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Transplantation operators and Cesàro operatorsfor the Hankel transformby
Yuichi Kanjin (Kanazawa)Abstrat. The transplantation operators for the Hankel transform are onsidered.We prove that the transplantation operator maps an integrable funtion under ertainonditions to an integrable funtion. As an appliation, we obtain the L1-boundednessand H1-boundedness of Cesàro operators for the Hankel transform.1. Introdution and results. The Hankel transform Hµf of order µof a funtion f on the open half line (0,∞) is de�ned by

Hµf(y) =

∞\
0

f(t)
√
yt Jµ(yt) dt, y > 0,where Jµ is the Bessel funtion of the �rst kind of order µ. The Besselfuntions with µ = −1/2 and µ = 1/2 are J−1/2(z) =

√
2/(πz) cos z and

J1/2(z) =
√

2/(πz) sin z, and the Hankel transforms H−1/2f and H1/2f arethe osine and sine transforms:
H−1/2f(y) =

√
2

π

∞\
0

f(t) cos yt dt, H1/2f(y) =

√
2

π

∞\
0

f(t) sin yt dt.It is known that for µ ≥ −1/2, Hµ is an isometry on L2(0,∞) (Parseval'stheorem for the Hankel transform) and HµHµ = I (the inversion formula forthe Hankel transform), where I is the identity operator and L2(0,∞) is theLebesgue spae of funtions on (0,∞) with ‖f‖2 = (
T∞
0 |f(x)|2 dx)1/2 < ∞.From now on, we let µ, ν ≥ −1/2 unless otherwise stated expliitly. We put(1) Tf(x) =

1

x

x\
0

f(y) dy, Sf(x) =

∞\
x

f(y)
dy

y
, x > 0.Then T and S are bounded operators on L2(0,∞) beause of the Hardyintegral inequalities:2000 Mathematis Subjet Classi�ation: Primary 42A38; Seondary 42A50, 42C10.Key words and phrases: Cesàro operator, transplantation operator, Hankel transform.Partly supported by the Grants-in-Aid for Sienti� Researh (C), Japan Soiety forthe Promotion of Siene. [29℄
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∞\
0

|Tf(x)|p dx ≤
(

p

p− 1

)p ∞\
0

|f(x)|p dx,(2)
∞\
0

|Sf(x)|q dx ≤ qq
∞\
0

|f(x)|q dx,(3)where 1 < p ≤ ∞ and 1 ≤ q <∞ (f. [3, Corollary 6.21℄). For f ∈ L2(0,∞),its Hankel transformHνf of order ν is in L2(0,∞), and so THνf ∈ L2(0,∞).Let us de�ne the funtion Cν
µf ∈ L2(0,∞) so that its Hankel transform

Hµ(Cν
µf) of order µ is THνf , that is,

Hµ(Cν
µf)(x) =

1

x

x\
0

Hνf(t) dt, x > 0.The objets of our study are the omposition T ν
µ = HµHν and the opera-tor Cν

µ initially de�ned on L2(0,∞). We all T ν
µ the transplantation operatorfor the Hankel transform from ν to µ, and Cν
µ the Cesàro operator for theHankel transform with index (ν, µ).Let Hg be the Hilbert transform of a funtion g on the line (−∞,∞):

Hg(x) = lim
δ→+0

1

π

\
|x−t|>δ

g(t)

x− t
dt, −∞ < x <∞.

We denote by Rg the restrition of g to the half-open interval (0,∞): Rg =
g|(0,∞), and denote by ge, go the even and odd parts of g, that is, ge(x) =
(g(x) + g(−x))/2, go(x) = (g(x)− g(−x))/2. We see that Hge and Hgo areodd and even, respetively, and that for g ∈ L2(−∞,∞),

Hg(x) =





T −1/2
1/2 (Rge)(x) + T 1/2

−1/2(Rgo)(x) (a.e. x > 0),

−T −1/2
1/2 (Rge)(−x) + T 1/2

−1/2(Rgo)(−x) (a.e. x < 0),and in partiular Hge(x) = T −1/2
1/2 (Rge)(x) and Hgo(x) = T 1/2

−1/2(Rgo)(x) fora.e. x > 0. Therefore, the transplantation operators T ν
µ are generalizationsof the Hilbert transform H. Hardy [11℄ proved the following:[A℄ (Hardy [11℄). Suppose that

∞\
−∞

|g(x)| dx <∞,

∞\
−∞

|x| |dg(x)| <∞.Then Hgo is integrable, and Hge = (2/(π|x|))
Tx
0 ge(t) dt+h with an integrablefuntion h.In this paper, we shall extend this result to all the transplantation op-erators T ν

µ , and as an appliation we shall obtain the L1-boundedness and
H1-boundedness of the Cesàro operators Cν

µ.



