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a-Weyl’s theorem and perturbations
by

MOoOURAD OUDGHIRI (Lille)

Abstract. We study the stability of a-Weyl’s theorem under perturbations by op-
erators in some known classes. We establish in particular that if 7" is a finite a-isoloid
operator, then a-Weyl’s theorem is transmitted from T to T'+ R for every Riesz operator
R commuting with 7.

1. Introduction. Throughout this paper, X will denote an infinite-
dimensional complex Banach space, £(X) the algebra of all linear bounded
operators on X, and K(X) its ideal of compact operators. For an operator
T € L(X), write T* for its adjoint; N(T) for its kernel; R(T) for its range;
o(T') for its spectrum; o,,(T') for its approximate point spectrum; and o, (7T')
for its point spectrum.

For an operator T' € L£(X), the ascent a(T") and descent d(T') are given
by a(T) = inf{n > 0: N(T") = N(T"*1)} and d(T) = inf{n > 0 : R(T") =
R(T™*1)}, respectively; the infimum over the empty set is taken to be oc. If
the ascent and descent of T' € L£(X) are both finite, then a(T") = d(T) = p,
X = N(T?) @ R(TP) and R(TP) is closed (see [16]).

Also, an operator T" € L(X) is called semi-Fredholm if R(T') is closed
and either dim N(7') or codim R(T') is finite. For such an operator the index
is defined by ind(7") = dimN(7) — codimR(T), and if the index is finite,
T is said to be Fredholm. For T € L(X), the essential spectrum oo(T),
the semi-Fredholm spectrum ogp(T), the Weyl spectrum o (T'), the Browder
spectrum op,(T'), the essential approximate point spectrum oe,(T) and the
Browder essential approzimate point spectrum o,,(T') are given by

0e(T) ={A € C: T — X is not Fredholm},
osp(T) ={\ € C: T — X is not semi-Fredholm},
ow(T) ={A € C: T — X is not Fredholm of index 0},
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op(T) ={X € C: T — X is not Fredholm of finite ascent and descent},
0ea(T) ={A € C: T — X is not semi-Fredholm of non-positive index},
oap(T) = {A € C: T — X is not semi-Fredholm of finite ascent}.
It is well known that
Oea(T) C 0w (T) C op(T)

and
O'ea(T) Q Jab(T) g O’b(T).

For a subset K of C, we write iso K for its isolated points and acc K
for its accumulation points. A complex number A is said to be a Riesz point
of T € L(X) if X € isoo(T) and the spectral projection corresponding to
the set {A} has finite-dimensional range. The set of all Riesz points of T'
is denoted by I1,(T), and we note that II,(T) = isoo(T') N ge(T") where
0e(T) = C\ 0e(T) (see [3] or [11]). Also, from [4] we recall that if T € L(X)
and A € o(T), then A\ € II,(T) if and only if 7" — X is Fredholm of finite
ascent and descent. Consequently, op(T') = o(T)\ I1,(T) = 0o(T)Uacco(T).

The set of isolated points A in the spectrum (resp. approximate spectrum)
for which N(7T"— ) is non-zero and finite-dimensional is denoted by I1,,(T")
(resp. II2.(T)).

DEFINITION. Let T be a bounded operator on X. We will say that

(i) Weyl’s theorem holds for T if 0w (T) = o(T) \ Ioo(T).

(ii) a-Weyl’s theorem holds for T if oea(T) = oap(T) \ 1I3,(T).
(iii) Browder’s theorem holds for T if ow(T) = op(T).
(iv) a-Browder’s theorem holds for T if ea(T) = oan(T).

It is well known that the following implications hold ([3], [13]):
a-Weyl’s theorem = Weyl’s theorem =- Browder’s theorem;
a-Weyl’s theorem = a-Browder’s theorem =- Browder’s theorem.

In this paper, we examine the stability of a-Weyl’s theorem under pertur-
bations by operators in some known classes. We prove that if " € £(X) is a
finite a-isoloid operator that satisfies a-Weyl’s theorem and F' is a bounded
operator commuting with 7" and for which there exists a positive integer n
such that F™ has finite rank, then Weyl’s theorem holds for T'+ F'. Further,
we establish that if, in addition, 7T is finite a-isoloid, then 7'+ R obeys Weyl’s
theorem where R is an arbitrary Riesz operator commuting with 7.

