . , a′n, a′′n}
and {b′1, b′′1, . . . , b′n, b′′n} are commuting families of generalized scalar ele-
ments. This weak Fuglede–Putnam theorem asserts that Λ(x) = 0 implies
(Λ∗)k(x) = 0 for some positive integer k, where Λ∗(x) =

∑n
j=1 a

∗
jxb

∗
j , and

a∗j = a′j − ia′′j , b
∗
j = b′j − ib′′j . We determine k in terms of the orders of a′j ,

a′′j , b
′
j , b

′′
j and, once again, the dimension of the set σ(a′1, a

′′
1, . . . , a

′
n, a

′′
n) ×

σ(b′1, b
′′
1, . . . , b

′
n, b

′′
n).

The third application is a norm estimate for the solution of the equation
n∑

j=1

ajxbj = y,

in terms of the right hand side, provided that 0 /∈ {λ1µ1 + · · ·+ λnµn | λj ∈
σ(aj), µj ∈ σ(bj)}.

Finally, we conclude this note with some questions that we have not been
able to answer.

1. Preliminaries

Definition 1.1.

(a) We say that an element a ∈ A is hermitian if ‖eita‖ = 1 for all
real t. The set of all hermitian elements of the algebra A is denoted
by H(A).

(b) We say that an element a ∈ A is pre-hermitian if there existsM <∞
such that ‖eita‖ ≤ M for all real t. The set of all pre-hermitian
elements of A is denoted by H1(A).
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(c) We say that an element a ∈ A is normal if a = h + ik for some
h, k ∈ H(A) such that hk = kh, and pre-normal if a = h + ik for
some h, k ∈ H1(A) such that hk = kh.

(d) The numerical range of a ∈ A is the set

W (a) = {f(a) | f ∈ A∗, ‖f‖ = 1, f(e) = 1}.
Proposition 1.1.

(a) W (a) is always a closed convex subset of C, and σ(a) ⊆W (a), where

σ(a) is the spectrum of a.
(b) a ∈ A is hermitian if and only if W (a) ⊆ R, if and only if

‖1 + ita‖ = 1 + o(t) as R ∋ t→ 0.

(c) A real linear combination of two hermitian elements is always her-

mitian.

(d) For a finite family of mutually commuting pre-hermitian elements,
there exists a norm on A equivalent to the original one, making all

of them hermitian.

(e) If a = h + ik, where h, k ∈ H(A), then h and k are uniquely deter-

mined.

Proof. Statements (a), (b), (c) and (e) are Theorems 1.3, 1.6 and Lem-
mas 5.2, 5.4 and 5.7 of [5], whereas statement (d) follows easily from Lem-
ma 1.7 of [5].

Proposition 1.2.

(a) Let a = h + ik be a pre-normal element , where h, k ∈ H1(A), and

suppose ax = xa for some x ∈ A. Then (h − ik)x = x(h − ik),
hx = xh and kx = xk.

(b) If a = h + ik is a pre-normal element , h, k ∈ H1(A), then h and k
are uniquely determined.

Proof. (a) The proof of this part is essentially the same as Rosenblum’s
well known proof of the Fuglede–Putnam theorem. Nevertheless we shall
give it. Set a∗ = h − ik. From ax = xa, it is easy to obtain by induction
λ̄nanx = xλ̄nan for all λ ∈ C, and consequently eλ̄ax = xeλ̄a. Since hk = kh,
it follows that aa∗ = a∗a, and hence e−λa∗

xeλa∗

= eλ̄a−λa∗

xe−λ̄a+λa∗

. If we
take λ = α + iβ, then we can easily compute λ̄a − λa∗ = 2i(αk − βh),

and also eλ̄a−λa∗

= ei2αke−i2βh since k and h commute with each other.
Therefore ‖eλ̄a−λa∗‖ ≤ ‖ei2αk‖ ‖e−i2βh‖ ≤ M . Now, the entire function
λ 7→ e−λa∗

xeλa∗

= ϕ(λ) is bounded, and according to Liouville’s theorem
it is constant. Thus, e−λa∗

xeλa∗

= ϕ(λ) = ϕ(0) = x, i.e. xeλa∗

= eλa∗

x.
Expanding both sides of this equation in a series, and comparing the coef-
ficients, we get

a∗x = xa∗.
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Adding (or subtracting) the initial equality we get the second and third
equalities of the statement.

(b) Let a = h + ik = h1 + ik1, where h, h1, k, k1 are pre-hermitian ele-
ments such that hk = kh and h1k1 = k1h1. Obviously, a commutes with a,
and by the previous part of this proposition, we conclude that all h, k, h1, k1

mutually commute. Now, by Proposition 1.1(d) there exists a norm, equiva-
lent to the initial one, such that h, h1, k, k1 are all hermitian. Now, we have
h = h1, k = k1.

The previous proposition allows us to define, for an arbitrary pre-normal
a = h+ ik ∈ A, its adjoint a∗ = h− ik.