Hankel transform 31Historially, to get the Marinkiewiz type multiplier theorem for theHankel transform, Guy [9℄ proved that the operators T ν
µ , initially de�nedon L2(0,∞), extend to bounded operators on the Lp-spaes, 1 < p < ∞.His result is alled the transplantation theorem for the Hankel transform,and it is the �rst of the transplantation theorem for lassial expansions.Shindler [23℄ showed a re�ned version of Guy's result by getting an expliitrepresentation of T ν

µ . We reall it here for later onveniene.Let Tµ,ν be the operator de�ned by
Tµ,νf(x) = lim

δ→+0

\
|x−y|>δ

f(y)Ĩµ,ν(x, y) dy + k(µ, ν)f(x),(4)
k(µ, ν) = cos((µ− ν)π/2),where

(5) Ĩµ,ν(x, y) = Kµ,ν
√
xy

(
y

x

)ν 1

x2 − y2
F

(
ν − µ

2
,
µ+ ν

2
; ν + 1;

y2

x2

)

= 2−1Kµ,ν

(
y

x

)ν+1/2( 1

x− y
+

1

x+ y

)
F

(
ν − µ

2
,
µ+ ν

2
; ν + 1;

y2

x2

)
,

Kµ,ν =
2Γ ((µ+ ν + 2)/2)

Γ (ν + 1)Γ ((µ− ν)/2)for 0 < y < x, and
Ĩµ,ν(x, y) = Ĩν,µ(y, x)for y > x > 0. Here, F (α, β; γ; z) is the hypergeometri funtion, that is,

F (α, β; γ; z) =

∞∑

k=0

(α)k(β)k

(γ)kk!
zk, |z| < 1,where (λ)0 = 1, (λ)k = λ(λ+ 1) · · · (λ+ k − 1), k ≥ 1.[B℄ (Shindler [23℄).(i) For f ∈ C∞

c (0,∞), T ν
µ f(x) = Tµ,νf(x) a.e. x > 0, where C∞

c (0,∞)is the spae of in�nitely di�erentiable funtions of ompat supportin (0,∞).(ii) Let 1 < p < ∞ and −1/p < α < 1 − 1/p. If T∞0 |f(x)|pxαp dx < ∞,then the value Tµ,νf(x) exists for a.e. x > 0, and
∞\
0

|Tµ,νf(x)|pxαp dx ≤ C

∞\
0

|f(x)|pxαp dx,with a onstant C independent of f .It follows from the theorem that T ν
µ = Tµ,ν on L2(0,∞), and so we alsoall Tµ,ν the transplantation operator for the Hankel transform from ν to µ.



32 Y. KanjinOur �rst theorem is stated in terms of Tµ,ν and will be proved in the nextsetion.Theorem 1. Let f be a funtion on (0,∞) of bounded variation on everyinterval [a, b] ⊂ (0,∞). Put
A =

∞\
0

|f(x)| dx, B = sup
0<a<b<∞

\
(a,b]

x |df(x)|,

and suppose that A,B <∞, where T(a,b] x |df(x)| is the Lebesgue�Stieltjes in-tegral with respet to the total variation |df | of the Lebesgue�Stieltjes measure
df generated by f modi�ed so as to be right ontinuous.(i) If µ ≥ −1/2 and ν > −1/2, then Tµ,νf ∈ L1(0,∞) and(6) ∞\

0

|Tµ,νf(x)| dx ≤ C(A+B)with a positive onstant C depending only on µ and ν.(ii) If µ ≥ −1/2, then
Tµ,−1/2f(x) =

Kµ,−1/2

x

x\
0

f(t) dt+ h(x)for a.e. x > 0 with a funtion h ∈ L1(0,∞) satisfying (6) with hinstead of Tµ,νf .There are transplantation theorems for other orthogonal expansions, e.g.,Askey and Wainger [2℄, Askey [1℄, Gilbert [7℄, Mukenhoupt [22℄, Kanjin [12℄and Miyahi [19℄, [20℄. The author [14℄ quite reently proved the transplan-tation theorem for the Hankel transform on the real Hardy spae, whih willbe used in our onsideration of the Cesàro operators Cν
µ. Let us reall it here.Let H1(R2

+) be the Hardy spae on the upper half plane R
2
+ = {z =

x+ it ; t > 0}, that is, the spae of analyti funtions F (z) on R
2
+ suh that

‖F‖H1(R2
+

) = supt>0

T∞
−∞ |F (x+ it)| dx <∞. The real Hardy spae H1(R) isthe spae of the boundary funtions f(x) = ℜF (x) of the real parts ℜF (z)of F ∈ H1(R2

+) with the norm ‖f‖H1(R) = ‖F‖H1(R2
+

). Let H1(0,∞) be thespae de�ned by
H1(0,∞) = {h|(0,∞) ; h ∈ H1(R), supph ⊂ [0,∞)},where [0,∞) is the losed half line, and we endow the spae with the norm

‖f‖H1(0,∞) = ‖h‖H1(R), where h ∈ H1(R), supph ⊂ [0,∞) and f = h|(0,∞).We remark that H1(0,∞) = {h|(0,∞) ; h ∈ H1(R), even} and c1‖h‖H1(R) ≤
‖f‖H1(0,∞) ≤ c2‖h‖H1(R) with positive onstants c1 and c2, where f = h|(0,∞)and h ∈ H1(R) is even. For this fat, see [4, Chapter III, Lemma 7.40℄.



