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On spectral continuity of positive elements
by

S. MouToON (Stellenbosch)

Abstract. Let x be a positive element of an ordered Banach algebra. We prove a
relationship between the spectra of x and of certain positive elements y for which either
zy < yx or yr < xy. Furthermore, we show that the spectral radius is continuous at z,
considered as an element of the set of all positive elements y > x such that either zy < yz
or yr < xy. We also show that the property o(z+vy) < o(x)+ o(y) of the spectral radius o
can be obtained for positive elements y which satisfy at least one of the above inequalities.

1. Introduction. The subject of spectral continuity has been studied
for more than fifty years, and several authors have contributed; in particular,
by providing different types of sufficient conditions for spectral continuity.
In her survey paper [2]| of 1994, L. Burlando gave an extensive account of
these results, and supplied many useful references.

It is well known that if A is a noncommutative Banach algebra, then
the spectrum and spectral radius functions are only upper semicontinuous
on A, while if A is a commutative Banach algebra, then these functions are
uniformly continuous on A. More generally, if x € A, then Sp(y) C Sp(x) +
o(x —y) for all y € {z}° (see [1, Theorem 3.4.1]), and hence |o(y) — o(z)| <
o(x —y) for all y € {x}° (where Sp denotes the spectrum, ¢ the spectral
radius and {z}° the commutant {y € A : yx = xy} of z), so that the
spectral radius is continuous at x, considered as an element of {x}°.

In this paper we investigate certain spectral continuity properties of pos-
itive elements. Some spectral theory of positive elements in ordered Banach
algebras was developed in [8] and [7], and later in [4]-[6]. We recall some of
this information in Section 3. In Section 4 we show that if x is a positive
element of an ordered Banach algebra, then the results mentioned above can
be obtained under the weaker condition that either xy < yx or yx < zy,
provided that z < y and (for some results) one of a number of additional
spectral properties is assumed. In Section 5 we give examples to show that
these spectral properties are quite natural.
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Another well known spectral property is that if x and y commute, then
o +y) < o(x) + oly) and o(zy) < o(x)o(y). It is already known (see |8,
Proposition 4.4]) that the latter inequality can still be obtained for positive
elements x and y if, instead of commuting, they satisfy at least one of the
inequalities xy < yx and yx < zy. The problem of finding conditions under
which o(x+y) < o(x)+p(y) will hold, for positive elements x and y satisfying
at least one of the inequalities zy < yx and yx < zy, was investigated in
[3] and in [10], where x and y were bounded linear operators on a partially
ordered Banach space and on a Banach lattice, respectively. Furthermore,
in [11], the same problem was studied for the local spectral radius (instead
of the spectral radius) of a bounded linear operator. We show (in Section 4)
that if either zy < yz or yx < zy with = and y positive, then o(z + y) <
o(x) + o(y) always holds, provided that the algebra cone is normal. The
result is applicable, for instance, in the case of the bounded linear operators
on the Banach lattice [P (any p)—see Example 5.2.

2. Preliminaries. Throughout, A will be a complex Banach algebra
with unit 1. The spectrum of an element z in A will be denoted by Sp(x),
the spectral radius of z in A by o(z), and the distance d(0,Sp(z)) from 0 to
the spectrum of = by 0(z). We recall that if o ¢ Sp(z), then d(a, Sp(x)) =
1/0((al —2)71) ([1, Theorem 3.3.5]). If K is a compact set in C and r > 0,
then K + r denotes the set {z € C: d(z,K) < r}, and C(0,r) the circle in
the complex plane with centre 0 and radius r. If » = 0, then C(0,r) denotes
the one-point set {0}. Finally, we need the following lemma:

LEMMA 2.1 ([1, proof of Corollary 3.2.10]). Let a and b be elements of a
Banach algebra A, and let A\, jp € C and n € NU{0}. Then:

n

> ()

1/n
n—k k
OFb> < O ) max [l )

(2) If o(a) < 1, o(b) < 1 and v, = max{||a®" ~*||||b¥] : 0 < k < 2"}, then
there exists an N € N such that (v,) is decreasing for n > N.