Recall that from Vidav Palmer’s well known theorem, A = H(A)+iH(A)
if and only if A is a C∗-algebra.

Let a ∈ A, and let La, Ra : A → A be given by La(x) = ax and
Ra(x) = xa. The following proposition carries over some of the properties
of a to the operators La, Ra ∈ B(A).

Proposition 1.3.

(a) The mappings a 7→ La and a 7→ Ra are isometries and monomor-

phisms from the algebra A to the algebra B(A).
(b) The spectra σ(La) and σ(Ra) coincide with σ(a).
(c) W (La) = W (Ra) = W (a).
(d) If a is (pre-)hermitian, then so are both La and Ra.

(e) If a = h + ik is (pre-)normal , then so are both La = Lh + iLk and

Ra = Rh + iRk.

We leave an easy proof to the reader.

Definition 1.2. We say that a ∈ A is a generalized scalar element if
eita has polynomial growth for real t, i.e. there are constants C, s such that

(2) ‖eita‖ ≤ C(1 + |t|s),
and the spectrum of a is real. In this case we say that a has order s.

It is clear that every pre-hermitian element a is a generalized scalar
element of order 0, i.e. (2) holds with s = 0. Also, there exists a norm
equivalent to the initial one which makes a hermitian. Changing norm does
not change the spectrum. Thus a has real spectrum.

In [7], for any s > 0, an example is given of an element S such that
‖eitS‖ ≈ |t|s as t→ ∞.

2. Fourier transform. The basic tool we use to derive our results is a
functional calculus for commuting families of generalized scalar operators,
developed in [13].
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Definition 2.1. Ľs
1 = Ľs

1(R
n) is the set of all inverse Fourier transforms

of functions from {g : R
n → C | (1 + |ξ|)sg(ξ) ∈ L1(Rn)}.

In fact, Ľs
1 is an algebra with respect to pointwise multiplication.

Theorem 2.1. Let S1, . . . , Sn be a commuting family of generalized sca-

lar operators acting on a Banach space X, and let s1, . . . , sn be their orders.

Then there is an algebra homomorphism Φ : Ľs
1 → L(X) (s = s1 + · · ·+ sn)

given by

(3) Φ(f)(= f(S1, . . . , Sn)) =
1

(2π)n/2

\
Rn

f̂(ξ1, . . . , ξn)ei(ξ1S1+···+ξnSn) dξ,

where f̂ denotes the Fourier transform of f , i.e.

f̂(x) =
1

(2π)n/2

\
Rn

f(y)e−ixy dy.

The homomorphism Φ has the following properties:

(i) The integral in (3) converges since (1+|ξ|)sf̂(ξ) ∈ L1(Rn) and exists

as a Bochner integral.

(ii) If f ≡ 0 on the joint Taylor spectrum σT(S1, . . . , Sn) then we have

f(S1, . . . , Sn) = 0, and consequently , if f ≡ g on σT(S1, . . . , Sn)
then f(S1, . . . , Sn) = g(S1, . . . , Sn).

(iii) For f analytic in a neighborhood of the joint spectrum, f(S1, . . . , Sn)
has its usual meaning , obtained by power series expansion of f .

Remark 2.1. Although the integral (3) exists as a Bochner integral, for
our applications the following property of the integral of a function f : R

n →
L(X) suffices: ϕ(

T
Rn f dx) =

T
Rn ϕ ◦ f dx for all bounded linear functionals

ϕ ∈ L(X)∗.

Remark 2.2. In [16], it was proved that the Taylor and Harte spectra
of a commuting family of generalized scalar elements coincide.

The elementary operator (1) can be expressed as

Λ = Q(La1 , . . . , Lan , Rb1 , . . . , Rbn),

where Q(x) = x1xn+1+x2xn+2+· · ·+xnx2n is a quadratic form on R
2n. Our

aim is to estimate ‖eitΛ‖ by calculating eitΛ as eitQ(La1 ,...,Rbn). Unfortunately,
eitQ 6∈ L1(R2n), so it is impossible to calculate its Fourier transform, as a
function. However, we can multiply Q by a suitable C∞

cpt function which is
equal to 1 on the joint spectrum of the 2n-tuple (La1 , . . . , Lan , Rb1 , . . . , Rbn).
This spectrum is a compact subset, and we shall derive our results in terms
of its dimension.

Let K ⊆ R
2n be an arbitrary compact set. Recall that K is said to have

Hausdorff dimension c if there exists a positive constant N > 0 such that for
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all δ > 0 there exists a finite decomposition K =
⊔m

j=1 βj with the following

properties: (i) max1≤j≤m diam(βj) < δ and (ii)
∑m

j=1(diam(βj))
c ≤ N . We

need a somewhat stronger concept of Hausdorff dimension, described in the
following definition.

Definition 2.2.

(a) We say that a compact set K has balanced Hausdorff dimension c
if there exist positive constants N,P > 0 such that for all δ > 0
there exists a finite covering K ⊆ ⊔m

j=1 βj (βi ∩ βj = ∅!) with the

following properties: (i) δ/P < diam(βj) < δ for all 1 ≤ j ≤ m and
(ii)

∑m
j=1(diam(βj))

c ≤ N .