Hankel transform 33[C℄ (Kanjin [14℄).(i) Let µ ≥ −1/2 and ν > −1/2. Then T ν
µ , initially de�ned on H1(0,∞)

∩L2(0,∞), uniquely extends to a bounded operator on H1(0,∞), stilldenoted by T ν
µ , so that

‖T ν
µ f‖H1(0,∞) ≤ C‖f‖H1(0,∞)for f ∈ H1(0,∞) with a onstant C depending only on µ and ν.(ii) If µ ≥ −1/2, then T −1/2

µ uniquely extends to a bounded operator from
H1(0,∞) to L1(0,∞), that is,

‖T −1/2
µ f‖L1(0,∞) ≤ C‖f‖H1(0,∞)for f ∈ H1(0,∞) with a onstant C depending only on µ and ν.We now turn to our Cesàro operators Cν

µ. Let Fg be the Fourier transformof g: Fg(ξ) = (1/
√

2π)
T∞
−∞ g(t)e−itξ dt, and F−1g be the inverse Fouriertransform: F−1g(ξ) = (1/
√

2π)
T∞
−∞ g(t)eitξ dt. The lassial Cesàro operator

C is de�ned as follows:
F(Cg)(y) =

1

y

y\
0

Fg(ξ) dξ, −∞ < y <∞.One of the results on the operator C is the following:[D℄ (Giang and Móriz [6℄).(i) The Cesàro operator C satis�es Cg(x) = Sg(x) and Cg(−x) =
S(g(−·))(x) for a.e. x > 0 and for all g ∈ L2(−∞,∞). In partiular,
C uniquely extends to a bounded operator on Lp(−∞,∞), 1 ≤ p <∞.(ii) C uniquely extends to a bounded operator on H1(R), and so does S.It follows that Fge and F−1ge are even, and Fgo and F−1go are odd.Further, we see that for g ∈ L2(R), Fge(y) = H−1/2(Rge)(y), F−1ge(y) =

H−1/2(Rge)(y), Fgo(y) = H1/2(Rgo)(y), and F−1go(y) = −H1/2(Rgo)(y)for a.e. y > 0. The funtion (1/x)
Tx
0 g(y) dy of x is even or odd for g even orodd, respetively. It follows from these fats that for g ∈ L2(R),

Cg(x) =





C−1/2
−1/2(Rge)(x) + C1/2

1/2(Rgo)(x) (a.e. x > 0),
C−1/2
−1/2(Rge)(−x) − C1/2

1/2(Rgo)(−x) (a.e. x < 0),and in partiular Cge(x) = C−1/2
−1/2(Rge)(x) and Cgo(x) = C1/2

1/2(Rgo)(x) fora.e. x > 0. Thus, the Cesàro operators Cν
µ for the Hankel transform are ge-neralizations of the lassial Cesàro operator C, and the two operators C−1/2

−1/2and C1/2
1/2 whih are equal to S are bounded on Lp(0,∞), 1 ≤ p < ∞, andon H1(0,∞) by [D℄. This inspires us to investigate the boundedness of Cν

µ.



34 Y. KanjinBy Theorem 1, the following simple lemma ombining the Cesàro operatorswith the transplantation operators allows us to get our next theorem; theirproofs will be given in the next setion.Lemma. Let µ, ν ≥ −1/2. Then Cν
µ = T ν

µ S on L2(0,∞), where S isde�ned in (1).Theorem 2.(i) Let µ ≥ −1/2 and ν > −1/2. If 1 ≤ p <∞, then Cν
µ, initially de�nedon Lp(0,∞) ∩ L2(0,∞), uniquely extends to a bounded operator on

Lp(0,∞), still denoted by Cν
µ, so that

‖Cν
µf‖Lp(0,∞) ≤ C‖f‖Lp(0,∞)for f ∈ Lp(0,∞) with a onstant C depending only on µ, ν and p.Further , Cν

µ, initially de�ned on H1(0,∞) ∩ L2(0,∞), uniquely ex-tends to a bounded operator on H1(0,∞), that is,
‖Cν

µf‖H1(0,∞) ≤ C‖f‖H1(0,∞)for f ∈ H1(0,∞) with a onstant C depending only on µ and ν.(ii) Let µ ≥ −1/2. If 1 < p < ∞, then C−1/2
µ uniquely extends to abounded operator on Lp(0,∞), that is,

‖C−1/2
µ f‖Lp(0,∞) ≤ C‖f‖Lp(0,∞)for f ∈ Lp(0,∞) with a onstant C depending only on µ and p. Inthe ase p = 1, it follows that C−1/2

µ uniquely extends to a boundedoperator from H1(0,∞) to L1(0,∞), that is,
‖C−1/2

µ f‖L1(0,∞) ≤ C‖f‖H1(0,∞)for f ∈ H1(0,∞) with a onstant C depending only on µ.For related topis, see Goldberg [8℄, Georgakis [5℄, Móriz [21℄, Li�yandand Móriz [17℄, and Kanjin [13℄.Another motivation for studying the Cesàro operators Cν
µ is the seriesof results on the periodi ase: Hardy [10℄ proved that if ∑∞

n=0 an cosnx isthe Fourier series of a funtion in Lp(0, π), then so is ∑∞
n=0(Ta)n cosnxfor 1 ≤ p < ∞, where (Ta)0 = a0, (Ta)n = (a1 + · · · + an)/n, n =

