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Bakward extensions of hyperexpansive operatorsby
Zenon J. Jabłoński (Kraków), Il Bong Jung (Daegu)and Jan Stochel (Kraków)Abstrat. The onept of k-step full bakward extension for subnormal operators isadapted to the ontext of ompletely hyperexpansive operators. The question of existeneof k-step full bakward extension is solved within this lass of operators with the help ofan operator version of the Levy�Khinhin formula. Some new phenomena in omparisonwith subnormal operators are found and related lasses of operators are disussed as well.1. Introdution. In 1976 A. Lambert, using a result of M. Embry [14℄,gave in [25℄ a haraterization of subnormality for an abstrat operator(bounded and linear) in terms of weighted shifts. It states that an inje-tive operator T ating on a (omplex) Hilbert spae H is subnormal if andonly if for eah nonzero vetor h in H, the weighted shift WT,h with weightsequene {‖Tn+1h‖/‖Tnh‖}∞n=0 is subnormal. In other words, the lass of in-jetive subnormal operators is an instane of an abstrat lass C of injetiveHilbert spae operators possessing the following property:(P) an operator T on H is of lass C if and only if for every nonzero vetor

h in H, the weighted shift WT,h is of lass C.It turns out that the lass of injetive paranormal operators (1) satis�es(P) as well. Indeed, T is paranormal if and only if for eah nonzero vetor
h in H, the sequene {‖Tn+1h‖/‖Tnh‖}∞n=0 is weakly inreasing (f. [15,Addendum℄) or equivalently the weighted shift WT,h is hyponormal. Sinean injetive weighted shift is hyponormal if and only if it is paranormal, ourlaim is proved. Aording to the above disussion, we see that the lass2000 Mathematis Subjet Classi�ation: Primary 47B20, 47B37; Seondary 44A60.Key words and phrases: ompletely hyperexpansive operator, 2-isometry, unilateralweighted shift, the Levy�Khinhin formula, bakward extension.The work of the �rst and the third authors was supported by the KBN grant 2 P03A037 024. The work of the seond author was supported by a grant (R14-2003-006-01000-0)from the Korea Siene and Engineering Researh Foundation.

(1) Reall that T is said to be paranormal if ‖Th‖2 ≤ ‖h‖ ‖T 2h‖ for all h ∈ H; notiealso that hyponormal operators are paranormal (f. [18, 15℄).[233℄



234 Z. J. Jabªo«ski et al.of injetive hyponormal operators does not have the property (P) beausethere are injetive paranormal operators whih are not hyponormal (if T isan injetive hyponormal operator whose square is not hyponormal (f. [19℄),then by [15, Theorem 1℄, T 2 is the required paranormal operator; see also[15, Theorem 2℄ for the noninjetive ase).Reently new lasses of Hilbert spae operators have attrated the at-tention of researhers. These are m-isometries [27, 2, 28, 3, 4, 5, 30, 23℄,
m-hyperexpansive operators [27, 26, 7, 30, 29, 23℄ and ompletely hyperex-pansive operators [6, 7, 11, 30, 20, 9, 10, 21, 8, 22℄. As shown in [23, Propo-sition 6.7℄, the lasses of 2-isometries and 2-hyperexpansive operators haveproperty (P). It turns out that the lasses ofm-isometries,m-hyperexpansiveoperators and ompletely hyperexpansive operators share the same property(f. Proposition 2.4 and Corollary 2.5).In [12℄ R. Curto haraterized subnormal weighted shifts whih havebakward extensions within the lass of subnormal weighted shifts. Reallthat a weighted shift with weights {λn}∞n=0 has a subnormal (one-step) bak-ward extension if for some positive salar λ−1, the weighted shift with weights
{λn−1}∞n=0 is subnormal. The onept of bakward extension was studied inmore detail in [17, 13℄ and extended to the ase of abstrat subnormal op-erators in [24℄.In the present paper we adapt the onept of bakward extension to om-pletely hyperexpansive and 2-hyperexpansive operators (in fat, this an bedone for other lasses of operators mentioned above). The essential part ofour paper deals with (injetive and unilateral) weighted shifts. In Setion 3we disuss the question of existene of ompletely hyperexpansive bakwardextensions. The main result of this setion, Theorem 3.2, provides a solu-tion written in terms of measures assoiated with operators in question viathe Levy�Khinhin formula. Moreover, the set of all measures assoiatedwith ompletely hyperexpansive bakward extensions of the given operatoris expliitly desribed.Setion 4 extends the main result of the previous one to the ontext of
k-step bakward extensions. Moreover, we show that a nonisometri om-pletely hyperexpansive weighted shift has no ompletely hyperexpansive ∞-step bakward extension (f. Corollary 4.6). This is opposite to the ase ofnonisometri subnormal weighted shifts whih allow for subnormal ∞-stepbakward extensions (f. [24℄).In Setion 5 we turn our attention to abstrat ompletely hyperexpan-sive operators transplanting the notion of k-step full bakward extensionfrom subnormal operators to ompletely hyperexpansive ones. An operatorversion of the Levy�Khinhin formula plays a ruial role in this setion. Thenext essential di�erene between subnormality and omplete hyperexpansiv-ity is emphasized by Proposition 5.8. Namely, it is proved that the prop-



Bakward extensions of hyperexpansive operators 235erty of having ompletely hyperexpansive k-step full bakward extension ispreserved by in�nite orthogonal sums, whih is not the ase for subnormaloperators (f. [24℄).Setion 6 deals with salar and operator-valued weighted shifts. The thirddi�erene between subnormality and omplete hyperexpansivity is exhibitedin Example 6.5. It is shown there that the set of all ompletely hyperexpan-sive k-step bakward extension vetors need not be a linear spae (omparewith [17, Corollary 5.4℄). In the �nal setion we disuss the question of exis-tene of k-step full bakward extension within the lass of 2-hyperexpansiveoperators. This enables us to larify the role played by 2-isometries in ouronsiderations.2. Preliminaries. LetH be a (omplex) Hilbert spae. Denote byB(H)the C∗-algebra of all bounded linear operators on H and by IH the identityoperator on H. From now on, all operators taken into onsideration in thispaper are assumed to be linear and bounded. Given A,B ∈ B(H), we write
A > B (resp. A ≥ B) in ase 〈Ah, h〉 > 〈Bh, h〉 (resp. 〈Ah, h〉 ≥ 〈Bh, h〉) forevery h ∈ H \ {0}; we say that A is positive if A ≥ 0. As usual, ℓ2 stands forthe Hilbert spae of all square summable omplex sequenes and {en}∞n=0 forthe anonial orthonormal basis of ℓ2, i.e. en = (δn,0, δn,1, . . .), where δk,l isthe Kroneker symbol. Denote by B([0, 1]) the σ-algebra of all Borel subsetsof the losed unit segment [0, 1]. For x ∈ [0, 1], δx stands for the probabilityBorel measure on [0, 1] with total mass at x.Given an operator T ∈ B(H) and an integer n ≥ 1, we de�ne the real-valued funtion ̺T,n on H by

̺T,n(h) :=
∑

0≤p≤n

(−1)p

(

n

p

)

‖T ph‖2, h ∈ H.

Definition 2.1 ([27, 7, 20, 21℄). Let m ≥ 1 be an integer. We say thatan operator T ∈ B(H) is(a) m-isometri if ̺T,m = 0,(b) m-expansive if ̺T,m ≤ 0,() m-hyperexpansive if ̺T,n ≤ 0 for all n = 1, . . . ,m,(d) ompletely hyperexpansive if ̺T,n ≤ 0 for all n ≥ 1.The ase ̺T,n ≥ 0 is losely related to subnormal ontrations (f. [1℄). Theinlusion relations among the lasses de�ned above are as follows:
2-isometry ⊆ ompletely hyperexpansive ⊆ · · · ⊆ (m+ 1)-hyperexpansive

⊆ m-hyperexpansive ⊆ · · · ⊆ 1-hyperexpansive.Moreover, all these inlusions are proper (f. [27℄ and [30℄).