(b) We say that a function f generates eitQ on K if f ≡ eitQ on K, f is
analytic in a neighborhood of K, and f ∈ C∞

cpt. The set of all such
functions is denoted by CQ(K).

Remark 2.3. One can verify that any subset of R
2n C1-diffeomorphic

to a c-dimensional simplex has balanced Hausdorff dimension c. In particu-
lar, every c-dimensional compact manifold, with or without boundary, has
balanced Hausdorff dimension c.

Lemma 2.2. Let K ⊆ R
2n be a set of balanced Hausdorff dimension c.

Then for all δ > 0 there exists an open set Uδ ⊃ K such that m(Uδ) ≤
C(K,n)δ2n−c and dist(K,UC

δ ) ≥ δ/P .

Proof. Given δ > 0, let K =
⊔m

j=1 βj be a decomposition of K with
properties (i) and (ii) from Definition 2.2(a). Set

Uδ,j = {x ∈ R
2n | dist(x, βj) < dj = diam(βj)},

and Uδ =
⋃m

j=1 Uδ,j . Clearly, dist(K,UC
δ ) ≥ min dj ≥ δ/P . Also

m(Uδ) ≤
m∑

j=1

m(Uδ,j) ≤ |B2n|
m∑

j=1

(2dj)
2n,

since Uδ,j is contained in some ball of radius 2dj. (Here |B2n| denotes the
measure of the unit ball in R

2n.) Now, we have

m(Uδ) ≤ C
m∑

j=1

d2n
j = C

m∑

j=1

dc
jd

2n−c
j ≤ Cδ2n−c

m∑

j=1

dc
j ≤ CNδ2n−c.

Lemma 2.3. Let K ⊆ R
2n be a compact set of balanced Hausdorff di-

mension c.

(a) For large t there exists an open set Ut ⊃ K such that m(Ut) ≤
C(K,n)/t2n−c and dist(K,UC

t ) ≥ 1/Pt.
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(b) There exists a C∞ function ψt : R
2n → R, analytic in a neighborhood

of K, such that 0 ≤ ψt(x) ≤ 1, and

ψt(x) =

{
1, x ∈ K,

0, x /∈ Ut,

and |∂αψt/∂x
α| ≤ Cαt

|α| for any multiindex α.

(c) For all positive integers k we have

|∆k(eitQ(x)ψt(x))| = O(t2k) as t→ ∞.

Proof. (a) Put δ = 1/t in Lemma 2.2.

(b) This part is in fact Proposition 1.3.5 from [2].

(c) Indeed, ∆k is a differential operator of order 2k, so ∆k(eitQ(x)ψt(x))
is a finite sum of terms, each containing a partial derivative of ψt(x) of order
i and a partial derivative of eitQ(x) of order j, with i+ j ≤ 2k, and the result
follows by parts (a) and (b).

Theorem 2.4. Let K ⊆ R
2n be a compact set of balanced Hausdorff

dimension c. There exists a family of functions ϕt ∈ CQ(K) such that for

any ε > 0 the following estimate holds:

(4) ‖(1 + |ξ|s)ϕ̂t(ξ)‖1 = o(ts+c/2+ε) (t→ ∞).

Proof. Set ϕt(x) = ψt(x)e
itQ(x), where ψt are the functions from Lem-

ma 2.3(b). For large |x|, using Lemma 2.3(c), we have

|(1 + |x|s)ϕ̂t(x)| = (1 + |x|s) 1

(2π)n|x|2k

∣∣∣
\

R2n

ϕt(ξ)∆
ke−ixξ dξ

∣∣∣

= (1 + |x|s) 1

(2π)n|x|2k

∣∣∣
\

R2n

∆kϕt(ξ)e
−ixξ dξ

∣∣∣

≤ C ′
1

t2km(Ut)

|x|2k−s
≤ C1

t2k−2n+c

|x|2k−s
.

Now, using the Cauchy–Schwarz inequality and Plancherel’s theorem we
get

‖(1 + |x|s)ϕ̂t(x)‖1

=
\

|x|≤M

|(1 + |x|s)ϕ̂t(x)| dx+
\

|x|≥M

(1 + |x|s)|ϕ̂t(x)| dx

≤
( \
|x|≤M

(1 + |x|s)2 dx
)1/2

‖ϕ̂t‖2 + C1t
2k−2n+c

\
|x|≥M

1/|x|2k−s dx
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≤ K ′
1M

sm{|x| ≤M}1/2‖ϕ̂t‖2 + C1t
2k−2n+c

\
|x|≥M

1/|x|2k−s dx

≤ K1M
n+stc/2−n +K2t

2k−2n+cM2n−2k+s.

If we put M = t1+
c/2

2k−n we get ‖ϕ̂t‖1 ≤ Kt
(2s+c)k−s(n−c/2)

2k−n . As k can be
arbitrarily large this proves (4).