1, 2, . . . , and the same is true for sine series. These may orrespond tothe boundedness of C−1/2
−1/2 and C1/2

1/2 . Kinukawa and Igari [15℄ showed thatif ∑∞
n=1 bn sinnx is a Fourier series, then ∑∞

n=1(Tb)n cosnx is a Fourierseries. This ase may orrespond to the boundedness of C1/2
−1/2

. Loo [18℄ re-marked that ∑∞
n=1(Ta)n sinnx is not neessarily a Fourier series even if∑∞

n=1 an cosnx is one, whih may be the reason why we disuss the ases
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ν > −1/2 and ν = −1/2 separately. Siskakis [24℄ obtained the same type oftheorem in the Hardy spae H1 of the unit dis.2. Proofs. We shall �rst give a proof of Theorem 1, and then of theLemma. Lastly, we shall prove Theorem 2 by using Theorem 1 and theLemma.Proof of Theorem 1. Let µ, ν ≥ −1/2. We may suppose µ 6= ν. It isenough to onsider the part

lim
δ→+0

\
δ<|x−y|

f(y)Ĩµ,ν(x, y) dyof the operator Tµ,ν of (4). Suppose that
A =

∞\
0

|f(x)| dx <∞, B = sup
0<a<b<∞

\
(a,b]

x |df(x)| <∞.

Let x > 0 and let δ be an arbitrarily small positive number suh that 0 <
δ < x/2. We divide the integral into three parts:\

δ<|x−y|

f(y)Ĩµ,ν(x, y) dy =
{x/2\

0

+
\

δ<|x−y|<x/2

+

∞\
3x/2

}
f(y)Ĩµ,ν(x, y) dy(7)

= L(x) + Iδ(x) + U(x), say.We �rst estimate
L(x) = 2−1Kµ,ν

x/2\
0

(
y

x

)ν+1/2( 1

x− y
+

1

x+ y

)
Fµ,ν(x, y)f(y) dy,where we put

Fµ,ν(x, y) = F

(
ν − µ

2
,
µ+ ν

2
; ν + 1;

y2

x2

)

for simpliity. If 0 < y < x/2, then 1/(x − y) ≤ 2/x, 1/(x + y) ≤ 1/x and
|Fµ,ν(x, y)| ≤ C. This leads to

|L(x)| ≤ C

x

x/2\
0

(
y

x

)ν+1/2

|f(y)| dy.Here and below, C denotes a positive onstant depending only on µ and νwhih may be di�erent at di�erent ourrenes, even in the same hain ofinequalities.We remark that(8) ∞\
0

∣∣∣∣
1

x

x\
0

(
y

x

)α

f(y) dy

∣∣∣∣ dx ≤ 1

α

∞\
0

|f(x)| dx,



36 Y. Kanjinwhere α > 0. For, by inverting the order of integration, we see that theintegral on the left-hand side is bounded by
∞\
0

∞\
y

x−(α+1) dx |f(y)|yα dy,whih is (1/α)
T∞
0 |f(y)| dy if α > 0. By (8), L(x) is integrable and(9) ∞\

0

|L(x)| dx ≤ CAwhen µ ≥ −1/2 and ν > −1/2.Let us disuss the ase ν = −1/2 for L(x). We write
L(x) = Kµ

2

x

x/2\
0

Fµ(x, y)f(y) dy +Kµ

x/2\
0

(
1

x− y
− 1

x

)
Fµ(x, y)f(y) dy

+Kµ

x/2\
0

(
1

x+ y
− 1

x

)
Fµ(x, y)f(y) dy

= L1(x) + L2(x) + L3(x), say,whereKµ = Kµ,−1/2/2 and Fµ(x, y) = Fµ,−1/2(x, y). Sine |1/(x−y)−1/x| ≤
2y/x2, |1/(x+y)−1/x| ≤ y/x2 and |Fµ(x, y)| ≤ C for 0 < y < x/2, it followsthat

|L2(x)| + |L3(x)| ≤
C

x

x/2\
0

y

x
|f(y)| dy.By (8) with α = 1, we see that L2(x) and L3(x) are integrable, and thatT∞

0 |Lj(x)| dx ≤ CA, j = 2, 3. We deompose L1(x) as follows:
L1(x) =

2Kµ

x

x\
0

f(y) dy +
−2Kµ

x

x\
x/2

f(y) dy +Kµ
2

x

x/2\
0

(Fµ(x, y) − 1)f(y) dy

=
2Kµ

x

x\
0

f(y) dy + L11(x) + L12(x), say.It follows from |Fµ(x, y)−1| ≤ C(y/x)2 that T∞0 |L12(x)| dx ≤ CA by (8) with
α = 2. The estimate |L11(x)| ≤ C

T∞
x/2 |f(y)| dy/y implies T∞0 |L11(x)| dx ≤

CA. Therefore,(10) L(x) =
2Kµ

x

x\
0

f(y) dy + h(x)with some integrable funtion h satisfying T∞0 |h(x)| dx ≤ CA when ν = −1/2and µ ≥ −1/2.