236 Z. J. Jabªo«ski et al.An operator W on ℓ2 of the form
W (ξ0, ξ1, . . .) = (0, λ0ξ0, λ1ξ1, . . .), (ξ0, ξ1, . . .) ∈ ℓ2,where {λn}∞n=0 is a bounded sequene of positive real numbers, is alleda (unilateral) weighted shift with weight sequene {λn}∞n=0. Set βn(W ) =

‖Wne0‖2 for n ≥ 0, i.e. β0(W ) = 1 and βn(W ) = λ2
0 · · ·λ2

n−1 for n ≥ 1.It is evident that the weights λn of W an be reovered from the sequene
{βm(W )}∞m=0 as follows:

λn =

√

βn+1(W )

βn(W )
, n ≥ 0.(2.1)This means that the formula (2.1) establishes one-to-one orrespondenebetween weighted shifts W and sequenes {βm(W )}∞m=0. In ase λn = 1 forall n ≥ 0, W is alled the isometri unilateral shift.The following result haraterizes ompletely hyperexpansive weightedshifts (see [7, Proposition 3℄, [20, Lemma 4.1℄ and [23, Lemma 6.1℄).Proposition 2.2. A weighted shift W with weight sequene {λn}∞n=0 isompletely hyperexpansive if and only if there exists a �nite positive Borelmeasure µ on [0, 1] suh that

βn(W ) = 1 +
\

[0,1]

(1 + x+ · · · + xn−1) dµ(x), n ≥ 1.(2.2)
The orrespondene W ↔ µ is one-to-one (in partiular , the measure µ in(2.2) is unique). Moreover , the weighted shift W is a 2-isometry if and onlyif the orresponding measure µ is of the form αδ1, where α is a nonnegativereal number.Definition 2.3. If (2.2) holds, then we say that the measure µ is asso-iated with the weighted shift W or that W is assoiated with µ.Let us reall that if T ∈ B(H) is injetive and h ∈ H \ {0}, then WT,hstands for the weighted shift with weight sequene {‖Tn+1h‖/‖Tnh‖}∞n=0(the operatorWT,h is bounded beause the sequene of its weights is boundedabove by ‖T‖). Now we show that the lasses of (hyper-) expansive operatorsde�ned above have the property (P) mentioned in Setion 1 (for the ase of
2-hyperexpansive and 2-isometri operators see [23, Proposition 6.7℄).Proposition 2.4. If T ∈ B(H) and m ≥ 1 is an integer , then thefollowing onditions are equivalent :(i) T is m-isometri (resp. m-expansive, m-hyperexpansive),(ii) T is injetive and WT,h is m-isometri (resp. m-expansive, m-hyper-expansive) for every nonzero vetor h ∈ H.



Bakward extensions of hyperexpansive operators 237Proof. If T is m-expansive and Th = 0 for some h ∈ H, then
‖h‖2 = ̺T,m(h) ≤ 0,whih yields the injetivity of T . It is easily seen that a weighted shift W is

m-isometri (resp. m-expansive) if and only if ̺W,m(en) = 0 (resp. ̺W,m(en)
≤ 0) for every integer n ≥ 0. This and the equality

̺W
T,h

,m(en) =
̺T,m(Tnh)

‖Tnh‖2
, h ∈ H \ {0}, n ≥ 0,omplete the proof.Corollary 2.5. An operator T ∈ B(H) is ompletely hyperexpansive ifand only if T is injetive and the weighted shift WT,h is ompletely hyperex-pansive for every h ∈ H\{0}. If this is the ase, then for every h ∈ H\{0},there exists a unique �nite positive Borel measure µT,h on [0, 1] suh that

βn(WT,h) =
‖Tnh‖2

‖h‖2
= 1 +

\
[0,1]

(1 + x+ · · · + xn−1) dµT,h(x), n ≥ 1.

3. Completely hyperexpansive bakward extensionsDefinition 3.1. We say that a weighted shift W with weight sequene
{λn}∞n=0 has a ompletely hyperexpansive (one-step) bakward extension iffor some positive salar λ−1, the weighted shift W ′ with weight sequene
{λn−1}∞n=0 is ompletely hyperexpansive; the weighted shiftW ′ will be alleda ompletely hyperexpansive bakward extension of W .Regarding De�nition 3.1, we see that the operator W may be identi-�ed (up to unitary equivalene) with the restrition W ′|∨∞

n=1{en} of W ′ to
∨∞

n=1{en}, the losed linear span of {en}∞n=1. This means that W itself isompletely hyperexpansive.The following result haraterizes those weighted shifts whih have om-pletely hyperexpansive bakward extensions.Theorem 3.2. Let W be a ompletely hyperexpansive weighted shift withweight sequene {λn}∞n=0 and with assoiated measure µ. Then W has aompletely hyperexpansive bakward extension if and only if (2)\
[0,1]

1

x
dµ(x) < 1.(3.1)

If this is the ase, then the measures ν assoiated with ompletely hyperex-pansive bakward extensions of W are in one-to-one orrespondene with the
(2) In the formula (3.1), we adhere to the onvention that 1

0
= ∞. In partiular, (3.1)implies µ({0}) = 0.



238 Z. J. Jabªo«ski et al.nonnegative real numbers t via
ν(σ) =

1 + t

1 −
T
[0,1]

1
x dµ(x)

\
σ

1

x
dµ(x) + tδ0(σ), σ ∈ B([0, 1]).(3.2)Proof. Let W ′ be a ompletely hyperexpansive bakward extension of

W and let ν be a measure assoiated with W ′. It is easily seen that (f.De�nition 3.1)
βn+1(W

′) = λ2
−1βn(W ), n ≥ 0.(3.3)This and De�nition 2.3 imply\

[0,1]

xnx dν(x) = βn+2(W
′) − βn+1(W

′) = λ2
−1(βn+1(W ) − βn(W ))

=
\

[0,1]

xnλ2
−1 dµ(x), n ≥ 0,

whih, by the uniqueness of the solution of the Hausdor� moment problem,yields
λ2
−1µ(σ) =

\
σ

x dν(x), σ ∈ B([0, 1]).In onsequene, we have µ({0}) = 0 and
ν(σ) = λ2

−1

\
σ

1

x
dµ(x) + ν({0})δ0(σ), σ ∈ B([0, 1]).(3.4)Applying (2.2) (to W ′ and ν in plae of W and µ) and (3.4), we get

λ2
−1 = β1(W

′) = 1 + ν([0, 1]) = 1 + ν({0}) + λ2
−1

\
[0,1]

1

x
dµ(x).