Next, we want to improve estimate (4) under additional assumptions.

Theorem 2.5. Let K be a subset of a c-dimensional affine subspace

x0 + V ⊆ R
2n, where V is a vector subspace of R

2n, and 0 ≤ c ≤ 2n is an

integer. Assume Q is nondegenerate on V . There exists a family of functions

ϕt ∈ CQ(K) such that

(5) ‖ϕ̂t(ξ)‖1 = O(tc/2) (t→ ∞).

Proof. First, we can assume V is a linear subspace of R
2n; next we choose

a basis in V such that in the new coordinates Q(x) =
∑c

j=1 λjy
2
j (x ∈ V ),

where λj ∈ {1,−1}. This basis can be extended, using Witt’s theorem [10,
XIV.5], to a basis of R

2n such that, in the new coordinates,

Q(x) =

2n∑

j=1

λjy
2
j , λj ∈ {1,−1}.

We have here a linear change of variables x = By. Choose R > 0 such that
|yj | ≤ R for all points in K and define ϕt(x) = ψt(x) exp(itQ(x)), where

ψt(x) =
c∏

p=1

g(yp)
2n−c∏

q=1

f(
√
t yc+q) = χt(y),

and f, g ∈ C∞
cpt(R) are such that f = 1 in a neighborhood of 0, g(y) = 1 if

−R ≤ y ≤ R, and g(y) = 0 for y ≥ 2R. We have

ϕ̂t(ξ) =
1

(2π)n

\
R2n

ψt(x) exp(itQ(x))e−ix·ξ dx

=
1

(2π)n

\
R2n

χt(y)e
itQ(By)e−iBy·ξ dBy

=
|detB|
(2π)n

\
R2n

χt(y) exp
(
it

∑
λjy

2
j

)
e−iy·Btξ dy

= |detB|θ̂t(B
tξ),

where

θt(y) = χt(y) exp
(
it

∑
λjy

2
j

)
=

c∏

p=1

ut(yp) ·
2n−c∏

q=1

vt(yq+c),

and ut(y) = e±ity2
g(y), vt(y) = e±ity2

f(
√
t y).
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Since ‖v̂t‖L1(R) does not depend on t we use Fubini’s theorem to reduce
(5) to the following

Lemma 2.6. ‖ût‖L1(R) = O(
√
t) as t→ ∞.

This lemma follows easily from the following estimates:

1◦ |ût(η)| ≤ C/
√
t for η ∈ [−6Rt, 6Rt], where C does not depend on t

and η.
2◦ |ût(η)| ≤ C/|η|2 for η ≥ 6Rt, where C does not depend on t and η.

Proof of 1◦. We have

ût(η) =
e−iη2/4t

(2π)n

∞\
−∞

eit(y−η/2t)2g(y) dy =
e−iη2/4t

(2π)n

∞\
−∞

eitz2
gα(z) dz,(6)

where gα(z) = g(z+α) and α = η/2t. Note that |α| ≤ 3R. Therefore gα(z),
|α| ≤ 3R is a bounded family of functions in the C∞

cpt(R) topology, so the
stationary phase method [9] gives the following estimate, uniformly over
|α| ≤ 3R:

∞\
−∞

eitz2
gα(z) dz = O(1/

√
t).

We present here a proof for the reader’s convenience. First, note that
gα(z) = gα(0) + zγα(z), where γα(z) =

T1
0 g

′(zs+ α) ds and therefore

∞\
−∞

eitz2
gα(z) dz = lim

A→∞

A\
−A

gα(0)eitz2
dz + lim

A→∞

A\
−A

eitz2
zγα(z) dz.

The first limit is equal to gα(0)eiπ/4
√
π/t, which is O(1/

√
t) uniformly

over α. This also shows that the second limit exists. Next,

lim
A→∞

A\
−A

eitz2
zγα(z)dz =

1

2it
lim

A→∞

A\
−A

γα(z)
d

dz
eitz2

dz(7)

=
1

2it
lim

A→∞

[
γα(z)eitz2

∣∣∣
A

−A
−

A\
−A

γ′α(z)eitz2
dz

]

=
−1

2it
lim

A→∞

A\
−A

γ′α(z)eitz2
dz,

because γα(z) = (gα(z) − gα(0))/z = o(1) as |z| → ∞.

Next, note that

γ′α(z) =
g′α(z)z − gα(z) + gα(0)

z2
=
gα(0)

z2
for |z| > 5R,
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hence
∞\
−∞

|γ′α(z)eitz2| dz ≤ 2|gα(0)|
∞\
5R

dz

z2
+

5R\
−5R

|γ′α(z)| dz

≤ 2|gα(0)|
5R

+ 10R · max
α

∣∣∣∣
1\
0

g′′(zs+ α)s ds

∣∣∣∣ = C.

This shows that lim
A→∞

TA
−A γ

′
α(z)eitz2

dz is uniformly bounded over t ∈ R

and |α| ≤ 3R. Hence (7) gives

lim
A→∞

A\
−A

eitz2
zγα(z)dz = O(1/t),

and 1◦ is proved.