2. a-Weyl’s theorem under perturbations. Before stating our re-
sults, we need to introduce the following two subspaces that will play a
fundamental role in this paper.
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Let T be a bounded operator on X. The quasi-nilpotent part of T is
defined by
Ho(T) = {z € X : lim [ T"a] /" = 0},
n—oo

and the analytic core of T by
K(T) :={r € X : Hzp}tn>0 € X and 3¢ > 0 such that z = o,
TTpt1 = xy and ||zy| < "||z| for all n > 0}.

These subspaces are T-hyperinvariant, i.e. if S is a bounded operator on X
that commutes with 7', then SHo(T') C Ho(T') and SK(T') C K(T'), and gen-
erally not closed. However, if Hy(7') is closed, then Tiu, () is quasi-nilpotent
(see [10]). Also, if T' semi-Fredholm or semi-regular (i.e. R(T) is closed and
N(T™) C R(T) for all positive integers n), then K(T) = (o, R(T") is
closed (see [10]). The following facts are easy to verify: T(K(T")) = K(T') and
Un? i N(T™) C Ho(T); if T is injective with closed range then H,(T") = {0}.

From Theorem 1.6 of [8], we recall the following useful characterization:
A ¢ acco(T) if and only if X = Ho (T — \) @ K(T'— ) where the direct sum
is topological; and in this case, Ho(T — A) is non-zero precisely when A is an
isolated point of the spectrum.

The equivalences (i)—(v) in the following lemma were first established in
[2] (see also [1, Chapter 3, §2|); we give here the proof for completeness.

LEMMA 2.1. LetT be a semi-Fredholm operator. The following assertions
are equivalent:

(i) T has finite ascent;
(i) Ho(T) NK(T) = {0};
(iii) Ho(T') is finite-dimensional,
(iv) there exists a positive integer p for which Ho(T) = N(TP);
(v) Ho(T) is closed.

Moreover, 0 is an isolated point of oap(T') if and only if Ho(T') is a non-zero
closed subspace.

Proof. First, since T is semi-Fredholm, the Kato decomposition |7, The-
orem 4] provides two closed T-invariant subspaces X, Xy such that X =
X1 @ Xo, Xj is finite-dimensional, T} := T|x, is nilpotent and T3 := Tix,
is semi-regular. Consequently, X; C Ho(T), Ho(T') = X1 @ Ho(T) N X2 and
K(T) = NR(T") = K(T3).

(i)=(ii). Since T3 is semi-regular, Ho(75) = |J,, N(7%") by [10, Lemma
1.1]. Moreover, T has finite ascent; then so does T» and hence Hy(T2) =
N(7%) where p = a(Ty). Consequently, H,(7%) is closed and so Ho(T) N X5 =
Hy(T3) = {0} (see [8]). Thus Ho(T) N K(T) = H,(T3) NK(T3) = {0}.

(ii)=-(iii). Since Ho(T2) € Ho(T)NK(T) = {0}, we see that Ho(T') = X,

is finite-dimensional.
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(iii)=(iv). If Ho(T) is finite-dimensional then Ty, (1 is nilpotent, and
therefore there exists p > 1 such that Ho(7T') C N(T?). Thus, Hyo (7)) = N(T7).

(iv)=-(v) is clear.

(v)=(i). From the fact that Hy(7T2) = Ho(T) N X2 is closed and T is
semi-regular, we deduce that H,(73) = {0}. Thus T is injective, and because
X is finite-dimensional, we conclude that T has finite ascent.

For the “moreover” part suppose that H,(7') is a non-zero closed subspace.
It follows from the proof of (i)=-(ii) that 0 is an isolated point of o,,(T).
Conversely, if 0 € iso 0,p(T"), and because R(T') is closed, we find that N(7'),
and consequently H(7"), is non-zero. Let A # 0 in a connected neighborhood
of 0 be such that T'— X is injective with closed range. Then T5 — X is injective
with closed range and Ho (7% — A) = {0}, which implies that H,(7%) = {0}
by Lemma 1.3 of [10]. Finally, Ho(T") = X is closed. m

Obviously, it follows from the previous lemma that every semi-Fredholm
operator with finite ascent has a non-positive index.

