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On integral type generalizations of positive linear operators

by

O. Duman (Ankara), M. A. Özarslan (Mersin) and O. Doğru (Ankara)

Abstract. We introduce a sequence of positive linear operators including many in-
tegral type generalizations of well known operators. Using the concept of statistical con-
vergence we obtain some Korovkin type approximation theorems for those operators, and
compute the rates of statistical convergence. Furthermore, we deal with the local approx-
imation and the rth order generalization of our operators.

1. Introduction. In this paper, we are concerned with Korovkin type
theorems for a general sequence of positive linear operators including many
integral type generalizations of well known operators in approximation the-
ory via the concept of statistical convergence. The study of Korovkin type
approximation is a well established area of research, which deals with the
problem of approximating a function f by means of a sequence of positive
linear operators Ln(f). Statistical convergence, though introduced over fifty
years ago, has only recently become an area of active research. In particular,
it has made an appearance in approximation theory [14] (see also [6]–[8]).

The first section of this paper collects some basic ideas related to sta-
tistical convergence and introduces a sequence of positive linear operators
which generates many Durrmeyer type and Kantorovich type generalizations
of well known operators while the second section gives a Korovkin type ap-
proximation theorem for these operators on an appropriate weighted space.
The third section addresses some problems concerning rates of statistical
convergence by means of the modulus of continuity and elements of the Lip-
schitz class. This section also includes a study of local smoothness of these
operators. In the last section, we deal with the approximation properties of
the rth order generalization of our operators.

We now introduce some notation and basic definitions used in this paper.
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As usual, the symbols R, N and N0 denote the sets of all real numbers,
of all natural numbers, and N ∪ {0}, respectively.

Let A := (ajn), j, n ∈ N, be a non-negative regular summability matrix,
i.e. limAx = L whenever limx = L, where Ax := ((Ax)j) is called the A-
transform of x := (xn) and is given by (Ax)j :=

∑∞
n=1 ajnxn provided that

the series converges for each j ∈ N (see [15]). Then the sequence x := (xn)
is called A-statistically convergent to a number L if, for every ε > 0,

lim
j

∑

n : |xn−L|≥ε

ajn = 0.

We then write stA-limx = L (see [10], and also [12], [20], [23]). If A = C1,
the Cesàro matrix of order one, then C1-statistical convergence is equivalent
to statistical convergence [9], [11], [13]. If A is the identity matrix, then A-
statistical convergence coincides with the ordinary convergence. Kolk [20]
proved that A-statistical convergence is stronger than ordinary convergence
if limj maxn |ajn| = 0. The concept of A-statistical convergence may also be
defined in normed spaces [19].

Let I ⊂ R be an arbitrary interval and let C(I) denote the linear space
of all real-valued continuous functions on I. Assume that g is a non-negative
increasing function on [0,∞) with g(0) = 1. Consider the function space

Cg(I) =

{

f ∈ C(I) : lim
|x|→∞

|f(x)|

(g(|x|))c
= 0 for any c > 0

}

.

It has been examined in [7]. If I = [a, b] and g(x) ≡ 1, then Cg(I) = C[a, b].
Now let {µn,k : n ∈ N and k ∈ N0} be a collection of measures defined on
(I,B), where B is the σ-field of Borel measurable subsets of I. Assume that

(1.1)
\
I

dµn,k(y) = 1,

and that

(1.2) sup
n∈N, k∈N0

\
I\Iδ

g(|y|) dµn,k(y) < ∞

for any δ > 0, where Iδ := [x − δ, x + δ] ∩ I.
We now introduce the following operators defined on the space Cg(I) :

(1.3) Dn(f ; x) =
∞
∑

k=0

rn,k(x)
\
I

f(y) dµn,k(y) (f ∈ Cg(I), x ∈ I, n ∈ N),

where rn,k(x) has the following properties:

rn,k(x) ≥ 0 x ∈ I, n ∈ N, k ∈ N0,(1.4)
∞

∑

k=0

rn,k(x) = 1, x ∈ I, n ∈ N.(1.5)
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The operators Dn are positive and linear. Since condition (1.2) guaran-
tees that f is integrable on I whenever f ∈ Cg(I), the operators Dn(f ; ·)
in (1.3) are well defined. We also note that conditions (1.1) and (1.5) imply
that Dn(1; x) = 1.