Proof of 2◦. We can ignore the factor e−iη2/4t

(2π)n . We have

∞\
−∞

eitz2
gα(z)dz =

1

2it

∞\
−∞

gα(z)

z

d

dz
(eitz2

) dz

= − 1

2it

∞\
−∞

eitz2

(
gα(z)

z

)′

dz

= − 1

(2it)2

∞\
−∞

(eitz2
)′

1

z

(
gα(z)

z

)′

dz

= − 1

4t2

∞\
−∞

eitz2 d

dz

[
g′α(z)

z2
− gα(z)

z3

]
dz,

and this is a sum of four terms of the form

± 1

4t2

∞\
−∞

eitz2 G(z + α)

zk
dz,

where G stands for one of the functions g, g′ or g′′ and k ∈ {2, 3, 4}. Consider
one such term; changing variables one gets

1

4t2

∞\
−∞

eit(z−α)2 G(z)

(z − α)k
dz =

eitα2

4t2

\
eitz2

e−iη·z G(z)

(z − α)k
dz

= −eitα2 1

4t2η2

\
eitz2 G(z)

(z − α)k

d2

dz2
e−iηz dz

= − eitα2

4t2η2

2R\
−2R

e−iηz d2

dz2

[
eitz2 G(z)

(z − α)k

]
dz.
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Since |α| ≥ 3R, we have a uniform estimate
∣∣∣∣
d2

dz2

[
eitz2 G(z)

(z − α)k

]∣∣∣∣ ≤ Ct2

for |z| ≤ 2R and |α| ≥ 3R, hence each of the four terms is estimated by
C/η2, as needed.

3. Elementary operators. Our first result is a simple consequence of
results from the previous section.

Theorem 3.1.

(a) Let a1, . . . , an, and b1, . . . , bn be commuting n-tuples of generalized

scalar elements of a unital Banach algebra A, with orders s1, . . . , sn,
and r1, . . . , rn respectively. Also, let s = s1+· · ·+sn, r = r1+· · ·+rn
be their total orders. Then the elementary operator Λ given by (1)
is also a generalized scalar operator. Its order is r + s+ c/2 + ε for

any ε > 0, where c is the balanced Hausdorff dimension of the set

K = σ(a1, . . . , an)×σ(b1, . . . , bn), where σ denotes the joint spectrum

defined in [8].
(b) If , in addition, s = r = 0 and K is contained in an affine subspace

of R
2n of integer dimension c, then Λ is a generalized scalar operator

with order at most c/2.

Proof. (a) From a result of Harte and Hernandez [8] it follows that

σ(La1 , . . . , Lan , Rb1 , . . . , Rbn) ⊆ σ(a1, . . . , an) × σ(b1, . . . , bn) = K.

Also, using Proposition 1.3, it is easy to verify that the operators La1 , . . . , Lan ,
Rb1 , . . . , Rbn form a commuting family of generalized scalar operators on
A considered as a Banach space. Take the functions ϕt from Theorem 2.4.
Since ϕt = exp(itQ) on K, from Theorems 2.1 and 2.4 it follows that

‖exp(itΛ)‖ = ‖ϕt(Λ)‖ ≤ ‖f̂(ξ)α(1 + |ξ|s)‖1 = o(ts+r+c/2+ε),

where c is the balanced dimension of K.
(b) The proof of the second part is the same. The only difference is that

we apply Theorem 2.5 instead of Theorem 2.4.

In the worst case the dimension of K might be 2n, so we get the following
corollary.

Corollary 3.2. Let {a1, . . . , an} and {b1, . . . , bn} be two n-tuples of

commuting pre-hermitian elements of a unital Banach algebra A. Then the

operator Λ : A → A is a generalized scalar operator , and its order is at

most n.

It seems, from 1◦ in the proof of Lemma 2.6, that this estimate is the best
one can obtain via Fourier transform. However, considering the following
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example one can conjecture that if A is a C∗-algebra a better estimate
‖eitΛ‖ = O(tn/2) holds.

Example 3.1. Let H = L2(0, 1), and let A : H → H be given by
Af(s) = sf(s). Consider the mapping X 7→ Λ(X) = AXA on B(H). Note
that Λ : B(H) → B(H) is the adjoint of the multiplication operator M :
S1 → S1 of the same form M(X) = AXA, where S1 stands for the ideal of
all nuclear operators. This can be used to reduce the norm estimate of eitΛ

to a norm estimate of eitM .

IfX is a nuclear operator, then it can be expressed as an integral operator
with kernel K, Xf(s) =

T1
0K(s, u)f(u) du. Straightforward calculation gives

Mn(X)f(s) =
T1
0 s

nK(s, u)unf(u) du, and

eitM (X)f(s) =
( ∞∑

n=0

intnMn(X)/n!
)
f(s) =

1\
0

eitsuK(s, u)f(u) du.