For an operator T', we denote by II2(T) the set of all isolated points A
of o4p(T') for which T'— X is semi-Fredholm.

REMARK. Let T be a bounded operator on X. As immediate conse-
quences of Lemma 2.1, we derive the following assertions:

(i) IT2(T) € H3(T) and ou(T) = 0up(T) \ HA(T) = aceoay(T) U
osp(T).

(ii) If T satisfies a-Browder’s theorem, then a-Weyl’s theorem holds for T’
if and only if I13(T) = H3.(T).

(iii) If a-Weyl’s theorem holds for T then so does a-Browder’s theorem.
Indeed, a-Weyl’s theorem for T" implies IT2 (T)Nogp(T) C II2 (T)N
oea(T) = 0, and so II2,(T) C I3(T) = iso oap(T) N osr(T). Thus,
IIX(T) = 112,(T) and 0ea(T) = oan(T).

An operator R € L£(X) is called Riesz if R — X\ is Fredholm for every
non-zero complex number . It is well known that the restriction of R to one
of its closed invariant subspace is a Riesz operator (see [4]). In [15], it is shown
by M. Schechter and R. Whitley that if T" is a semi-Fredholm operator that
commutes with R, then 7'+ R is semi-Fredholm and ind(7" + R) = ind(7).

Lemma 2.1 allows us to derive a shorter proof of the following result due
to V. Rakocevié¢ [14].

PROPOSITION 2.2. Let T € L(X) be a semi-Fredholm operator and R be
a Riesz operator that commutes with T. The following assertions hold:

(i) If T has finite ascent then so does T + R.
(ii) If T has finite descent then so does T+ R.
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Proof. (i) Suppose first that T is injective. It follows that the operator
S :=T + R is semi-Fredholm and ind(S) = ind(7") < 0. Therefore N(S?) is
finite-dimensional and hence TN(SP) = N(SP) for every p > 1; consequently,

(2.1) N(S?) CK(T) forall peN.

On the other hand, K(T') = (NR(T™) is closed, and since Tjkr) is invertible
and Rty is a Riesz operator that commutes with Tjk 7y, [6, Theorem 3.5]
implies that the restriction of S to K(7') has finite ascent, that is, by (2.1),
S has finite ascent. Now, if T is semi-Fredholm with finite ascent, then,
by Lemma 2.1, Ho(T) = N(T9) is finite-dimensional, where d is a positive
integer. Consider the maps f, §, R on X/Hy(T) induced respectively by T
S and R. It is straightforward thatACF is injective with closed range and Ris
a Riesz operator commuting with 7. Therefore S is semi-Fredholm of finite
ascent k = a(S) and so N(SP) C (S¥)~L(H,(T)) for all positive integer p.
Moreover, because S is semi-Fredholm with ind(S) = ind(T") < oo, N(5) is
finite-dimensional and hence so is (S*)~!(Ho(T)). Thus S has finite ascent,
as desired.
(ii) By duality. =

The following corollary follows from the previous proposition and the fact
that the essential approximate point spectrum is invariant under commuting
Riesz perturbation.

COROLLARY 2.3. If T € L(X) satisfies a-Browder’s theorem and R is a
Riesz operator commuting with T, then T + R satisfies a- Browder’s theorem.

For a bounded operator T' on X, we use II%(T) to denote the set of iso-
lated points X of g, (7") such that N(7"— A) is finite-dimensional. Evidently,
HE(T) € 1 (T) © HE(T).

PROPOSITION 2.4. Let T be a bounded operator on X. If R is a Riesz
operator that commutes with T', then

(T + R)Noap(T) Cisooap(T).
To prove this proposition, we need the following elementary lemma:

LEMMA 2.5. Let T € L(X) be a quasi-nilpotent operator with finite-
dimensional kernel. If R is a Riesz operator that commutes with T, then
o(T + R) is a finite set.