Applications. 1. Let I = [0, 1]. If we choose

Fn,k(y) = (n + 1)

y\
0

(

n

k

)

tk(1 − t)n−k dt, 0 < y ≤ 1,

then Fn,k, which is called the cumulative function, is increasing with respect
to y and continuous on the right. So, there exists a unique Borel measure
µn,k corresponding to Fn,k, which satisfies the following Lebesgue–Stieltjes
integral equality:

(1.6)
\
I

f(y) dFn,k(y) =
\
I

f(y) dµn,k(y)

(see, for instance, [24]).

For x ∈ [0, 1], set rn,k(x) =
(

n
k

)

xk(1 − x)n−k. Then conditions (1.4) and
(1.5) hold, and also it is clear that

(1.7) dFn,k(y) = (n + 1)rn,k(y)dy.

Using (1.7) in (1.6) we see that our operators turn out to be the Bernstein–
Durrmeyer operators (see [3]) which have the following form:

Mn(f ; x) = (n + 1)
n

∑

k=0

rn,k(x)

1\
0

f(t)pn,k(t) dt, 0 ≤ x ≤ 1.

2. Let I = [0,∞). Now define the cumulative function

Fn,k(y) = (n − 1)

y\
0

(

n + k − 1

k

)

tk(1 + t)−n−k dt, 0 < y < ∞.

If µn,k is the Borel measure corresponding to Fn,k, then choosing rn,k(x) =
(

n+k−1
k

)

xk(1 + x)−n−k, x ∈ [0,∞), and using the above technique we im-
mediately get the Baskakov–Durrmeyer operators (see, for instance, [16]) in
[0,∞):

Vn(f ; x) = (n − 1)
∞
∑

k=0

(

∞\
0

f(y)rn,k(y) dy
)

rn,k(x).

3. Let I = [0, 1] and In,k :=
[

k
n+1 , k+1

n+1

]

for n ∈ N and k = 0, 1, . . . , n.
Now choose the cumulative function

Fn,k(y) = (n + 1)

y\
k/(n+1)

dt = (n + 1)

(

y −
k

n + 1

)

,
k

n + 1
< y ≤

k + 1

n + 1
,
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and set rn,k(x) =
(n
k

)

xk(1− x)n−k, x ∈ [0, 1]. Let µn,k be the Borel measure
corresponding to Fn,k. By the definition of the Lebesgue–Stieltjes integral
we have \

In,k

f(y) dFn,k(y) =
\

In,k

f(y) dµn,k(y).

Then after some simple calculations, we obtain the Bernstein–Kantorovich
operators (see [17])

Un(f ; x) = (n + 1)
n

∑

k=0

rn,k(x)
( \

In,k

f(y) dy
)

, x ∈ [0, 1].

4. Let I = [0,∞) and In,k :=
[

k
n , k+1

n

]

for n ∈ N and k = 0, 1, . . . , n.
Define

Fn,k(y) = (n + 1)

y\
k/n

dt = (n + 1)

(

y −
k

n

)

,
k

n
< y ≤

k + 1

n
.

Letting rn,k(x) =
(

n
k

)

xk(1+x)−n, x ∈ [0,∞), one can easily get the Balász–
Kantorovich operators (see [1])

Kn(f ; x) = n
n

∑

k=0

rn,k(x)

( \
In,k

f(y) dy

)

, x ∈ [0,∞).

In a similar manner our operators Dn generate many other Durrmeyer
type and Kantorovich type generalizations of operators well known in ap-
proximation theory.

2. A-Statistical approximation. In this section we give an A-statisti-
cal approximation theorem for the operators Dn defined by (1.3).