Thus eitM is a Schur multiplier with symbol eitsu. From [4] it follows that
its norm does not exceed

C ess sup
0<s<1

‖u 7→ eitsu‖W α
2

for all α > 1/2, where Wα
2 stands for the Sobolev space of index α. It is

easy to verify that the last expression is O(tα).

Remark 3.1. The estimate ‖exp(itΛ)‖ = O(ts+r+2n) as t → ∞ for s, r
integers follows from a paper by Albrecht [1]. If s, r are half-integers then
from [1] one can derive only ‖exp(itΛ)‖ = O(ts+r+3n). Our estimate is a
refinement of the last one.

Let E be an arbitrary linear space, and let T : E → E be an arbitrary
linear mapping. The ascent of T is defined as the least integer m such that
kerTm+1 = kerTm. The ascent of T is usually denoted by asc(T ). Clearly
ascT = 0 if and only if T is injective. Also asc(T ) ≤ 1 if and only if kerT
and T (E) have trivial intersection. The finite ascent leads to the property
of being semifredholm.

Theorem 3.3. Let X be a Banach space, and let S : X → X be a

generalized scalar operator of order s. Then the ascent of S is finite, and

asc(S) ≤ [s] + 1.

Proof. Indeed, suppose that Sk+1(x) = 0 for some x ∈ X, where k > s

is a positive integer. Then eitS(x) =
∑k

j=0(it)
jSj(x)/j!, and also

Sk(x) = k!
(
eitS(x) −

k−1∑

j=0

(it)jSj(x)/j!
)/

(it)k.
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Since S is a generalized scalar operator, we obtain

‖Sk(x)‖ ≤
k!‖eitS‖ ‖x‖ +

∑k−1
j=0 t

j‖Sj(x)‖/j!
tk

≤
k!(Cts‖x‖ +

∑k−1
j=0 t

j‖Sj(x)‖/j!)
tk

→ 0 (t→ ∞),

implying Sk(x) = 0, as required.

Corollary 3.4. Let A be a unital Banach algebra, and let {a1, . . . ,
an} and {b1, . . . , bn} be two n-tuples of commuting generalized scalar ele-

ments of A, with orders s1, . . . , sn and r1, . . . , rn, respectively. If Λ : A → A
is an elementary operator given by Λ(x) =

∑n
j=1 ajxbj , then asc(Λ) < ∞.

Moreover , asc(Λ) ≤ [s + r + c/2] + 1, where s = s1 + · · · + sn, r = r1 +
· · ·+rn, and c is the balanced Hausdorff dimension of the set σ(a1, . . . , an)×
σ(b1, . . . , bn).

Proof. It suffices to combine Theorems 3.1 and 3.3.

Remark 3.2. In [19] it was proved that ascΛ ≤ (2 + 8(s + r))n − 1.
The previous corollary, even in the worst case c = 2n, is a refinement of this
result. Also, if aj , bj are pre-hermitian elements with finite spectra we have
asc(Λ) ≤ 1.

We say that the family {U1, . . . , Un} is strongly commuting if Uj =
Sj +iTj , where {S1, . . . , Sn, T1, . . . , Tn} is a commuting family of generalized
scalar elements.

The following theorem is a variant of the classical Fuglede–Putnam the-
orem.

Theorem 3.5. Let A be a unital Banach algebra, let aj = a′j + ia′′j ,
bj = b′j + ib′′j ∈ A (1 ≤ j ≤ n) be two strongly commuting families, and let

s =
∑n

j=1(s
′
j + s′′j ) and r =

∑n
j=1(r

′
j + r′′j ) be the total orders of the families

aj and bj. Define Λ(x) =
∑
ajxbj and Λ∗(x) =

∑
a∗jxb

∗
j (Λ,Λ∗ : A → A),

where a∗j = a′j − ia′′j , b
∗
j = b′j − ib′′j . If Λ(x) = 0, then (Λ∗)k(x) = 0 for some

positive integer k. Further k ≤ [s+r+c/2]+1, where c denotes the balanced

Huadorff dimension of σ(a′1, a
′′
1, . . . , a

′
n, a

′′
n) × σ(b′1, b

′′
1, . . . , b

′
n, b

′′
n).

Proof. (a) It is clear that Λ(x) = Λ1(x) + iΛ2(x) and Λ∗(x) = Λ1(x) −
iΛ2(x), where

Λ1(x) =
∑

(a′jxb
′
j − a′′jxb

′′
j ), Λ2(x) =

∑
(a′′jxb

′
j + a′jxb

′′
j ).

It is also clear that Λ1 and Λ2 commute. From Theorem 3.1 we know that
‖exp(itΛ1)‖, ‖exp(itΛ2)‖ = O(tµ), where µ = s+ r + c/2 + ε and ε is suffi-
ciently small.
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Suppose now that Λ(x) = 0. We have Λ1(x) = −iΛ2(x), and by induction
Λn

1 (x) = (−iΛ2)
n(x), and therefore exp(Λ1)(x) = exp(−iΛ2)(x). Let λ =

α+ iβ ∈ C, and let f be an arbitrary functional from A∗, the dual space of
A considered as a Banach space. We get

|f(exp(λΛ1)(x))| = |f(exp(iβΛ1) exp(αΛ1)(x))|
= |f(exp(iβΛ1) exp(−iαΛ2)(x))|
≤ ‖f‖C(αβ)µ‖x‖ ≤ ‖f‖C1|λ|2µ‖x‖.