This leads to
λ2
−1

(

1 −
\

[0,1]

1

x
dµ(x)

)

= 1 + ν({0}).(3.5)
From (3.5) and λ−1 > 0 we infer that (3.1) holds. Computing λ2

−1 from (3.5)and then substituting it into (3.4) we ome to (3.2) with t = ν({0}).Suppose now that (3.1) holds. Let W ′ be the weighted shift with assoi-ated measure ν given by (3.2). Then we have
β1(W

′) = 1 + ν([0, 1]) =
1 + t

1 −
T
[0,1]

1
x dµ(x)

.(3.6)One an dedue from De�nition 2.3, (3.2) and (3.6) that for every n ≥ 1,
βn+1(W

′) = 1 + ν([0, 1]) + β1(W
′)
\

[0,1]

x+ · · · + xn

x
dµ(x) = β1(W

′)βn(W ),



Bakward extensions of hyperexpansive operators 239whih implies (3.3) with λ−1 :=
√

β1(W ′). This and (2.1) show that W ′ isa ompletely hyperexpansive bakward extension of W .That the orrespondene t ↔ W ′ is one-to-one follows from Proposi-tion 2.2 and the equality ν({0}) = t, whih in turn is a onsequene of (3.2).This ompletes the proof.The following orollary may be thought of as the omplete hyperexpan-sive ounterpart of [12, Proposition 8℄.Corollary 3.3. Let W be a weighted shift with weight sequene {λn}∞n=0.Suppose that the restrition of W to ∨∞
n=1{en} is ompletely hyperexpan-sive (3) with assoiated measure µ. Then W is ompletely hyperexpansive ifand only if the following two onditions hold :(i) T[0,1]

1
x dµ(x) < 1,(ii) λ2

0 ≥
(

1 −
T
[0,1]

1
x dµ(x)

)−1.Proof. Applying Theorem 3.2 and (3.6), we see that W is ompletelyhyperexpansive (4) if and only if (i) is valid and
λ2

0 = β1(W ) =
1 + t

1 −
T
[0,1]

1
x dµ(x)

for some t ≥ 0.(3.7)Sine (3.7) is equivalent to (ii), the proof is omplete.Corollary 3.4. The restrition of any ompletely hyperexpansiveweighted shift to ∨∞
n=1{en} has in�nitely many ompletely hyperexpansivebakward extensions.4. Completely hyperexpansive k-step bakward extensionsDefinition 4.1. Given an integer k ≥ 1, we say that a weighted shift

W with weight sequene {λn}∞n=0 has a ompletely hyperexpansive k-stepbakward extension if for some positive salars λ−k, . . . , λ−1, the weightedshift V with weight sequene {λn−k}∞n=0 is ompletely hyperexpansive; theweighted shift V will be alled a ompletely hyperexpansive k-step bakwardextension of W .Regarding De�nition 4.1, we see that the operator W may be identi�ed(up to unitary equivalene) with V |∨∞
n=k{en}. Hene W itself is ompletelyhyperexpansive. It is a matter of routine to show that a weighted shiftW hasa ompletely hyperexpansive k-step bakward extension if and only if it has a

(3) This is the same as saying that the weighted shift with weight sequene {λn+1}
∞
n=0is ompletely hyperexpansive.

(4) Note that W an be thought of as a ompletely hyperexpansive bakward extensionof W |∨∞

n=1
{en}.



240 Z. J. Jabªo«ski et al.ompletely hyperexpansive (k−1)-step bakward extension V ′ whih in turnhas a ompletely hyperexpansive (one-step) bakward extension (k ≥ 2).Theorem 4.2. Let k ≥ 1 be an integer and W be a ompletely hyper-expansive weighted shift with weight sequene {λn}∞n=0 and with assoiatedmeasure µ. Then1o W has a ompletely hyperexpansive k-step bakward extension if andonly if
(4.1)

\
[0,1]

(1

x
+ · · · + 1

xk

)

dµ(x) < 1,

2o if (4.1) holds, then the measures ζ assoiated with ompletely hyper-expansive k-step bakward extensions of W are in one-to-one orre-spondene with the nonnegative real numbers t via
(4.2) ζ(σ) =

1 + t

1 −
T
[0,1]

(

1
x + · · · + 1

xk

)

dµ(x)

\
σ

1

xk
dµ(x) + tδ0(σ),

σ ∈ B([0, 1]),3o if (4.1) holds, then there exists at most one ompletely hyperexpansive
k-step bakward extension V of W whih has a ompletely hyperex-pansive bakward extension; the weighted shift V is assoiated withthe measure ζ given by (4.2) with t = 0.Proof. 3o an be inferred from 2o via Theorem 3.2 (see also footnote (2)).To prove 1o and 2o, we proeed by indution on k. The ase k = 1 is overedby Theorem 3.2. We show how to pass from k to k + 1. Aording to Theo-rem 3.2, the weighted shift with assoiated measure ζ given by (4.2) has aompletely hyperexpansive bakward extension if and only if t = ζ({0}) = 0and

1

1 −
T
[0,1]

(

1
x + · · · + 1

xk

)

dµ(x)

\
[0,1]

1

xk+1
dµ(x) =

\
[0,1]

1

x
dζ(x) < 1,(4.3)

whih in turn is equivalent to the onjuntion of t = 0 and\
[0,1]

(

1

x
+ · · · + 1

xk+1

)

dµ(x) < 1.(4.4)
This implies 1o with k + 1 in plae of k. If (4.4) holds, then in view of 3o,(4.3) and Theorem 3.2 there exists exatly one ompletely hyperexpansive
k-step bakward extension V of W whih has a ompletely hyperexpansivebakward extension; the weighted shift V is assoiated with the measure ζgiven by (4.2) with t = 0. Applying Theorem 3.2 to this partiular mea-sure and employing (4.3), we onlude that all measures ξ assoiated with



Bakward extensions of hyperexpansive operators 241ompletely hyperexpansive (k+1)-step bakward extensions of W are of theform
ξ(σ) =

1 + t

1 −
T
[0,1]

1
x dζ(x)

\
σ

1

x
dζ(x) + tδ0(σ)

=
(1 + t)

T
σ

1
xk+1 dµ(x)

(

1 −
T
[0,1]

1
xk+1 dµ(x)

1 −
T
[0,1]

(

1
x + · · · + 1

xk

)

dµ(x)

)

(

1 −
T
[0,1]

(

1
x + · · · + 1

xk

)

dµ(x)
)

+ tδ0(σ)

=
1 + t

1 −
T
[0,1]

(

1
x + · · · + 1

xk+1

)

dµ(x)

\
σ

1

xk+1
dµ(x) + tδ0(σ), σ ∈ B([0, 1]),where t runs over the segment [0,∞). This ompletes the proof.Remark 4.3. The reader an verify that the probability measures ζassoiated with subnormal k-step bakward extensions of a �xed subnormalweighted shift W are in one-to-one orrespondene with the real numbers

t ∈ [0, 1) via
ζ(σ) =

1 − tT
[0,∞)

1
xk dµ(x)

\
σ

1

xk
dµ(x) + tδ0(σ)for any Borel subset σ of [0,∞),where µ is the Stieltjes moment measure assoiated with the weighted shift

W (for de�nitions and related results, see [12℄).Corollary 4.4 below is related to Corollary 3.5 of [17℄. It deals with �niteperturbations of weights of ompletely hyperexpansive weighted shifts, whileits ounterpart in [17℄ with one-point perturbations of weights of subnormalweighted shifts.Corollary 4.4. Let W1 and W2 be ompletely hyperexpansive weightedshifts with weight sequenes {λ(1)
n }∞n=0 and {λ(2)

n }∞n=0, respetively. If thereexists N ≥ 1 suh that λ(1)
n = λ

(2)
n for all n ≥ N , then λ

(1)
n = λ

(2)
n for all

n ≥ 1.Proof. It su�es to onsider the ase N ≥ 2. Sine the weighted shifts V1and V2 with weight sequenes {λ(1)
n+1}∞n=0 and {λ(2)

n+1}∞n=0, respetively, areompletely hyperexpansive (N−1)-step bakward extensions of the weightedshift with weight sequene {λ(1)
n+N}∞n=0, and both have ompletely hyperex-pansive bakward extensions (namely W1 and W2, respetively), we inferfrom parts 1o and 3o of Theorem 4.2 (with k = N − 1) that V1 = V2, whihompletes the proof.