1/n

3. Ordered Banach algebras. In [8, Section 3| we defined an algebra
cone C of a Banach algebra A and showed that C induced on A an ordering
which was compatible with the algebraic structure of A. Such a Banach
algebra is called an ordered Banach algebra. We now recall those definitions
and also the additional properties that C' may have.

Let A be a complex Banach algebra with unit 1. Suppose that A contains
a subset C' with the following properties:

(HyCc+CcCao,
(2) A\C C C for all A >0,
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3)C-CcCC,
(4)1eC.
Then C' is called an algebra cone of A, and A, or more specifically (A, C),

is called an ordered Banach algebra (OBA). We say that A is ordered by the
algebra cone C. If, in addition, C' N —C = {0}, then C' is called proper.

An algebra cone C of A induces an ordering “<” on A in the following
way:

<y ifandonlyif y—xzeC

(z,y € A). This ordering is reflexive and transitive. Furthermore, C' is proper
if and only if the ordering has the additional property of being antisymmetric.
Considering the ordering that C' induces we find that C = {x € A: z > 0}
and therefore we call the elements of C' positive.

An algebra cone C of A is called closed if it is a closed subset of A.
Furthermore, C is said to be normal if there exists a constant « > 0 such
that it follows from 0 < x <y in A that ||z| < «||y||. It is well known that
if C' is normal, then C' is proper. Moreover, C' is said to be inverse-closed if
it has the property that if z € C' and x is invertible, then 2~ ! € C.

The following lemma is immediate:
LEMMA 3.1. Let (A,C) be an OBA, and let z,y € A be such that xy < yzx.

(1) If x is invertible with x=1 € C, then yx~! < 27 ly.
(2) Ify is invertible with y=' € C, then y~ 'z < zy~ L.

The next result follows by induction:

LEMMA 3.2. Let (A,C) be an OBA, and let z,y € C. If yx < xy, then

@< ()t
k=0
for every n € NU{0}.

Proof. Clearly the statement is true for n = 0 (and n = 1). So suppose
that (z 4+ y)™ < > it (Tg):nm_kyk, where m > 1. Then, since yx < zy
implies ya™ Fyk < zm—Fykt+l it follows that

m

@+ <(z+y)d (ZL) xRy

k=0
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[ (m m _ m
:xm+1+2{<k>+<k_l>}xm+l Fyk 4 ymtt
k=1
m+1
m-+1\ -

k=0
We will also need the following results:

THEOREM 3.3 ([8, Theorem 4.1(1)]). Let (A,C) be an OBA with C nor-
mal. If z,y € A are such that 0 < z <y, then o(x) < o(y).

We refer to the above property by saying that the spectral radius is
monotone.

THEOREM 3.4 ([8, Proposition 5.1]). Let (A, C) be an OBA with C closed
and normal. If x € C, then o(x) € Sp(z).

THEOREM 3.5 ([8, Proposition 4.4]). Let (A,C) be an OBA with C
normal. If x,y € C are such that vy < yx, then o(xy) < o(z)o(y) and
o(yz) < o(x)o(y).

PROPOSITION 3.6 ([5, Proposition 4.6)]). Let (A,C) be an OBA with C
closed. If € C and X > o(z), then (A1 —z)~1 > 0.

Finally, the following lemma follows from Theorem 3.4:

LEMMA 3.7. Let (A,C) be an OBA with C closed and normal. If x € C
and o € R, then o(z + al) = o(z) + «.

We conclude this section with an important example. Let £(X) denote
the Banach algebra of all bounded linear operators on a Banach space X.

EXAMPLE 3.8. Let E be a complex Banach lattice and let C .= {zx € E':
rx=|z|}. If K :={T € L(E) : TC C C}, then K is a closed, normal algebra
cone of L(E). Therefore (L(E), K) is an OBA.