Theorem 2.1. Let I be an arbitrary interval of R. Let A = (ajn) be a

non-negative regular summability matrix and fix x ∈ I. Assume that g is

a function such that f2(y) = y2 is in Cg(I) and (1.2) holds. Then, for all

f ∈ Cg(I),

stA- lim
n

|Dn(f ; x) − f(x)| = 0

if and only if

(2.1) stA- lim
n

|Dn(fv; x) − fv(x)| = 0 with fv(y) = yv (v = 1, 2).

Proof. Necessity is clear. To prove sufficiency assume that (2.1) holds.
Let f ∈ Cg(I) and fix x ∈ I. By the continuity of f on I, for every ε > 0
there exists δ > 0 such that |f(y) − f(x)| < ε for y ∈ Iδ. Then using
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positivity and linearity of Dn, we find, by (1.1), that

|Dn(f ; x) − f(x)| ≤ Dn(|f(y) − f(x)|; x)

=
∞

∑

k=0

rn,k(x)
\
Iδ

|f(y) − f(x)| dµn,k(y)

+

∞
∑

k=0

rn,k(x)
\

I \Iδ

|f(y) − f(x)| dµn,k(y)

and, by (1.5),

(2.2) |Dn(f ; x) − f(x)| ≤ ε +
∞

∑

k=0

rn,k(x)
\

I \Iδ

|f(y) − f(x)| dµn,k(y).

It follows from the Hölder inequality that\
I \Iδ

|f(y) − f(x)| dµn,k(y) ≤
{ \

I \Iδ

dµn,k(y)
}1/p

(2.3)

×
{ \

I \Iδ

|f(y) − f(x)|q dµn,k(y)
}1/q

where 1/p + 1/q = 1 and p > 1. By hypothesis and the definition of g we
conclude that f ∈ Cg(I) implies f q ∈ Cg(I) and also that there exists a
positive number K such that

(2.4)
{ \

I \Iδ

|f(y) − f(x)|q dµn,k(y)
}1/q

< K for n ∈ N and k ∈ N0.

Combining (2.2)–(2.4) we have

|Dn(f ; x) − f(x)| ≤ ε + K

∞
∑

k=0

rn,k(x)
{ \

I \Iδ

dµn,k(y)
}1/p

,

and hence

(2.5) |Dn(f ; x) − f(x)| ≤ ε + K
∞

∑

k=0

r
1/q
n,k (x)

{ \
I \Iδ

rn,k(x) dµn,x(y)
}1/p

.

Applying again the Hölder inequality in (2.5) we may write

(2.6) |Dn(f ; x) − f(x)| ≤ ε + K
{

∞
∑

k=0

rn,k(x)
}1/q

×
{

∞
∑

k=0

rn,k(x)
\

I \Iδ

dµn,k(y)
}1/p

.
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If y ∈ I \Iδ, then |y− x| ≥ δ, which implies that (y − x)2/δ2 ≥ 1. Using this
fact and (1.5) we conclude from (2.6) that

|Dn(f ; x) − f(x)| ≤ ε +
K

δ2/p

{

∞
∑

k=0

rn,k(x)
\

I \Iδ

(y − x)2 dµn,k(y)
}1/p

≤ ε +
K

δ2/p

{

∞
∑

k=0

rn,k(x)
\
I

(y − x)2 dµn,k(y)
}1/p

= ε +
K

δ2/p
{Dn((y − x)2; x)}1/p

≤ ε +
K

δ2/p
{|Dn(f2; x) − f2(x)|

+ 2|x| |Dn(f1; x) − f1(x)|}1/p.

Using the inequality |x + y|α ≤ |x|α + |y|α for each α ∈ (0, 1], we have

|Dn(f ; x) − f(x)| ≤ ε + M(x){|Dn(f2; x) − f2(x)|1/p(2.7)

+ |Dn(f1; x) − f1(x)|1/p},

where M(x) := max{K/δ2/p, K(2|x|/δ2)1/p}. Observe that condition (2.1)
implies

(2.8) stA- lim
n

|Dn(fv; x) − fv(x)|1/p = 0, (v = 1, 2).