242 Z. J. Jabªo«ski et al.Remark 4.5. Corollary 4.4 an be rephrased as follows: hanging �nitelymany weights of a weighted shift inluding at least one of its weights withindex s ≥ 1 does destroy omplete hyperexpansivity. Corollary 3.4 explainswhy the weighted shifts W1 and W2 satisfying the assumptions of Corollary4.4 need not oinide in general. It has been proved in [23, Proposition6.2 (vii)℄ that if two suessive weights λs and λs+1 of a 2-hyperexpansiveweighted shift W oinide, then λn = 1 for all n ≥ s. If additionally W isompletely hyperexpansive, we an show more, namely that all the weightsofW , exept possibly λ0, must be equal to 1 (apply Corollary 4.4 toW1 = Wand W2 = the isometri unilateral shift).The following orollary shows that a ompletely hyperexpansive weightedshift whih is not isometri has no ompletely hyperexpansive ∞-step bak-ward extension. This is a new phenomenon ompared with nonisometrisubnormal weighted shifts whih allow for subnormal ∞-step bakward ex-tensions (f. [24, Example 4.5℄).For a weighted shift W , we de�ne the quantity κW as follows: if Wdoes not have any ompletely hyperexpansive bakward extension, we set
κW = 0; if suh an extension exists, κW stands for the maximum integer
k ≥ 1 for whih W has a ompletely hyperexpansive k-step bakward ex-tension provided the maximum exists; otherwise we set κW = ∞. We saythat a sequene {an}∞n=1 ⊆ R ∪ {∞} is stritly inreasing within R if either
{an}∞n=1 ⊆ R and {an}∞n=1 is stritly inreasing, or there exists an integer
m ≥ 1 suh that {an}m

n=1 ⊆ R, {an}m
n=1 is stritly inreasing and an = ∞for every n ≥ m+ 1.Corollary 4.6. Let W be a ompletely hyperexpansive weighted shiftwith assoiated measure µ. Set

τk =
\

[0,1]

(

1

x
+ · · · + 1

xk

)

dµ(x) for k ≥ 1.Then(i) κW = ∞ if and only if W is the isometri unilateral shift (5),(ii) if 1 ≤ κW < ∞, then the sequene {τk}∞k=1 is stritly inreasingwithin R, limk→∞ τk = ∞ and κW = max{k ≥ 1 : τk < 1},(iii) if 1 ≤ κW <∞, then β1(W ) > 1 and κW < 1/(β1(W ) − 1).Proof. (i) It su�es to prove the �only if� part of (i). Theorem 4.2 yields
kµ([0, 1]) ≤ τk < 1, k ≥ 1,(4.5)whih implies µ = 0. This, Proposition 2.2 and (2.1) omplete the proofof (i).

(5) Assertion (i) is a partiular ase of Proposition 7.1.



Bakward extensions of hyperexpansive operators 243(ii) Suppose that 1 ≤ κW < ∞. Then learly µ 6= 0 and, by Theorem4.2, µ({0}) = 0. Hene T[0,1]
1

xk+1 dµ(x) > 0 for every integer k ≥ 0. This, theinequality k µ([0, 1]) ≤ τk (k ≥ 1) and Theorem 4.2 imply (ii).(iii) This follows from (4.5) applied to k = κW and (2.2).Example 4.7. Let us disuss some examples of ompletely hyperexpan-sive weighted shifts. In view of (2.1) and Proposition 2.2, the ompletely hy-perexpansive weighted shift W (α) with assoiated measure µ = αδ1, where
α is a nonnegative real number, is a 2-isometry with weight sequene

{

√

1 + (n+ 1)α

1 + nα

}∞

n=0

,and all 2-isometri weighted shifts are of this form. There are two ases whihare of partiular interest, namely α = 0 and α = 1, whih orrespond to theisometri unilateral shift and the Dirihlet shift, respetively. By Theorem4.2, for every k ≥ 1, W (α) has a ompletely hyperexpansive k-step bakwardextension if and only if kα < 1. This automatially exludes the Dirihletshift from the lass of weighted shifts whih have ompletely hyperexpan-sive bakward extensions. In our onsiderations the Dirihlet shift plays asimilar role to the Bergman shift in the theory of subnormal bakward exten-sions; namely, the Bergman shift (whih is the weighted shift with weights
{
√

(n+ 1)/(n+ 2)}∞n=0) does not have any subnormal bakward extension(f. [17, Example 4.2℄). Reverting to the ase of arbitrary α, note that ifW (α)has a ompletely hyperexpansive k-step bakward extension (i.e. kα < 1),then by Theorem 4.2 all measures ζ assoiated with ompletely hyperexpan-sive k-step bakward extensions of W (α) are of the form
ζ =

(1 + t)α

1 − kα
δ1 + tδ0, t ≥ 0.The ompletely hyperexpansive weighted shift with assoiated measure ζ is

2-isometri if and only if t = 0. This means thatW (α) has a lot of ompletelyhyperexpansive k-step bakward extensions, but exatly one of them is 2-isometri.We onlude Example 4.7 with a somewhat surprising observation.Namely, aording to the above disussion, a 2-isometri weighted shift Whas a ompletely hyperexpansive bakward extension if and only if β1(W )<2(beause α = β1(W )−1). On the other hand, the inequality β1(W ) < 2 doesnot guarantee that an arbitrary ompletely hyperexpansive weighted shift
W has a ompletely hyperexpansive bakward extension. Indeed, onsider-ing µ = αδ0 with α ∈ (0, 1) we see that β1(W ) = 1 + α < 2 and W has noompletely hyperexpansive bakward extension.



244 Z. J. Jabªo«ski et al.5. Completely hyperexpansive k-step full bakward extensions.Let T ∈ B(H) be a ompletely hyperexpansive operator. In view of Corollary2.5, for every h ∈ H \ {0}, the weighted shift WT,h is ompletely hyperex-pansive. Denote by µT,h the measure assoiated withWT,h. By Theorem 4.2,
WT,h has a ompletely hyperexpansive k-step bakward extension if and onlyif \

[0,1]

ϕk(x) dµT,h(x) < 1,

where
ϕk(x) =

{

1

x
+ · · · + 1

xk
for x ∈ (0, 1],

∞ for x = 0, k ≥ 1.(5.1)
Definition 5.1. Let k ≥ 1 be an integer and T ∈ B(H) be a ompletelyhyperexpansive operator. A nonzero vetor h ∈ H is alled a ompletely hy-perexpansive k-step bakward extension vetor for T ifWT,h has a ompletelyhyperexpansive k-step bakward extension; the set of all suh vetors to-gether with the zero vetor is denoted by ET,k. If ET,k = H, then we say that

T has ompletely hyperexpansive k-step full bakward extension.The set ET,k need not be a linear subspae of H (f. Example 6.5). Wenow show that the restrition Tk of a ompletely hyperexpansive operator
T to the range of T k has ompletely hyperexpansive k-step full bakwardextension, and that this �virtual� extension is losely related to the �real�one T (see also Example 6.6 whih illustrates Proposition 5.2 and Corollary5.3).Proposition 5.2. If k ≥ 1 is an integer and T ∈ B(H) is a ompletelyhyperexpansive operator , then the following two onditions hold :(i) the spae T k(H) is losed , the operator Tk := T |T k(H) is ompletelyhyperexpansive and T k(H) = ETk,k ⊆ ET,k; moreover , for every non-zero vetor h in T k(H), the weighted shift WT,T−kh is a ompletelyhyperexpansive k-step bakward extension of WTk,h (= WT,h) and
(5.2) µT,T−kh(σ) =

1 + th
1 −

T
[0,1] ϕk dµT,h

\
σ

1

xk
dµT,h(x) + thδ0(σ),

σ ∈ B([0, 1]),where
th =

‖T−(k−1)h‖2(1 −
T
[0,1] ϕk dµT,h)

‖T−kh‖2(1 −
T
[0,1] ϕk−1 dµT,h)

− 1, ϕ0 := 0,(5.3)(ii) if µT,g({0}) = 0 for every g ∈ H, then th = 0 for all h ∈ T k(H)\{0}.