Hankel transform 37We next estimate
U(x) = 2−1Kν,µ

∞\
3x/2

(
x

y

)µ+1/2( 1

y − x
+

1

y + x

)
Fν,µ(y, x)f(y) dy

of (7) for µ ≥ −1/2 and ν ≥ −1/2. It follows that 1/(y − x) ≤ 3/y,
1/(x + y) ≤ 1/y and |Fν,µ(y, x)| ≤ C for 3x/2 < y, whih implies |U(x)| ≤
C
T∞
3x/2 |f(y)| dy/y. This leads to integrability of U(x) and

(11) ∞\
0

|U(x)| dx ≤ CA

for µ ≥ −1/2 and ν ≥ −1/2.We now turn to estimating Iδ(x) of (7). We put
F̃µ,ν(x, y) = 2−1Kµ,ν(y/x)

ν+1/2Fµ,ν(x, y)for 0 < y < x, and F̃µ,ν(x, y) = F̃ν,µ(y, x) for 0 < x < y, and then by thede�nition of the kernel Ĩµ,ν(x, y) we have
Iδ(x) =

x−δ\
x/2

F̃µ,ν(x, y)

x− y
f(y) dy +

3x/2\
x+δ

F̃µ,ν(x, y)

y − x
f(y) dy(12)

+

x−δ\
x/2

F̃µ,ν(x, y)

x+ y
f(y) dy +

3x/2\
x+δ

F̃µ,ν(x, y)

y + x
f(y) dy

= I1
δ (x) + I2

δ (x) + I3
δ (x) + I4

δ (x), say.We �rst deal with I3
δ (x) and I4

δ (x). Sine
lim

z→1−
F (α, β; γ; z) =

Γ (γ)Γ (γ − α− β)

Γ (γ − α)Γ (γ − β)for ℜ(γ−α−β) > 0 [16, (9.3.4)℄, it follows from ν+1−(ν−µ)/2−(ν+µ)/2 = 1and µ+ 1 − (µ− ν)/2 − (µ+ ν)/2 = 1 that
∣∣∣∣F

(
ν − µ

2
,
ν + µ

2
; ν + 1;

y2

x2

)∣∣∣∣ ≤ C, 0 < y < x,

∣∣∣∣F
(
µ− ν

2
,
µ+ ν

2
;µ+ 1;

x2

y2

)∣∣∣∣ ≤ C, 0 < x < y.We have |F̃µ,ν(x, y)| ≤ C for x, y > 0, whih implies that the integrandsin I3
δ (x) and I4

δ (x) are bounded by Cf(y)/y. Therefore, the following limitsexist for every x > 0:
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lim

δ→+0
I3
δ (x) =

x\
x/2

F̃µ,ν(x, y)

x+ y
f(y) dy = I3(x), say,

lim
δ→+0

I4
δ (x) =

3x/2\
x

F̃µ,ν(x, y)

y + x
f(y) dy = I4(x), say,and |I3(x)| ≤ C

T∞
x/2 |f(y)| dy/y and |I4(x)| ≤ C

T∞
x |f(y)| dy/y, whih showsthat I3(x) and I4(x) are integrable funtions and(13) ∞\

0

(|I3(x)| + |I4(x)|) dx ≤ CAfor µ ≥ −1/2 and ν ≥ −1/2.We turn to estimating the sum I1
δ (x) + I2

δ (x) in (12). We put K ′
µ,ν =

2[(ν − µ)Γ ((µ − ν)/2)Γ ((ν − µ)/2)]−1 for µ ≥ −1/2 and ν ≥ −1/2. Then,noting K ′
µ,ν = −K ′

ν,µ, we have
I1
δ (x)+I2

δ (x) = K ′
µ,ν

\
δ<|x−y|<x/2

f(y)

x− y
dy+I11

δ (x)+I12
δ (x)+I21

δ (x)+I22
δ (x),where

I11
δ (x) = 2−1Kµ,ν

x−δ\
x/2

((
y

x

)ν+1/2

− 1

)
Fµ,ν(x, y)

x− y
f(y) dy,

I21
δ (x) = 2−1Kν,µ

3x/2\
x+δ

((
x

y

)µ+1/2

− 1

)
Fν,µ(x, y)

y − x
f(y) dy,

I12
δ (x) =

x−δ\
x/2

(2−1Kµ,νFµ,ν(x, y) −K ′
µ,ν)

f(y)

x− y
dy,

I22
δ (x) =

3x/2\
x+δ

(2−1Kν,µFν,µ(x, y) −K ′
ν,µ)

f(y)

y − x
dy.We shall show that the limit funtion

Iij(x) = lim
δ→+0

Iij
δ (x)exists and T∞0 |Iij(x)| dx ≤ CA for i, j = 1, 2. Let us estimate I11

δ (x). Theintegrand in I11
δ (x) is estimated as follows:
∣∣∣∣
((

y

x

)ν+1/2

− 1

)
Fµ,ν(x, y)

x− y
f(y)