Proof. Suppose to the contrary that there exists a sequence {\,} of dis-
tinct numbers in o (T+R)\{0}. It follows that 7'—\,, is invertible, and since R
is a Riesz operator that commutes with 7', we find that T+ R—\,, is Fredholm
with index zero. Therefore N(T' 4+ R — \,,) is a non-zero finite-dimensional
subspace because T+ R — A, is non-invertible, and hence the restriction of
T to N(T+ R— \y,) is nilpotent. Consequently, N(T'+ R — \,,) N N(7T') is not
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trivial and so it contains a non-zero element x,,. Since each z,, is an eigenvec-
tor of T'+ R associated to A\, and the numbers A, are mutually distinct, we
can easily check that {x,} consists of linearly independent vectors of N(T').
Thus N(7') has infinite dimension, which is the desired contradiction. m

Proof of Proposition 2.4. Assume that A € II%(T+ R). Then there exists
a punctured neighbourhood U of X such that T+ R— s is injective with closed
range for all i € U. Therefore, by Proposition 2.2, T'— p is a semi-Fredholm
operator with finite ascent and hence Lemma 2.1 implies that Ho (T — p) is
finite-dimensional and Ho(T — ) NK(T' — p) = {0} for p € U. On the other
hand, by Theorem 3.5 of [10], the closed subspaces Ho (T — p) + K(T' — p) =
Ho(T — p) @ K(T — ) are constant on U. Let Z denote one of them and T,
and R, be respectively the restrictions of 7" and R to Z.

We claim that A is not an accumulation point of o(75). Let p € U. Since
(T — w) |k (7—p) is invertible, (T'+ R — )|k (7, is Fredholm with index zero,
and hence so is To+ R, — p because Ho (T — ) is finite-dimensional. Moreover,
T + R — p is injective, therefore T, + R, — p is invertible. This shows that
A ¢ acco (T, + R,) and consequently

Z =Ho(To+ Ro — A) @ K(Ty + Ry — \).

Write T, = 11 + 15 and R, = R; + Ry with respect to this decomposition.
Since T1 + R1— ) is a quasi-nilpotent operator with finite-dimensional kernel,
Lemma 2.5 ensures that o(77) is finite, and hence there exists a punctured
neighbourhood V; of A such that V4 No(T1) = (0. Also, because T + Ro — A
is invertible, 75 — A has finite ascent and descent. Consequently, there exists
a punctured neighbourhood V5 of A such that Vo No(Tz) = 0. Now, if we let
V=VinVaNnU, we find that V N o(T,) = (. Finally, we have N(T' — u) C
Ho(T — ) € Z and so N(T' — p) = N(T,, — p) = {0} for p € V. But for
such p, T'— p is semi-Fredholm, hence T' — p is injective with closed range.
This completes the proof. m

An operator T € L(X) is said to be a-isoloid if all isolated points of
0ap(T) are eigenvalues of T

THEOREM 2.6. Let T be an a-isoloid operator on X that satisfies a-
Weyl’s theorem. If F' is an operator that commutes with T and for which
there exists a positive integer n such that F™ has finite rank, then T + F
satisfies a- Weyl’s theorem.

Proof. First observe that F'is a Riesz operator. Since a-Browder’s theo-
rem holds for T+ F', by Corollary 2.3, it suffices to establish that IT2 (T'+ F')
=IIX(T+ F). Let A€ I13,(T+ F). If T — X is injective with closed range,
then T'+ F' — X is semi-Fredholm, and therefore A € I13(T'+ F'). Suppose that
X € 04p(T). Then it follows by Proposition 2.4 that A € iso 0ap (7). Further-
more, since the restriction of (7'+ F — X)" to N(7'— \) has finite-dimensional
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range and kernel, we infer that also N(T' — )) is finite-dimensional, and so
A € II3(T) because T is a-isoloid. On the other hand, a-Weyl’s theorem for
T implies that 13, (T) N 0ea(T) = 0. Consequently, T'— X is semi-Fredholm
and hence so is 7'+ F' — A, which implies that A € II3(T + F). The other
inclusion is trivial, thus T + F satisfies a-Weyl’s theorem.

In the following corollary, we recapture the result of D. S. Djordjevi¢ [5].

COROLLARY 2.7. Let T € L(X) be an a-isoloid operator. If a-Weyl’s
theorem holds for T, then it also holds for T+ F for every finite rank operator
F commuting with T'.

Notice that in the preceding result, it is essential to require that 7T is
a-isoloid. Indeed, if we let F(X) denote the set of finite rank operators on
X, N(X) the set of nilpotent operators on X and {T'}’ the set of operators
commuting with 7", then we have:

PROPOSITION 2.8. Let T be a bounded operator such that F(X)N{T} ¢
N(X). If a-Weyl’s theorem holds for T + F for every finite rank operator F
that commutes with T, then T is a-isoloid.