Since λ 7→ f(exp(λΛ1)(x)) is an entire function, from Cauchy’s formulae for
the coefficients in the power series expansion it follows that this function is
a polynomial of degree at most 2µ. Hence f(Λm

1 (x)) = 0 for all f ∈ A∗ and
m > 2µ. Invoking the Hahn–Banach theorem we conclude that Λm

1 (x) = 0
for all m > 2µ. By Corollary 3.4 the ascent of the operator Λ1 does not
exceed k = [s+ r + c/2] + 1. Since 2µ > k, it follows that Λk

1(x) = 0. Also

Λj
1Λ

k−j
2 x = ik−jΛk

1(x) = 0, and therefore

(Λ∗)k(x) = (Λ1 − iΛ2)
k(x) =

k∑

j=0

(−i)k−jΛj
1Λ

k−j
2 (x) = 0.

Remark 3.3. Note that for given aj = a′j + ia′′j , where a′j and a′′j are
commuting generalized scalar elements we do not claim that this represen-
tation is unique, so a∗j is not uniquely determined.

Remark 3.4. The worst case is c = 4n from which we get k ≤ [s + r
+ 2n] + 1 in any case. The best case is where all aj and bj are pre-normal
and c = 0, for instance pre-normal elements with finite spectra. Then we
can claim k = 1, and that is the strong Fuglede–Putnam theorem.

Consider the equation
∑n

j=1 ajxbj = y. The problem of estimating the
norm of ‖x‖ in terms of ‖y‖ is very well known. It amounts to estimating
‖Λ−1‖. See for instance [14] and [3]. In [14] it was proved that

‖x‖ ≤ C

δ

(
max{1, δ}

δ

)s

‖y‖,

where s is the order of Λ and where δ = inf{|∑λjµj | | (λ1, . . . , λn) ∈
σ(a1, . . . , an), (µ1, . . . , µn) ∈ σ(b1, . . . , bn)}. However, the existence of s was
only proved indirectly, and no exact value was given.

The following theorem gives this estimate with an explicit formula for s.

Theorem 3.6.

(a) Let A be a unital Banach algebra, and let a1, . . . , an and b1, . . . , bn
be two n-tuples of commuting generalized scalar elements of A, with

orders s1, . . . , sn and r1, . . . , rn, respectively. Also, let Λ : A → A
be an elementary operator given by (1). If 0 6∈ {λ1µ1 + · · · + λnµn |
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(λ1, . . . , λn) ∈ σ(a1, . . . , an), (µ1, . . . , µn) ∈ σ(b1, . . . , bn)}, then the

equation
n∑

j=1

ajxbj = y

has a unique solution for all y ∈ A. Moreover

(8) ‖x‖ ≤ C

δ

(
max{1, δ}

δ

)p

‖y‖,

where p = s1 + · · ·+ sn + r1 + · · ·+ rn + c/2+ ε, δ = inf{λ1µ1 + · · ·+
λnµn | (λ1, . . . , λn) ∈ σ(a1, . . . , an), (µ1, . . . , µn) ∈ σ(b1, . . . , bn)},
and c is the balanced Hausdorff dimension of the set σ(a1, . . . , an)×
σ(b1, . . . , bn).

(b) If , in addition, sj = rj = 0 and K is contained in an affine subspace

of R
2n, then ε in (a) can be omitted. In other words, p = c/2.

Proof. The existence of the unique solution follows easily from Gel’fand
theory. Indeed,

σ(Λ) = σ(La1Rb1 + · · · + LanRbn)

⊆ σ(La1)σ(Rb1) + · · · + σ(Lan)σ(Rbn)

= σ(a1)σ(b1) + · · · + σ(an)σ(bn) = D.

The proof of (8) was derived in [14], but for the convenience of the reader
we shall outline it.

By Theorem 3.1, Λ is a generalized scalar operator on a Banach space A.
Moreover ‖eitΛ‖ ≤ M(1 + |t|p), where p = s + r + c/2 + ε in part (a) and
p = c/2 in part (b). From Theorem 2.1, it follows that

f(Λ) =
1√
2π

∞\
−∞

f̂(ξ)eiξΛ dξ,

where f̂ is the Fourier transform of f . Further, we can choose a function
f1 ∈ Ľp

1 equal to 1/x in a neighborhood of {x ∈ R | |x| ≥ 1}. Set fδ(x) =
f1(x/δ)/δ. Obviously, fδ(x) = 1/x in a neighborhood of {x ∈ R | |x| ≥ δ} ⊇
D ⊇ σ(Λ) for δ = inf{λ1µ1 + · · ·+ λnµn | λj ∈ σ(aj), µj ∈ σ(bj)} > 0, since
D does not contain 0. Hence we have

‖Λ−1‖ = ‖fδ(Λ)‖ ≤ 1√
2π

∞\
−∞

|f̂δ(ξ)| ‖eiξΛ‖ dξ

≤ M√
2π

∞\
−∞

|f̂δ(ξ)|(1 + |ξ|p) dξ.