∣∣∣∣ ≤ C
|f(y)|
xfor 0 < y < x when µ ≥ −1/2 and ν ≥ −1/2. Here, we used the fat

|Fµ,ν(x, y)| ≤ C for 0 < y < x and the simple inequalities 1− uα ≤ α(1− u)



Hankel transform 39for 0 < u < 1 when α ≥ 1, and 1−uα ≤ 1−u for 0 < u < 1 when 0 < α < 1.Thus the limit I11(x) exists for every x > 0, and
|I11(x)| ≤ C

x\
x/2

|f(y)|
x

dy ≤ C

∞\
x/2

|f(y)|
y

dy,

whih leads to the integrability of I11(x) and T∞0 |I11(x)| dx ≤ CA for µ ≥
−1/2 and ν ≥ −1/2.For I12

δ (x), we use the following asymptoti formula [16, (9.7.5)℄:
(14) F (α, β;α+ β + 1; z) =

Γ (α+ β + 1)

Γ (α+ 1)Γ (β + 1)

+
−Γ (α+ β + 1)

Γ (α)Γ (β)

∞∑

k=0

(α+ 1)k(β + 1)k

(k + 1)!k!
[ψ(k + 1) + ψ(k + 2)

− ψ(α+ k + 1) − ψ(β + k + 1) − log(1 − z)](1 − z)k+1,

|z − 1| < 1, |arg(1 − z)| < π, n = 0, 1, 2, . . . , α, β 6= 0,−1,−2, . . . ,where ψ(z) = Γ ′(z)/Γ (z) is the logarithmi derivative of the gamma fun-tion. It is known that ψ(n + 1) = −γ +
∑n

k=1 1/k for n = 1, 2, . . . , where
γ is Euler's onstant. We apply this formula to the term 2−1Kµ,νFµ,ν(x, y)in I12

δ (x). Sine α = (ν − µ)/2, β = (ν + µ)/2 and z = y2/x2 in our ase,we see K ′
µ,ν is equal to the onstant term of the asymptoti expansion of

2−1Kµ,νFµ,ν(x, y), and
|2−1Kµ,νFµ,ν(x, y) −K ′

µ,ν | ≤ C

∣∣∣∣1 − y2

x2

∣∣∣∣
∣∣∣∣log

(
1 − y2

x2

)∣∣∣∣(15)
≤ C

|x− y|
x

∣∣∣∣log

(
1 − y

x

)∣∣∣∣for 0 < y < x. Here, the following onditions must be satis�ed:
α = (ν − µ)/2 6= 0,−1,−2, . . . , β = (ν + µ)/2 6= 0,−1,−2, . . . .Beause of µ, ν ≥ −1/2 and µ 6= ν, the onditions above are equivalent to

ν−µ 6= −2,−4, . . . and ν+µ 6= 0. But if ν+µ = 0, then by the de�nition ofthe hypergeometri funtions Fµ,ν(x, y) is onstantly 1, and 2−1Kµ,ν = K ′
µ,ν .Thus, (15) holds trivially and so the integrand in I12

δ (x) is bounded by
C|log(1−y/x)| |f(y)|/x when µ, ν ≥ −1/2 and ν−µ 6= −2,−4, . . . . Considerthe integral

∞\
0

1

x

x\
0

∣∣∣∣log

(
1 − y

x

)∣∣∣∣|f(y)| dy dx,
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∞\
0

∞\
y

1

x

∣∣∣∣log

(
1 − y

x

)∣∣∣∣ dx |f(y)| dy =

1\
0

|log(1 − t)|t dt
∞\
0

|f(y)| dy

≤ C

∞\
0

|f(y)| dy.This shows that the funtion |log(1−y/x)| |f(y)|/x of y is integrable for a.e.
x > 0, and thus the limit I12(x) exists for a.e. x > 0 and T∞0 |I12(x)| dx ≤ CAwhere ν − µ 6= −2,−4, . . . . Applying the same argument to I21

δ (x) and
I22
δ (x), we �nd that the limit funtions I2j(x), j = 1, 2, are integrable andT∞
0 |I2j(x)| dx ≤ CA for j = 1, 2 when µ− ν 6= −2,−4, . . . . Therefore,(16) lim

δ→+0
(I1

δ (x) + I2
δ (x)) = K ′

µ,ν lim
δ→+0

\
δ<|x−y|<x/2

f(y)

x− y
dy + h(x),

with some integrable funtion h(x) satisfying T∞0 |h(x)| dx ≤ CA provided
µ− ν 6= ±2,±4, . . . .The ondition B = sup0<a<b<∞

T
(a,b] x |df(x)| < ∞ implies the integra-bility of the part limδ→+0

T
δ<|x−y|<x/2 f(y)/(x− y) dy in (16). The proof isin [11, p. 2, lines 18�23℄, but for the reader's onveniene we give it here. Wehave\