Bakward extensions of hyperexpansive operators 245Proof. (i) By [27, Lemma 1℄, the operator T is injetive and the spae
T (H) is losed. This in turn implies that T k(H) is losed as well (see [24,Remark 2.7℄). It follows diretly from De�nition 2.1 that Tk is ompletelyhyperexpansive. If h ∈ T k(H) is nonzero, then in view of Corollary 2.5the weighted shift WT,T−kh is a ompletely hyperexpansive k-step bakwardextension of WTk,h. Hene by part 2o of Theorem 4.2 the measure µT,T−khis of the form (5.2) with a unique th ≥ 0. Applying (2.2) and (5.2), we get

β1(WT,T−kh) = 1 + µT,T−kh([0, 1])(5.4)
= 1 +

1 + th
1 −

T
[0,1] ϕk dµT,h

\
[0,1]

1

xk
dµT,h(x) + th.Computing th from (5.4) leads to (5.3).(ii) By (5.2), we have th = µT,T−kh({0}) = 0 for every h ∈ T k(H) \ {0},whih ompletes the proof.Corollary 5.3. Let k, r ≥ 1 be integers and T ∈ B(H) be a ompletelyhyperexpansive operator suh that µT,g({0}) = 0 for every g ∈ H. If Tk :=

T |T k(H) has ompletely hyperexpansive (k + r)-step full bakward extension,then T has ompletely hyperexpansive r-step full bakward extension.Proof. Take a nonzero vetor g ∈ H and set h := T k(g). By our as-sumption, the weighted shift WTk,h has a ompletely hyperexpansive (k+r)-step bakward extension, say V . In turn, aording to Proposition 5.2, theweighted shift WT,g = WT,T−kh is a ompletely hyperexpansive k-step bak-ward extension of WTk,h and (5.2) holds with th = 0. By Theorem 4.2, WT,gan be identi�ed (up to unitary equivalene) with V |∨∞
n=r{en}. Hene, V is aompletely hyperexpansive r-step bakward extension of WT,g, whih om-pletes the proof.Let us reall an operator version of the Levy�Khinhin formula for om-pletely hyperexpansive operators.Theorem 5.4. An operator T ∈ B(H) is ompletely hyperexpansive ifand only if there exists a (unique) positive-operator-valued Borel measure (6)

FT on [0, 1] suh that
T ∗nTn = IH +

\
[0,1]

(1 + x+ · · · + xn−1)FT (dx), n ≥ 1.(5.5)
If this is the ase, then

µT,h(σ) =
1

‖h‖2
〈FT (σ)h, h〉, σ ∈ B([0, 1]), h ∈ H \ {0}.(5.6)

(6) FT is σ-additive with respet to the weak operator topology; we do not assumethat FT ([0, 1]) = IH.



246 Z. J. Jabªo«ski et al.Proof. The �rst part of the onlusion follows from [20, Theorem 4.2℄.Then (5.6) is a onsequene of (5.5) and Corollary 2.5.Definition 5.5. If (5.5) holds, then we say that the operator measure
FT is assoiated with the operator T or that T is assoiated with FT .Following [31, Appendix℄, we write ψ∈L1(FT ) in ase ψ is a omplex Bo-rel funtion on [0, 1] and T[0,1] |ψ(x)| 〈FT (dx)h, h〉 < ∞ for all h ∈ H. If thisis the ase, then there exists a unique operator T[0,1] ψ dFT ∈ B(H) suh that

〈 \
[0,1]

ψ dFTh, h
〉

=
\

[0,1]

ψ(x) 〈FT (dx)h, h〉, h ∈ H.(5.7)Moreover,
∥

∥

∥

\
[0,1]

ψ dFT

∥

∥

∥
≤

∥

∥

∥

\
[0,1]

|ψ| dFT

∥

∥

∥
= sup

‖h‖=1

\
[0,1]

|ψ(x)| 〈FT (dx)h, h〉.(5.8)
If ψ is nonnegative, then T[0,1] ψ dFT ≥ 0.Theorem 5.6. Let T ∈ B(H) be a ompletely hyperexpansive operatorwith assoiated operator measure FT and let k ≥ 1 be an integer. Then thefollowing onditions are equivalent :(i) T has ompletely hyperexpansive k-step full bakward extension,(ii) ϕk ∈ L1(FT ) and T[0,1] ϕk dFT < IH,(iii) ϕk ∈ L1(FT ), ‖T[0,1] ϕk dFT ‖ ≤ 1 and 1 is not an eigenvalue of theoperator T[0,1] ϕk dFT .Moreover , if T has ompletely hyperexpansive k-step full bakward extension,then

FT ([0, 1]) <
1

k
IH,(5.9)

T ∗T <
k + 1

k
IH.(5.10)Proof. The equivalene (i)⇔(ii) an be dedued from the equality (5.7)and Theorems 4.2 and 5.4. The equivalene (ii)⇔(iii) is a onsequene of thefollowing fat: if A ∈ B(H) is a positive ontration, then

〈Ah, h〉 = 〈h, h〉 ⇔ ‖(IH −A)1/2h‖2 = 0(5.11)
⇔ (IH −A)h = 0, h ∈ H.If (ii) holds, then

kFT ([0, 1]) ≤
\

[0,1]

ϕk dFT < IH,whih implies (5.9). Finally, (5.10) follows from (5.9) and (5.5) applied to
n = 1.



Bakward extensions of hyperexpansive operators 247The inequality (5.10) (and onsequently (5.9)) an also be inferred fromCorollary 7.2. It beomes optimal in the ase of 2-isometri operators.Corollary 5.7. A 2-isometri operator T ∈ B(H) has ompletely hy-perexpansive k-step full bakward extension if and only if (5.10) holds.Proof. By Proposition 4.5 of [20℄, there exists a positive operator C ∈
B(H) suh that FT (σ) = δ1(σ)C for σ ∈ B([0, 1]). Applying Theorem 5.6ompletes the proof.The following proposition emphasizes the essential di�erene betweensubnormal and ompletely hyperexpansive operators regarding bakward ex-tensions of orthogonal sums. In ontradistintion to subnormal operators, theproperty of having ompletely hyperexpansive k-step full bakward exten-sion is preserved by the operation of taking in�nite orthogonal sums (f.Proposition 2.9 and Example 2.10 in [24℄).Proposition 5.8. Let T =

⊕

ω∈Ω Tω be the orthogonal sum of an arbi-trary family of ompletely hyperexpansive operators Tω ∈ B(Hω).(i) If T is bounded , then T is ompletely hyperexpansive and
FT (σ) =

⊕

ω∈Ω

FTω
(σ), σ ∈ B([0, 1]),(5.12) \

[0,1]

ψ dFT =
⊕

ω∈Ω

\
[0,1]

ψ dFTω
, ψ ∈ L1(FT ),(5.13)

where FT and FTω
are operator measures assoiated with T and Tωrespetively.(ii) If every Tω, ω ∈ Ω, has ompletely hyperexpansive k-step full bak-ward extension, then T is bounded , it has ompletely hyperexpansive

k-step full bakward extension and (5.13) holds for ψ = ϕk.Proof. (i) That T is ompletely hyperexpansive follows diretly from Def-inition 2.1. Applying (5.5) to Tω and n = 1, we onlude that
‖FTω

(σ)‖ ≤ ‖FTω
([0, 1])‖ = ‖T ∗

ωTω − IHω
‖ ≤ 1 + ‖Tω‖2(5.14)

≤ 1 + ‖T‖2, σ ∈ B([0, 1]), ω ∈ Ω.This implies that for every σ ∈ B([0, 1]), the operator F (σ) :=
⊕

ω∈Ω FTω
(σ)is bounded and F is a positive-operator-valued Borel measure on [0, 1]. Using(5.14), we see that T[0,1] ψ dF =

⊕

ω∈Ω

T
[0,1] ψ dFTω

for every bounded Borelfuntion ψ on [0, 1]. Applying the last equality to the funtions ψ(x) =
1 + x+ · · · + xn−1, we get

T ∗nTn = I +
\

[0,1]

(1 + x+ · · · + xn−1)F (dx), n ≥ 1.