The nontrivial part of the above example follows from [9, Lemma 3.

4. Spectral continuity. Let (A, C) be an OBA. Define, for each x € C,

Alz) ={y e A:z <y, zy < yzx or yz < zy,
and d(o(y), Sp(z)) = d(a, Sp()) for all a € Sp(y)}.

Then z € A(z), A(z) C C and A(0) = C. In fact, it follows from Lemma 3.7
that if C is closed and normal, then A(al) = C + al for all a € R™.

It is well known that if x is any element of a Banach algebra, then Sp(y) C
Sp(z) 4+ o(x — y) for all y in the commutant {z}¢ of = ([1, Theorem 3.4.1]).
Theorem 4.2 shows that this inclusion continues to hold for positive elements
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x of an OBA, if y is an element of the set A(z) rather than of {x}°. We need
the following lemma:

LEMMA 4.1. Let A be a Banach algebra, x,y € A and a € C. If al — z
is invertible and o((al — x)~Y(x —y)) < 1, then al — y is invertible.

Proof. If o((al—x)"Y(z—y)) < 1, then 1+ (al—z)~!(x—y) is invertible,
and since al —y = (al — z)[1 + (al — z)~*(z — y)], the result follows. m

THEOREM 4.2. Let (A,C) be an OBA with C closed and normal, and
let x € C. Then Sp(y) C Sp(z) + o(x — y) for all y € A(x).

Proof. Let y € A(x). Then 0 < z < y, so that o(z) < o(y), by Theo-
rem 3.3. If o(x) = o(y), then d(o(y),Sp(z)) = 0, by Theorem 3.4, so that,
by the assumption, d(a,Sp(xz)) = 0 for all @ € Sp(y). This implies that
d(a,Sp(z)) < o(x — y) for all o € Sp(y), so that Sp(y) C Sp(z) + o(z — y).

So suppose that o(z) < o(y), and suppose there exists an o € Sp(y) such
that d(a, Sp(z)) > o(z — y). By Theorem 3.4, o(y) € Sp(y) and hence, by
the assumption, we may take o € RT with o > p(z). Therefore

(4.3) o((al = 2) ez —y) <1,
with € RT and a > o(z). It follows from Proposition 3.6 that (al — x)~!
eC.

If 2y < yz, then (y—2)(al—2) < (al—2)(y—2),s0 (al—z) Y (y—2) <
(y — z)(al — z)~!, by Lemma 3.1. It now follows from Theorem 3.5 that
o((al—2) " y—=2)) < o((al —z)"Y)o(y —z). A similar argument yields the
result in case yx < zy.

This together with 4.3 implies o((al — z)~(y — z)) < 1. It follows from
Lemma 4.1 that « ¢ Sp(y), a contradiction. Therefore d(a, Sp(x)) < o(x—y)
for all a € Sp(y), so that Sp(y) C Sp(z) + o(z — y). =

If z and y are commuting elements of a Banach algebra, then o(z +y) <
o(x) + o(y). In an OBA we have the following result:

COROLLARY 4.4. Let (A,C) be an OBA with C closed and normal, and
let x € C. Then o(z+vy) < o(x)+ 0(y) for ally € A such that x+y € A(x).

Proof. If A\ € Sp(x+v), then d(\, Sp(z)) = |A— | for some uy € Sp(x).
It follows from Theorem 4.2 that |A| < |\ — pa| + [ua] < o(y) + o(x) for all
A € Sp(z + y), so that the result follows. =

Note that z + y € A(x) if and only if y € C, zy < yx or yzr < zy and
d(o(x + y),Sp(x)) > d(a, Sp(z)) for all a € Sp(x + y).

COROLLARY 4.5. Let (A,C) be an OBA with C' closed and normal, and
let x € C. Then o(y) < o(x) + o(y — x) for all y € A(x).
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COROLLARY 4.6. Let (A,C) be an OBA with C' closed and normal, and
let x € C. Then the spectral radius is continuous at x, considered as an

element of A(x).