δ<|x−y|<x/2

f(y)

x− y
dy =

x/2\
δ

f(x− u) − f(x+ u)

u
du = −

x/2\
δ

\
(x−u,x+u]

df(w)
du

u
,

whih implies
∣∣∣∣

\
δ<|x−y|<x/2

f(y)

x− y
dy

∣∣∣∣ ≤
x/2\
δ

\
(x−u,x+u]

|df(w)| du
u

≤
x/2\
0

\
(x−u,x+u]

|df(w)| du
u

= g(x), say.
The funtion g(x) is integrable. For, we have

g(x) =
\

(x/2,x]

x/2\
x−w

du

u
|df(w)|+

\
(x,3x/2]

x/2\
w−x

du

u
|df(w)|

=
\

(x/2,3x/2]

log
x

2|w − x| |df(w)|,

and thus for 0 < a < b < ∞ suh that a is small enough and b is large
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b\
a

g(x) dx =

b\
a

\
(x/2,3x/2]

log
x

2|w − x| |df(w)|

=
{ \

(a/2,3a/2]

2w\
a

+
\

(3a/2,b/2]

2w\
2w/3

+
\

(b/2,3b/2]

b\
2w/3

}
log

x

2|w−x| dx |df(w)|

≤
2\

2/3

log
t

2|1 − t| dt
\

(a/2,3b/2]

w |df(w)|.

By the assumption T(a/2,3b/2]w |df(w)|≤B and T22/3 log(t/(2|1 − t|)) dt<∞,we have T∞0 g(x) dx ≤ CB. Thus, limδ→+0

T
δ<|x−y|<x/2 f(y)/(x− y) dy existsfor a.e. x > 0, and the limit funtion, say f1(x), satis�es T∞0 |f1(x)| dx ≤ CB.This together with (13) and (16) implies that I(x) = limδ→+0 Iδ(x) existsfor a.e. x > 0 and(17) ∞\

0

|I(x)| dx ≤ C(A+B)

if µ, ν ≥ −1/2 and ν − µ 6= ±2,±4, . . . .Let us summarize the results (9), (10), (11) and (17) that we have alreadyobtained: Suppose that
A =

∞\
0

|f(x)| dx <∞, B = sup
0<a<b<∞

\
(a,b]

x |df(x)| <∞.

If µ− ν 6= ±2,±4, . . . , then
(18) lim

δ→+0

\
δ<|x−y|

f(y)Ĩµ,ν(x, y) dy

=





h1(x) (µ ≥ −1/2, ν > −1/2),

Kµ,−1/2

x

x\
0

f(y) dy + h2(x) (µ ≥ −1/2, ν = −1/2),

for a.e. x > 0, where h1(x) is an integrable funtion satisfying (17) with h1instead of I, and similarly for h2.We ontinue the proof of Theorem 1. Let us deal with the ase µ − ν
= ±2k for some positive integer k. Although the proof of this ase is essen-tially inluded in [23, Theorems 3 and 4℄, we give it brie�y. The representa-tion (5) shows that for µ = ν + 2k, k = 1, 2, . . . ,
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(19) Ĩν+2k,ν(x, y) =





1

x

k−1∑

j=0

γj

(
y

x

)2j+ν+1/2

(0 < y < x),

0 (0 < x < y),where γj are onstants and γ0 = 2Γ (ν + k + 1)/{Γ (ν + 1)Γ (k)}, and for
µ = ν − 2k, k = 1, 2, . . . ,
(20) Ĩν−2k,ν(x, y) =





0 (0 < x < y),

1

y

k−1∑

j=0

γ′j

(
x

y

)2(j−k)+ν+1/2

(0 < y < x),

where γ′j are onstants (see [23, Setion 5℄). Let µ−ν = −2k with a positiveinteger k. We use the representation (20) to get
lim

δ→+0

\
δ<|x−y|

f(y)Ĩν−2k,ν(x, y) dy =
k−1∑

j=0

γ′j

∞\
x

1

y

(
x

y

)2(j−k)+ν+1/2

f(y) dy

= h3(x), say,for every x > 0. We note that
∞\
0

∣∣∣∣
∞\
x

1

y

(
x

y

)α

f(y) dy

∣∣∣∣ dx ≤ 1

1 + α

∞\
0

|f(x)| dxfor α > −1, whih is easily dedued by hanging the order of integration.This implies that T∞0 |h3(x)| dx ≤ CA. Suppose that µ − ν = 2k with apositive integer k. The representation (19) leads to
lim

δ→+0

\
δ<|x−y|

f(y)Ĩν+2k,ν(x, y) dy =
k−1∑

j=0

γj

x

x\
0

(
y

x

)2j+ν+1/2

f(y) dy(21)
= h4(x), say.If ν > −1/2, then 2j + ν + 1/2 > 0 for j = 0, . . . , k − 1, and then theinequality (8) implies that T∞0 |h4(x)| dx ≤ CA. Let us onsider the ase

ν = −1/2. Every term with positive j on the right-hand side of (21) isintegrable by the same reason above. Thus, when µ ≥ −1/2, ν = −1/2 and
µ− ν = 2k, k = 1, 2, . . . , by noting γ0 = Kµ,−1/2 we have

lim
δ→+0

\
δ<|x−y|

f(y)Ĩµ,ν(x, y) dy =
Kµ,−1/2

x

x\
0

f(y) dy + h5(x),

where h5 is some integrable funtion satisfying T∞0 |h5(x)| dx ≤ CA. There-fore, we see that (18) also holds for the ase µ− ν = ±2,±4, . . . . The proofof Theorem 1 is omplete.