248 Z. J. Jabªo«ski et al.In onsequene, by Theorem 5.4, FT = F , whih proves (5.12). Take ψ ∈
L1(FT ). It follows from (5.8) that ψ ∈ L1(FTω

) and
∥

∥

∥

\
[0,1]

ψ dFTω

∥

∥

∥
≤

∥

∥

∥

\
[0,1]

|ψ| dFTω

∥

∥

∥
≤

∥

∥

∥

\
[0,1]

|ψ| dFT

∥

∥

∥
, ω ∈ Ω.

This means that the operator ⊕

ω∈Ω

T
[0,1] ψ dFTω

is bounded. It is now aroutine matter to show that (5.13) is valid.(ii) The operator T is bounded beause by (5.10), ‖Tω‖ ≤
√

(k + 1)/kfor all ω ∈ Ω. Take h = ⊕ω∈Ωhω ∈ ⊕

ω∈Ω Hω. By (5.12), 〈FT (σ)h, h〉 =
∑

ω∈Ω〈FTω
(σ)hω, hω〉 for every σ ∈ B([0, 1]). Employing now the standardapproximation proedure and Lebesgue's monotone onvergene theorem forintegrals and series, we get\
[0,1]

ψ(x) 〈FT (dx)h, h〉 =
∑

ω∈Ω

\
[0,1]

ψ(x) 〈FTω
(dx)hω, hω〉(5.15)

for every nonnegative Borel funtion ψ on [0, 1]. Suppose that h is nonzero.Applying (5.6), (5.15) to ψ = ϕk and part 1o of Theorem 4.2, we obtain\
[0,1]

ϕk(x) dµT,h(x) =
1

‖h‖2

\
[0,1]

ϕk(x) 〈FT (dx)h, h〉

=
1

‖h‖2

∑

ω∈Ω

\
[0,1]

ϕk(x) 〈FTω
(dx)hω, hω〉

=
1

‖h‖2

∑

ω∈Ω
hω 6=0

‖hω‖2
\

[0,1]

ϕk(x) dµTω,hω
(x) < 1.

Aording to Theorem 4.2 and De�nition 5.1, T has ompletely hyperexpan-sive k-step full bakward extension. In view of the equivalene (i)⇔(ii) ofTheorem 5.6 and (5.13), we see that (5.13) holds for ψ = ϕk, whih ompletesthe proof.6. Bak to weighted shifts. We now return to the ase of weightedshifts. We begin with a result whih may be thought of as the ompletehyperexpansive ounterpart of [24, Corollary 4.4℄ (see also [17, Corollary5.4℄).Proposition 6.1. Let k ≥ 1 be an integer and W be a ompletely hyper-expansive weighted shift. Then the following onditions are equivalent :(i) W has ompletely hyperexpansive k-step full bakward extension,(ii) W has a ompletely hyperexpansive k-step bakward extension (orequivalently: e0 ∈ EW,k),(iii) ϕk ∈ L1(FW ) and ‖
T
[0,1] ϕk dFW ‖ < 1.



Bakward extensions of hyperexpansive operators 249Proof. The impliation (i)⇒(ii) is obvious.(ii)⇒(iii). Suppose that e0 ∈ EW,k. Let µ be the (salar) measure assoi-ated with W . By (5.8) and Proposition 6.1 of [20℄, we have L1(µ) = L1(FW )and
∥

∥

∥

\
[0,1]

|ψ| dFW

∥

∥

∥
=
\

[0,1]

|ψ| dµ for every ψ ∈ L1(µ).(6.1)
This and part 1o of Theorem 4.2 imply (iii).The impliation (iii)⇒(i) is a diret onsequene of Theorem 5.6.Remark 6.2. LetW be a ompletely hyperexpansive weighted shift withassoiated operator measure FW . By [20, Proposition 6.1℄, FW is of the form

FW (σ)en = µn(σ)en, σ ∈ B([0, 1]), n ≥ 0,(6.2)where
µ0 = µ,

µn(σ) =

T
σ x

n dµ(x)

1 +
T
[0,1](1 + x+ · · · + xn−1) dµ(x)

, σ ∈ B([0, 1]), n ≥ 1.
(6.3)
One an hek that for every ψ ∈ L1(µ) = L1(FW ), the operator T[0,1] ψ dFWis diagonal (with respet to the orthonormal basis {en}∞n=0 of ℓ2) with thediagonal {dn}∞n=0 given by

d0 =
\

[0,1]

ψ dµ, dn =

T
[0,1] x

nψ(x) dµ(x)

1 +
T
[0,1](1 + x+ · · · + xn−1) dµ(x)

, n ≥ 1.

Example 6.3. Condition (iii) of Proposition 6.1 haraterizes weightedshifts having ompletely hyperexpansive k-step full bakward extensions.One might expet that this would be true for all ompletely hyperexpansiveoperators. However, this is not the ase. Indeed, onsider the sequene αn =
n/(1 + kn), n ≥ 1. LetW (α), α ≥ 0, be as in Example 4.7. Sine kαn < 1 forall n ≥ 1, we infer from Theorem 4.2 and Proposition 6.1 that eah weightedshift W (αn) has ompletely hyperexpansive k-step full bakward extension.In view of Proposition 5.8, the operator T :=

⊕∞
n=1W

(αn) is ompletelyhyperexpansive (in fat 2-isometri) and it has ompletely hyperexpansive
k-step full bakward extension. By (6.1), we have

∥

∥

∥

\
[0,1]

ϕk dFW (αn)

∥

∥

∥
= kαn, n ≥ 1.(6.4)

It follows from part (ii) of Proposition 5.8 and (6.4) that ϕk ∈ L1(FT ) and
∥

∥

∥

\
[0,1]

ϕk dFT

∥

∥

∥
= sup

n≥1

∥

∥

∥

\
[0,1]

ϕk dFW (αn)

∥

∥

∥
= sup

n≥1
kαn = 1.



250 Z. J. Jabªo«ski et al.We now return to ompletely hyperexpansive k-step bakward extensionvetors in the ontext of weighted shifts.Proposition 6.4. Let k ≥ 1 be an integer and W be a ompletely hy-perexpansive weighted shift with assoiated measure µ. Then (f. De�nition5.1) (i) a nonzero vetor {ηn}∞n=0 ∈ ℓ2 belongs to EW,k if and only if
|η0|2

\
[0,1]

ϕk dµ+

∞
∑

n=1

|ηn|2
T
[0,1] x

nϕk(x) dµ(x)

1 +
T
[0,1](1 + x+ · · · + xn−1) dµ(x)

<

∞
∑

n=0

|ηn|2,(ii) ∨

n≥k{en} ⊆ EW,k.Proof. (i) Using (5.6), (6.2), (6.3) and Theorem 4.2 (see also (5.15)), weonlude that a nonzero vetor h={ηn}∞n=0∈ℓ2 belongs to EW,k if and only if
1 >

\
[0,1]

ϕk(x) dµW,h(x) =
1

‖h‖2

∞
∑

n=0

|ηn|2
\

[0,1]

ϕk dµn

=
1

‖h‖2

(

|η0|2
\

[0,1]

ϕk dµ+
∞

∑

n=1

|ηn|2
T
[0,1] x

nϕk(x) dµ(x)

1 +
T
[0,1](1 + x+ · · · + xn−1) dµ(x)

)

.