Now for a given r > 0, choose ε > 0 such that ε < r and define

U := {n : |Dn(f ; x) − f(x)| ≥ r},

U1 :=

{

n : |Dn(f1; x) − f1(x)|1/p ≥
r − ε

2M(x)

}

,

U2 :=

{

n : |Dn(f2; x) − f2(x)|1/p ≥
r − ε

2M(x)

}

.

From (2.7) it is clear that U ⊆ U1 ∪ U2. Thus, for every j ∈ N, we obtain

(2.9)
∑

n∈U

ajn ≤
∑

n∈U1

ajn +
∑

n∈U2

ajn.

Letting j → ∞ in (2.9) and using (2.8) completes the proof.

Since I is an arbitrary interval, note that our A-statistical approximation
in Theorem 2.1 works pointwise. But if I is a closed and bounded interval,
say I = [a, b], then the above proof leads to the next result immediately.

Corollary 2.2. Let A = (ajn). Then, for all f ∈ C[a, b],

stA- lim
n

‖Dn(f) − f‖C[a,b] = 0

if and only if
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stA- lim
n

‖Dn(fv) − fv‖C[a,b] = 0 with fv(y) = yv (v = 1, 2),

where ‖ · ‖C[a,b] denotes the usual supremum norm in C[a, b].

Now if we replace the matrix A = (ajn) in Corollary 2.2 by the identity
matrix, the following classical Korovkin theorem result follows at once.

Corollary 2.3. For all f ∈ C[a, b], the sequence {Dn(f)} is uniformly

convergent to f if and only if , for each v = 1, 2, {Dn(fv)} converges uni-

formly to fv.

3. Rates of A-statistical convergence. In this section, we compute
the rates of A-statistical convergence in Theorem 2.1 with the help of the
modulus of continuity and elements of the Lipschitz class. We also deal with
the local approximation properties of the operators Dn given by (1.3).

Let f ∈ C(I). The modulus of continuity of f, denoted by w(f, δ), is
defined to be

w(f, δ) = sup
x,y∈I

|x−y|< δ

|f(x) − f(y)| (δ > 0).

It is well known that for any constants c, δ > 0,

(3.1) w(f, cδ) ≤ (1 + c)w(f, δ)

(see [2], [21] for details).
Now we have the following

Theorem 3.1. Let I and g be as in Theorem 2.1. Assume that condition

(1.1) holds and fix x ∈ I. Then, for all f ∈ Cg(I),

|Dn(f ; x) − f(x)| ≤ 2w(f, δn), n ∈ N,

where

(3.2) δn := [Dn((y − x)2; x)]1/2.

Proof. Let f ∈ Cg(I) and fix x ∈ I. By (3.1), for any δ > 0, we get

|Dn(f ; x) − f(x)| ≤ Dn(|f(y) − f(x)|; x) ≤ Dn(w(f, |y − x|); x)

≤ w(f, δ)Dn

(

1 +
|y − x|

δ
; x

)

≤ w(f, δ)

{

1 +
1

δ
Dn(|y − x|; x)

}

.

Then from the Cauchy–Schwarz inequality for positive functionals (see, for
instance, [4, p. 31]) and using (1.1), we find

|Dn(f ; x) − f(x)| ≤ w(f, δ)

{

1 +
1

δ
[Dn(|y − x|2; x)]1/2

}

.

Taking δ := δn = [Dn(|y − x|2; x)]1/2 we get the result.



8 O. Duman et al.

Observe that condition (2.1) yields stA- limn δn = 0, which implies
stA- limn w(f, δn) = 0. Hence, Theorem 3.1 gives us the rate of A-statistical
convergence in Theorem 2.1 by means of the modulus of continuity.

We will now study the rate of A-statistical convergence of the positive
linear operators Dn with the help of elements of the Lipschitz class LipM (α),
where M > 0 and 0 < α ≤ 1.

We recall that a function f ∈ C(I) belongs to LipM (α) if

(3.3) |f(y) − f(x)| ≤ M |y − x|α (y, x ∈ I, 0 < α ≤ 1).