Hankel transform 43To get the boundedness of Cν
µ, we prove the Lemma whih gives a relationbetween T ν

µ and Cν
µ.Proof of Lemma. Let µ, ν ≥ −1/2. We �rst show that THνf = HνS.Let f ∈ L2(0,∞) ∩ L1(0,∞). We note that Hνf ∈ L∞(0,∞). We have
THνf(x) =

1

x

x\
0

Hνf(y) dy =

1\
0

Hνf(xu) du

=

1\
0

∞\
0

f(s)
√
xus Jν(xus) ds du

=

1\
0

∞\
0

f(t/u)
√
xt Jν(xt) dt

du

u
.The order of integration in the last iterated integral an be inverted sine

1\
0

∞\
0

|f(t/u)
√
xt Jν(xt)| dt

du

u
≤ C

1\
0

∞\
0

|f(t/u)| dt du
u

= C

∞\
0

|f(y)| dy.Here, we used the fat that |√zJν(z)| ≤ C for z > 0. Thus, we have
THνf(x) =

∞\
0

1\
0

f(t/u)
du

u

√
xt Jν(xt) dt

=

∞\
0

∞\
t

f(y)
dy

y

√
xt Jν(xt) dt = HνSf(x).The operators T , S and Hν are bounded on L2(0,∞), and L2(0,∞) ∩

L1(0,∞) is dense in L2(0,∞). This implies THν = HνS on L2(0,∞).Sine HµCν
µ = THν on L2(0,∞) by the de�nition, it follows from theinversion formula HµHµ = I that Cν

µ = HµTHν , and hene the identity
THν = HνS leads to Cν

µ = HµHνS = T ν
µ S on L2(0,∞), whih ompletesthe proof of the Lemma.Proof of Theorem 2. (i) Let µ ≥ −1/2 and ν > −1/2. Suppose that

1 < p < ∞. For f ∈ Lp(0,∞) ∩ L2(0,∞), we infer by the Lemma andShindler's representation that Cν
µf(x) = T ν

µ Sf(x) = Tµ,νSf(x) for a.e.
x > 0. Thus, it follows from [B℄(ii) and (3) that

‖Cν
µf‖Lp(0,∞) = ‖Tµ,νSf‖Lp(0,∞) ≤ C‖Sf‖Lp(0,∞) ≤ C‖f‖Lp(0,∞).By the standard density argument, we omplete the proof of the ase 1 <

p <∞ in part (i).Let us treat the ase p = 1. For f ∈ L1(0,∞) ∩ L2(0,∞), by thesame reason as above we have Cν
µf(x) = Tµ,νSf(x) for a.e. x > 0. Sine

(d/dx)Sf(x) = −f(x)/x for a.e. x > 0, it follows that x|d(Sf)(x)| = |f(x)|,



44 Y. Kanjinand so Theorem 1(i) leads to
‖Cν

µf‖L1(0,∞) = ‖Tµ,νSf‖L1(0,∞) ≤ C(‖Sf‖L1(0,∞) + ‖f‖L1(0,∞))

≤ C‖f‖L1(0,∞).Therefore, Cν
µ uniquely extends to a bounded operator on L1(0,∞).Let f ∈ H1(0,∞)∩L2(0,∞). By the Lemma, we have Cν

µf(x) = T ν
µ Sf(x)for a.e. x > 0. We know that S is a bounded operator on H1(0,∞). Thus, if

µ ≥ −1/2 and ν > −1/2, then [C℄(i) implies that
‖Cν

µf‖H1(0,∞) = ‖T ν
µ Sf‖H1(0,∞) ≤ C‖Sf‖H1(0,∞) ≤ C‖f‖H1(0,∞).Then the density argument ompletes the proof of (i).(ii) Let µ ≥ −1/2 and 1 < p < ∞. By the Lemma and Shindler'sresult, in the same way as in the ase µ ≥ −1/2, ν > −1/2 and 1 < p < ∞of part (i), we see that C−1/2

µ uniquely extends to a bounded operator on
Lp(0,∞), and ‖C−1/2

µ f‖Lp(0,∞) ≤ C‖f‖Hp(0,∞). For the ase p = 1, let f ∈
H1(0,∞) ∩ L2(0,∞). By [C℄(ii) we have

‖C−1/2
µ f‖L1(0,∞) = ‖T −1/2

µ Sf‖L1(0,∞) ≤ C‖Sf‖H1(0,∞) ≤ C‖f‖H1(0,∞).The density argument allows us to get part (ii) of Theorem 2.
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