(ii) By Proposition 5.2,W k(ℓ2) is a losed linear subspae of ℓ2. Hene wehave W k(ℓ2) =
∨

n≥k{en}. Applying one more Proposition 5.2 ompletesthe proof of (ii) (one an also dedue (ii) diretly from (i)).It is worth noting that part (i) of Proposition 6.4 implies the equivalene(i)⇔(ii) of Proposition 6.1 as well as part 1o of Theorem 4.2 (however, thelatter has been essentially used in the proof of Proposition 6.4).Example 6.5. Let k≥1 be an integer. Consider the 2-isometri weightedshift T := W (1/k) with assoiated measure µ = (1/k)δ1 (f. Example 4.7).It is easily seen that T is unitarily equivalent to W (1)|∨∞
n=k−1{en}, where

W (1) is the Dirihlet shift. Hene T has no ompletely hyperexpansive k-stepbakward extension, though (for k ≥ 2) it has a ompletely hyperexpansive
(k − 1)-step bakward extension. We show that the set ET,k is not a linearspae and onsequently it is not equal to ∨

n≥k{en}. Notie that the ounter-part of ET,1 in the ontext of subnormal operators is equal to ∨

n≥1{en} (f.[17, Corollary 5.4℄). By Proposition 6.4, a nonzero vetor h = {ηn}∞n=0 ∈ ℓ2belongs to ET,k if and only if
∞

∑

n=1

|ηn|2
k

k + n
<

∞
∑

n=1

|ηn|2.This means that ET,k = {{ηn}∞n=0 ∈ ℓ2 : ∃m ≥ 1 ηm 6= 0} ∪ {0}.



Bakward extensions of hyperexpansive operators 251Example 6.6. Let k, r ≥ 1 be integers and letW be a ompletely hyper-expansive weighted shift with assoiated measure µ. Suppose that W has aompletely hyperexpansive (k + r)-step bakward extension. For t ∈ [0,∞),denote by Vt the ompletely hyperexpansive k-step bakward extension of
W assoiated with the measure ζt given by the right-hand side of (4.2). ByProposition 5.2 and Corollary 5.3, we identify W (up to unitary equivalene)with Tk := T |T k(H), where H = ℓ2 and T = Vt. It follows from Remark 6.2that FV0({0}) = 0 and FVt

({0}) 6= 0 for t > 0. By Proposition 6.1 and Corol-lary 5.3, V0 has ompletely hyperexpansive r-step full bakward extension.On the other hand, if t > 0, then by Theorem 3.2, Vt does not have anyompletely hyperexpansive bakward extension, and onsequently it doesnot have ompletely hyperexpansive full bakward extension.We will show in Example 6.10 below that similarity does not preservethe property of having ompletely hyperexpansive k-step full bakward ex-tension. Let us begin with a haraterization of similarity of ompletely hy-perexpansive weighted shifts assoiated with measures of tempered growthat 1, i.e. satisfying the ondition (6.5) below whih is losely related to powerboundedness of ompletely hyperexpansive weighted shifts (f. [20, Proposi-tion 6.3℄).Proposition 6.7. LetW1 andW2 be ompletely hyperexpansive weightedshifts with assoiated measures µ1 and µ2, respetively. Assume that\
[0,1)

1

1 − x
dµi(x) <∞, i = 1, 2.(6.5)

Then the weighted shifts W1 and W2 are similar if and only ifeither µ1({1}) + µ2({1}) = 0 or µ1({1}) · µ2({1}) > 0.(6.6)Proof. Indeed, by [16, Problem 76℄ and (2.2), the weighted shifts W1 and
W2 are similar if and only if there exist onstants c, d > 0 suh that
(6.7) c ≤ βn+1(W1)

βn+1(W2)
=

1 + (n+ 1)µ1({1}) +
T
[0,1)

1−xn+1

1−x dµ1(x)

1 + (n+ 1)µ2({1}) +
T
[0,1)

1−xn+1

1−x dµ2(x)
≤ d,

n ≥ 0.Applying Lebesgue's monotone onvergene theorem, we get
lim

n→∞

\
[0,1)

1 − xn+1

1 − x
dµi(x) =

\
[0,1)

1

1 − x
dµi(x), i = 1, 2,

whih, together with (6.5) and (6.7), ompletes the proof.Proposition 6.8. Let W be a ompletely hyperexpansive weighted shiftwith assoiated measure µ. Then



252 Z. J. Jabªo«ski et al.(i) W is similar to the isometri unilateral shift if and only ifW is powerbounded , or equivalently
µ({1}) = 0 and \

[0,1)

1

1 − x
dµ(x) <∞,(6.8)

(ii) W is similar to the Dirihlet shift if and only if µ({1}) > 0.Moreover , the isometri unilateral shift and the Dirihlet shift are not simi-lar.Proof. (i) If the weighted shift W is power bounded, then by [20, Propo-sition 6.3℄ the ondition (6.8) is valid. If (6.8) holds, then in view of Proposi-tion 6.7 the weighted shift W is similar to the isometri unilateral shift W (0)(beause W (0) is assoiated with the zero measure). Finally, if W and W (0)are similar, then W is evidently power bounded.(ii) If µ({1}) > 0, then by (2.2) we have
1 + (n+ 1)µ({1})

1 + (n+ 1)
≤ βn+1(W )

βn+1(W (1))
≤ 1 + (n+ 1)µ([0, 1])

1 + (n+ 1)
, n ≥ 0,

where W (1) is the Dirihlet shift (f. Example 4.7). Hene, by [16, Problem76℄, the weighted shifts W and W (1) are similar.Suppose now that µ({1}) = 0. We de�ne εn =
T
[0,1] x

n dµ(x) and σn =

(ε0 + · · · + εn)/(n + 1) for n ≥ 0. By Lebesgue's dominated onvergenetheorem, we have limn→∞ εn = µ({1}) = 0, and onsequently limn→∞ σn =0.This in turn leads to
inf
n≥0

βn+1(W )

βn+1(W (1))
= inf

n≥0

1
n+1 + σn

n+2
n+1

= 0,

whih in view of [16, Problem 76℄ implies that the weighted shifts W and
W (1) are not similar. This proves (ii).Applying (i) to W = W (1) (or (ii) to W = W (0)), we onlude that theoperators W (0) and W (1) are not similar. This ompletes the proof.We now indiate an example of a ompletely hyperexpansive weightedshift whih is similar neither to the isometri unilateral shift nor to theDirihlet shift.Example 6.9. Let W be the ompletely hyperexpansive weighted shiftassoiated with the Lebesgue measure on [0, 1]. Sine the sequene

βn+1(W )

βn+1(W (0))
= 1 +

(

1

1
+ · · · + 1

n+ 1

)

, n ≥ 0,is unbounded, the weighted shift W is not similar to the isometri unilateral
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βn+1(W )

βn+1(W (1))
=

2 +

(

1

2
+ · · · + 1

n+ 1

)

1 + (n+ 1)