Choose an interval I and a function g such that Cg(I)∩LipM (α) 6= ∅. Then
we have the following result.

Theorem 3.2. Fix x ∈ I. For all f ∈ Cg(I) ∩ LipM (α), 0 < α ≤ 1,

|Dn(f ; x) − f(x)| ≤ Mδα
n ,

where δn is as in (3.2).

Proof. Let f ∈ Cg(I) ∩ LipM (α) with 0 < α ≤ 1, and fix x ∈ I. By
linearity and monotonicity of Dn and using (3.3) we have

|Dn(f ; x) − f(x)| ≤ Dn(|(f(y) − f(x)|; x)

=
∞
∑

k=0

rn,k(x)
\
I

|f(y) − f(x)| dµn,k(y)

≤ M
∞

∑

k=0

rn,k(x)
\
I

|y − x|α dµn,k(y).

Applying the Hölder inequality with p = 2/α, q = 2/(2 − α) we get

|Dn(f ; x) − f(x)| ≤ M
∞

∑

k=0

rn,k(x)
{\

I

(y − x)2 dµn,k(y)
}α/2

≤ M
∞

∑

k=0

(rn,k(x))(2−α)/2
{\

I

rn,k(x)(y − x)2 dµn,k(y)
}α/2

.

If we use again the Hölder inequality, then we conclude that

|Dn(f ; x) − f(x)| ≤ M
{

∞
∑

k=0

rn,k(x)
}(2−α)/2

×
{

∞
∑

k=0

rn,k(x)
\
I

(y − x)2 dµn,k(y)
}α/2

and therefore

(3.4) |Dn(f ; x) − f(x)| ≤ M [Dn((y − x)2; x)]α/2.

Taking δn := [Dn((y − x)2; x)]1/2 in (3.4) completes the proof.
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To close this section we state a local approximation result for the oper-
ators Dn given by (1.3). Note that some local smoothness theorems for the
Baskakov–Durrmeyer operators may be found in [22].

Theorem 3.3. Let 0 < α ≤ 1 and E be any subset of the interval I.
Then, if f ∈ Cg(I) is locally Lip(α), i.e.

(3.5) |f(y) − f(x)| ≤ M |y − x|α, y ∈ E and x ∈ I,

then, for each x ∈ I,

|Dn(f ; x) − f(x)| ≤ M{δα
n + 2(d(x, E))α},

where δn is as in (3.2), M is a constant depending on α and f , and d(x, E) =
inf{|y − x| : y ∈ E}.

Proof. Let E denote the closure of E in I. Then there exists x0 ∈ E
such that |x − x0| = d(x, E). Using the triangle inequality

|f(y) − f(x)| ≤ |f(y) − f(x0)| + |f(x) − f(x0)|

we get, by (3.5),

|Dn(f ; x) − f(x)| ≤ Dn(|f(y) − f(x)|; x)

≤ Dn(|f(y) − f(x0)|; x) + |f(x) − f(x0)|

≤ M{Dn(|y − x0|
α; x) + |x − x0|

α}

≤ M{Dn(|y − x|α; x) + 2|x − x0|
α}

= M
{

∞
∑

k=0

rn,k(x)
\
I

|y − x0|
α dµn,k(y) + 2(d(x, E))α

}

.

As in the proof of Theorem 3.2, using the Hölder inequality with p = 2/α,
q = 2/(2 − α) we find that

|Dn(f ; x) − f(x)| ≤ M{δα
n + 2(d(x, E))α},

where δn is given by (3.2).

Note that if we set E = I in Theorem 3.3, then the term d(x, E) vanishes,
and we get Theorem 3.2 at once.

4. The rth order generalization of the operators Dn. Define

C(r)
g (I) = {f : f (r) ∈ Cg(I)} (r = 0, 1, 2, . . .).

If r = 0, then C
(0)
g (I) = Cg(I).