By a change of variables we see that f̂δ(ξ) = f̂1(δξ), and thus
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‖Λ−1‖ ≤ M√
2π

∞\
−∞

|f̂1(δξ)|(1 + |ξ|p) dξ

=
M√

2π δp+1

∞\
−∞

|f̂1(w)|(δp + |w|p) dw

by substituting δξ = w. The observation δp + |w|p ≤ (max{1, δ})p(1 + |w|p)
enables us to end the proof. The constant C can be calculated as C =
M · inf ‖(1 + |w|p)f̂(w)‖L1(R), where the infimum is taken over all functions

f ∈ Ľs
1 which are equal to 1/x in a neighborhood of {x | |x| ≥ 1}. For the

existence of such functions see [14] and references therein.

Remark 3.5. In [16] the authors gave another estimate of ‖x‖ in terms
of ‖y‖, using d(aj, bj) = inf{|〈u, v〉|/|u| |v| | u ∈ σ(aj), v ∈ σ(bj)}, d(aj) =
inf{|u| | u ∈ σ(aj)} and d(bj). This estimate is

(9) ‖x‖ ≤ Cmax{1, d(aj)
−sd(bj)

−r} 1 + |log d(aj, bj)|
d(aj)d(bj)d(aj, bj)2n+s+r

.

The estimates (8) and (9) are incomparable. Namely, if n = 1, then d(aj, bj)
= 1, δ = d(aj)d(bj), and (9) is sharper than (8). On the other hand, if n = 2,
σ(aj) = (t, 0), 1 ≤ t ≤ 2, σ(bj) = (t cosϕ, t sinϕ), 1 ≤ t ≤ 2, with ϕ fixed,
then d(aj) = d(bj) = 1, δ = d(aj , bj) = cosϕ, and (8) is sharper than (9) for
ϕ close to π/2.

4. Questions

1. We believe that the additional condition on the set K = σ(a1, . . . , an)
×σ(b1, . . . , bn) to have balanced Hausdorff dimension c is superfluous, i.e. the
usual notion of Hausdorff dimension is sufficient. However, we have no proof.

2. One can try to avoid the nondegeneracy condition in Theorem 2.5, by
considering Qε(x) = Q(x) + ε

∑2n
j=1 x

2
j .

3. We are convinced that the technique applied in the proof of Theorem
2.5 can be upgraded in order to relax the condition on K. Namely we believe
that, instead of assuming thatK is contained in a linear subspace of R

2n, it is
enough to assume that it lies in a c-dimensional Cm manifold for suitable m.

4. A more general frame for these investigations is Λ(x) =
∑
ajxbj ,

aj ∈ A, bj ∈ B, and x ∈ X ; here A and B are unital Banach algebras, and
X is a Banach A-B-bimodule. The only problem with this general situation
is to determine the relationship between the joint spectrum σ(Laj , Rbj

) and
the joint spectra σ(aj) and σ(bj). Note that aj , bj are elements of a unital
Banach algebra, and Laj and Rbj

are left and right multiplications on the
bimodule X . We believe that again a result analogous to that of Harte and
Hernandez holds.
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5. In [20], Shul’man derived an ascent estimate for an elementary op-
erator Λ : B(H) → B(H), Λ(X) =

∑n
j=1AjXBj , where Aj and Bj are

commuting n-tuples of normal operators acting on a Hilbert space H. He
proved that asc(Λ) ≤ n− 1 and asc(Λ) ≤ (c/2], where c is the Hausdorff di-
mension of the joint spectrum σT(A1, . . . , An). Here (c/2] denotes the least
integer greater than or equal to c/2, i.e. (c/2] = [c/2] + 1 for noninteger
c/2, and (c/2] = c/2 for integer c/2. (The number c does not depend on the
n-tuple {Bn}!)

Our last question is whether an analogous result holds for pre-normal
elements of a unital Banach algebra.
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[9] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Grundlehren
Math. Wiss. 259, Springer, 1983.

[10] S. Lang, Algebra, Addison-Wesley, Reading, MA, 1965.
[11] G. Lumer and M. Rosenblum, Linear operator equations, Proc. Amer. Math. Soc.

10 (1959), 32–41.
[12] M. Mathieu, Elementary operators on prime C∗-algebras I, Math. Ann. 284 (1989),

223–244.
[13] A. McIntosh and A. Pryde, A functional calculus for several commuting operators,

Indiana Univ. Math. J. 36 (1987), 421–439.
[14] A. McIntosh, A. Pryde and W. Ricker, Estimates for solutions of the operator equa-

tion
∑m

j=1 AjQBj = U , in: Special Classes of Linear Operators and Other Topics
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