≤ 2 +
Tn+1
1

1
x dx

n+ 1
=

2

n+ 1
+

log(n+ 1)

elog(n+1)
, n ≥ 1,we get infn≥1 βn+1(W )/βn+1(W

(1)) = 0. Hene the weighted shift W is notsimilar to the Dirihlet shift W (1).Example 6.10. Sine the onditions (6.5) and (6.6) are not partiularlyrestritive, one annot expet that the property of having ompletely hy-perexpansive k-step full bakward extension is preserved by similarity. Forinstane, if µ1 is suh that 0 < α :=
T
[0,1] ϕk dµ1 < 1 and µ2 = (1/α)µ1, then

W1 and W2 are similar (7), W1 has ompletely hyperexpansive k-step fullbakward extension, while W2 does not (f. Theorem 4.2 and Proposition6.1). In partiular, the measures µ1 = 1
k+1δ1 and µ2 = 1

kδ1 have the featurewe want.We onlude this setion with a version of Proposition 6.1 for operator-valued (unilateral) weighted shifts T with invertible weights {Tn}∞n=0 whoseproduts Tn · · ·T0, n ≥ 0, are positive. We follow the notation of [22℄. Thereader should be aware of the fat that the operator measure G appearingin [22℄ is the same as our FT .Proposition 6.11. If T , F and G are as in Setion 4 of [22℄ and k ≥ 1is an integer , then the following onditions are equivalent :(i) T has ompletely hyperexpansive k-step full bakward extension,(ii) ϕk ∈ L1(F ) and T[0,1] ϕk dF < IH,(iii) ϕk ∈ L1(F ), ‖T[0,1] ϕk dF‖ ≤ 1 and 1 is not an eigenvalue of theoperator T[0,1] ϕk dF .Sketh of the proof. (ii)⇒(i). In view of [22, Theorem 4.2℄, ϕk ∈ L1(F ) =
L1(G). Sine T[0,1] ϕk dF < IH, we have (see [22, p. 414, line 10 from above℄)\

[0,1]

ϕk(x) 〈Fi(dx)h, h〉 =
\

[0,1]

xiϕk(x) 〈F (dx)Ω−1
F,ih,Ω

−1
F,ih〉

≤
〈( \

[0,1]

ϕk dF
)

Ω−1
F,ih,Ω

−1
F,ih

〉

< 〈Ω−1
F,ih,Ω

−1
F,ih〉 ≤ 〈h, h〉

(7) This an be justi�ed simply by omputing limn→∞ βn+1(W1)/βn+1(W2).



254 Z. J. Jabªo«ski et al.for i ≥ 0 and h ∈ H \ {0}. This and (5.7) imply
ϕk ∈ L1(Fi) and \

[0,1]

ϕk dFi < IH for all i ≥ 0.(6.9)
Sine the operator measure G equals the orthogonal sum of the positive-operator-valued Borel measures Fi, (6.9) enables us to show that\

[0,1]

ϕk dG =
∞

⊕

i=0

\
[0,1]

ϕk dFi.(6.10)
Employing Theorem 5.6, (6.9) and (6.10), we see that (i) holds.(i)⇒(ii). By Theorem 5.6, ϕk ∈ L1(G) and T[0,1] ϕk dG < Iℓ2(H). Sine
F (σ) = F0(σ) ⊆ G(σ) for σ ∈ B([0, 1]), we onlude that (ii) holds.The equivalene (ii)⇔(iii) follows from (5.11).7. 2-hyperexpansive k-step bakward extensions. In this onlud-ing setion we brie�y disuss 2-hyperexpansive bakward extensions leavingthe question of m-hyperexpansive bakward extensions aside. One an easilyadapt De�nitions 3.1, 4.1 and 5.1 to the ontext of 2-hyperexpansive opera-tors, simply by replaing �ompletely hyperexpansive� by �2-hyperexpansive�.For the reader's onveniene, we ollet indispensable fats onerning 2-hyperexpansive weighted shifts. By Proposition 6.2 of [23℄, the weight se-quene {λn}∞n=0 of a 2-hyperexpansive weighted shift W satis�es the follow-ing onditions:4o λn ≥ 1 for all n ≥ 0,5o λn+1 ≤ λn for all n ≥ 0,6o λn ≤ σn(λ0) :=

√

1 + (n+ 1)(λ2
0 − 1)

1 + n(λ2
0 − 1)

for all n ≥ 0,7o if λ0 = 1, then λn = 1 for all n ≥ 0.Proposition 7.1. Let W be a 2-hyperexpansive weighted shift withweight sequene {λn}∞n=0 and let k ≥ 1 be an integer. Then the followingonditions are equivalent :(i) W has a 2-hyperexpansive k-step bakward extension,(ii) λ0 <
√

(k + 1)/k.Moreover , W has a 2-hyperexpansive k-step bakward extension for all k ≥ 1if and only if W is the isometri unilateral shift.Proof. (i)⇒(ii). Suppose that there are positive salars λ−k, . . . , λ−1suh that the weighted shift V with weight sequene {λn−k}∞n=0 is 2-hyper-
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−k − 1. Applying 4o and 6o to V , we get α ≥ 0 and

λ0 ≤ σk(λ−k) =

√

1 + (k + 1)α

1 + kα
=

√

1 +
α

1 + kα
<

√

k + 1

k
.(ii)⇒(i). By 4o, α := λ2

0−1 ≥ 0. LetW (α) be as in Example 4.7. Sine (ii)is equivalent to kα < 1, we see that W (α) has a ompletely hyperexpansive(and onsequently 2-hyperexpansive) k-step bakward extension W ′ withweight sequene
λ−k, . . . , λ−1, λ0 =

√
1 + α,

√

1 + 2α

1 + α
, . . . ,

√

1 + (n+ 1)α

1 + nα
, . . .Using Lemma 6.1(i) of [23℄, one an hek that the weighted shift V withweight sequene λ−k, . . . , λ−1, λ0, λ1, . . . , λn, . . . is a 2-hyperexpansive k-stepbakward extension of W .The remaining part of the onlusion an be dedued from 4o, 7o and theimpliation (i)⇒(ii). This ompletes the proof.Corollary 7.2. Let k ≥ 1 be an integer. A 2-hyperexpansive operator

T ∈ B(H) has 2-hyperexpansive k-step full bakward extension if and onlyif (5.10) holds. A 2-hyperexpansive weighted shift W with weight sequene
{λn}∞n=0 has 2-hyperexpansive k-step full bakward extension if and only if
λ0 <

√

(k + 1)/k.Proof. The ase of T ∈ B(H) an be handled with the help of Proposi-tions 2.4 and 7.1. By 5o, W ∗W < k+1
k Iℓ2 if and only if λ0 <

√

(k + 1)/k,whih ompletes the proof.Remark 7.3. It is worth noting that in view of 5o and Corollary 5.7 a 2-isometri weighted shiftW with weight sequene {λn}∞n=0 has ompletely hy-perexpansive k-step full bakward extension if and only if λ0 <
√

(k + 1)/k(this an also be dedued from Theorem 4.2 and Proposition 6.1). If a 2-isometri operator T ∈ B(H) has ompletely hyperexpansive k-step fullbakward extension, then by Proposition 2.4 and Example 4.7, T has 2-isometri k-step full bakward extension. This and Corollaries 5.7 and 7.2imply that a 2-isometri operator T ∈ B(H) has 2-hyperexpansive k-stepfull bakward extension if and only if it has 2-isometri k-step full bakwardextension.Remark 7.4. It follows from Propositions 2.4 and 7.1 that if T ∈ B(H)is a 2-hyperexpansive operator, then a nonzero vetor h ∈ H is a 2-hyper-expansive k-step bakward extension vetor for T if and only if ‖Th‖ <
√

(k + 1)/k ‖h‖. If T ∈ B(H) is a 2-isometry, then in view of the disussionin Remark 7.3 for every nonzero vetor h ∈ H the following onditions areequivalent:
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