We now consider the rth order generalization of the operators Dn defined
as follows:

(4.1) D[r]
n (f ; x) =

∞
∑

k=0

r
∑

i=0

rn,k(x)
\
I

f (i)(y)
(x − y)i

i!
dµn,k(y)
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where f ∈ C
(r)
g (I) (r = 0, 1, 2, . . .), n ∈ N and rn,k(x) satisfies conditions

(1.4) and (1.5).
This kind of generalization was also considered in [5], [18]. Note that

taking r = 0 we have
D[0]

n (f ; x) = Dn(f ; x).

We now obtain the following approximation theorem for the operators

D
[r]
n given by (4.1).

Theorem 4.1. Let I be an arbitrary interval of the real line. Then for

all f ∈ C
(r)
g (I) such that f (r) ∈ LipM (α), 0 < α ≤ 1, and for each x ∈ I, we

have

|D[r]
n (f ; x) − f(x)| ≤ CDn(|x − y|α+r; x)

where

C =
Mα

α + r

B(α, r)

(r − 1)!
,

and B(α, r) is the beta function.

Proof. By (4.1) and (1.1) we get

(4.2) f(x) − D[r]
n (f ; x)

=
∞
∑

k=0

rn,k(x)
\
I

{

f(x) −
r

∑

i=0

f (i)(y)
(x − y)i

i!

}

dµn,k(y).

From the Taylor formula (see [18]),

(4.3) f(x) −
r

∑

i=0

f (i)(y)
(x − y)i

i!

=
(x − y)r

(r − 1)!

1\
0

(1 − t)r−1[f (r)(y + t(x − y)) − f (r)(y)] dt.

Since f (r) ∈ LipM (α), we have

(4.4) |f (r)(y + t(x − y)) − f (r)(y)| ≤ Mtα|x − y|α.

Considering (4.4) in (4.3), and using the beta integral, we conclude that

(4.5) f(x) −
r

∑

i=0

f (i)(y)
(x − y)i

i!
≤ |x − y|α+r Mα

α + r

B(α, r)

(r − 1)!
.

By using (4.5) in (4.2), we get

|f(x) − D[r]
n (f ; x)| ≤

Mα

α + r

B(α, r)

(r − 1)!

∞
∑

k=0

rn,k(x)
\
I

|x − y|α+r dµn,k(y)

=
Mα

α + r

B(α, r)

(r − 1)!
Dn(|x − y|α+r; x),

which gives the desired result.
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From Theorem 4.1 one can get the following corollary immediately.

Corollary 4.2. If condition (2.1) holds, then for all f ∈ C
(r)
g (I) such

that f (r) ∈ LipM (α), 0 < α ≤ 1, we have

stA- lim
n

|D[r]
n (f ; x) − f(x)| = 0.

Finally, using Theorem 4.1 one can show that Theorems 3.1 and 3.2
contain the following results, respectively.

Corollary 4.3. Let δn be as in (3.2). Then, for all f ∈ C
(r)
g (I) such

that f (r) ∈ LipM (α), 0 < α ≤ 1, we have

|D[r]
n (f ; x) − f(x)| ≤ M ′w(|x − y|α+r, δn)

where

M ′ =
2Mα

α + r

B(α, r)

(r − 1)!
.

Corollary 4.4. Under the conditions of Corollary 4.3, we have

|D[r]
n (f ; x) − f(x)| ≤ M ′′ δn,

where

M ′′ =
M2α

α + r

B(α, r)

(r − 1)!
.

References

[1] O. Agratini, An approximation process of Kantorovich type, Math. Notes Miskolc 2
(2001), 3–10.

[2] F. Altomare and M. Campiti, Korovkin Type Approximation Theory and its Appli-

cations, de Gruyter Stud. Math. 17, de Gruyter, Berlin, 1994.
[3] M. M. Derriennic, Sur l’approximation de fonctions intégrables sur [0, 1] par des
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M. A. Özarslan
Department of Mathematics

Faculty of Art and Science
Eastern Mediterranean University

Gazimagusa, Mersin 10, Turkey
E-mail: ozarslan@mail.emu.edu.tr

Received July 5, 2004

Revised version March 8, 2006 (5449)