Proof. Suppose that T is not a-isoloid and let A be an isolated point
of 0ap(T") such that N(T'— A) = {0}. By hypothesis, there exists a finite
rank operator F' that is not nilpotent and commutes with 7. Observe that
F cannot be quasi-nilpotent, because if not, the restriction of F' to R(F) is
nilpotent, and hence so is F'. Since the spectrum of any finite rank operator
on X is finite and contains 0, we have X = X; @ Xy where X; = H,(F)
and X9 = K(F). Furthermore, X; and X9 are T-invariant, and from the
fact that F' is not quasi-nilpotent and Fjx, is an invertible operator of finite
rank, we deduce that X5 is a non-zero subspace of finite dimension.

Let T' = T7 & T be the decomposition of T" with respect to X = X1 ¢
Xy, and let a be a complex number for which A — a € 0,p,(T2) = op(T2).
Also, consider the operator F=0& als. Clearly F is a finite-rank operator
that commutes with T" and 0., (T + F') = 0ap(T1) U 0ap(T> + «). But since
A € is00,p(T) and T — X is injective, it follows that A ¢ 0,,(72) and A €
i80 0ap(Th) C is00ap (T + F). Moreover, N(T + F — \) = N(Ty — (A — a))
is a non-trivial subspace of finite dimension, so A € II2 (T + ﬁ) On the
other hand, since A ¢ II3(T) = isooap(T) N ose(T), T — A is not semi-
Fredholm, and hence also T' + F— ) is not semi-Fredholm, which implies
that A ¢ II3(T + F). Therefore T+ F' does not satisfy a-Weyl’s theorem,
which is the desired contradiction. =

A bounded operator T" on X is called finite a-isoloid if every isolated
point of o,,(T) is an eigenvalue of T' of finite multiplicity.
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THEOREM 2.9. Let T be a finite a-isoloid operator on X that satisfies
a-Weyl’s theorem. If R is a Riesz operator that commutes with T, then T+ R
satisfies a-Weyl’s theorem.

Proof. Since T + R obeys a-Browder’s theorem, it suffices to show that
I (T + R) = H&(T + R). Let X\ € ITI3,(T + R). If T — X is injective with
closed range, then 7'+ R — X is semi-Fredholm and hence A\ € II§(T + R).
Suppose that X € o,,(T). It follows by Proposition 2.4 that X is an isolated
point of o4, (T"), and because T is finite a-isoloid, we see that A € IIg (7). On
the other hand, a-Weyl’s theorem for T implies that ce,(7) N 112, (T) = 0,
therefore T — X is semi-Fredholm and hence so is T+ R — X. Consequently,
A € II3(T + R). The other inclusion is trivial and so T+ R satisfies a-Weyl’s
theorem. m

COROLLARY 2.10. Let T be an a-finite-isoloid operator on X that satis-

fies a-Weyl’s theorem. If K is a compact operator commuting with T, then
a-Weyl’s theorem holds for T + K.

For the special case of quasi-nilpotent perturbations, we provide a rela-
tively weak condition that ensures the stability of a-Weyl’s theorem.

PROPOSITION 2.11. Let T' € L(X) be such that op(T) Nisooup(T) C
a2 (T). If T satisfies a-Weyl’s theorem then so does T + Q for every quasi-
nilpotent operator () commuting with T.

Proof. We note first that c.p (T + Q) = 0ap(T) and oea(T'+ Q) = 0ea(T)
(see [9] and [15]); in particular we have IT3(T + Q) = II*(T). Since, by
Corollary 2.3, a-Browder’s theorem holds for T+(Q), we only have to show that
I3 (T+Q) = 3 (T+Q). Let XA € 115 (T+ Q). 1t follows that the restriction
of T'— X to the finite-dimensional subspace N(T' + @ — ) is not invertible
and so N(T' — \) is non-trivial. Consequently, A € op,(T) Nisooap(T) C
I13 (T). But a-Weyl’s theorem for T" implies that II2 (T') = II2(T'). Thus
A€ II3(T) = II3(T + @), which completes the proof. m
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