Proof. Ify € A(x), then o(z) < o(y), so that it follows from Corollary 4.5
that |o(y) — o(z)| < e(y —z) <[y —z|. =

The previous three corollaries can be strengthened. In fact, the following
theorem illustrates that Corollary 4.4 continues to hold under omission of
the spectral inequality in the definition of the set A(x).

THEOREM 4.7. Let (A,C) be an OBA with C normal, and let x,y € C
be such that either xy < yx or yr < xy. Then o(x +y) < o(x) + o(y).

Proof. Let a = A"z and b = u~'y, where A > o(x) and p > o(y). Then
o(a) < 1 and p(b) < 1. Hence, by Lemma 3.2,

0< ac—i-y2 <Z( >2n_kwk,

with z = x and w = y or vice versa. Since C' is normal, there exists an o > 0

such that
2n
2" 2" —k  k
> (5 )t

k=0

A 2n
2m 2"k k
(%) e

k=0

Iz + )] <

)

and hence
1/2n
(@ + )" |V <ol

It follows from Lemma 2.1(1) that
G+ ) 2 < a2 A )
where v, = max{||a®" || [|o*]| : 0 < k < 2"}. By Lemma 2.1(2) there exists
an N € N such that ')/71/271 < 711\7/271 for all n > N. Therefore
oz +y) = lim [(z +9)*" V¥ < lim (@' A+ p)yy”") = A+ p.
n—oo n—oo
Since this holds for every A > p(x) and p > p(y), the result follows. m

COROLLARY 4.8. Let (A, C) be an OBA with C normal, and let x,y € C
be such that x < y and either zy < yx or yx < zy. Then o(y) < o(x) +

oy — ).
Proof. The condition xy < yz or yx < zy implies that z(y—z) < (y—x)x

or (y —x)z < z(y —z). Hence o(y) = o(z + (y —2)) < o(z) + o(y — ), since
y—xeC.nm
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COROLLARY 4.9. Let (A,C) be an OBA with C normal, and let z € C.
Then the spectral radius is continuous at x, considered as an element of the
set

{ye A:x <y, and vy < yx or yx < xy}.

Unlike for the spectral radius function, continuity of the spectrum func-
tion Sp : A — K(C) (where K(C) denotes the set of compact subsets of C)
does not follow from Theorem 4.2, since  and y cannot be interchanged in
this theorem. In order to obtain continuity of the spectrum, further spectral
conditions need to be imposed. This problem will not be investigated in the
present note.

For each x € C, consider the set

D(x)={ye A:x <y, zy <yzxor yxr < zy, and §(y) > o(x)}.

Then D(z) C C, but x € D(z) if and only if Sp(z) C C(0 ,Q( )). Fur-
thermore, D(0) = C, and if z € C is such that C(0, o(x)) C Sp(z), then
D(z) C A(x). We thus have the following corollary:

COROLLARY 4.10. Let (A,C) be an OBA with C' closed and normal, and
let © € C be such that C(0, o(x)) C Sp(x). Then:
(1) Sp(y) C Sp(z) + o(x —y) for all y € D(x).
o(x+y) <o(x)+ o(y) for ally € A such that x +y € D(z).

(2)

(3) e(y) < e(x) + o(y — ) for all y € D(x).

(4) If C(0,0(x)) = Sp(x), then the spectral radius is continuous at .,
considered as an element of D(z).

However, besides being included in Corollary 4.9, Corollary 4.10(4) is
also a consequence of the following property:

PROPOSITION 4.11. Let A be a Banach algebra and let x € A be such
that Sp(x) C C(0, o(x)). Then the spectral radius is continuous at x.

Proof. Let ¢ > 0, and G = {\ € C: p(x) —e < |\ < o(z) + £}. Then
Sp(z) C Ge. If &, — x, then by the upper semicontinuity of the spectrum,
Sp(zy,) C Ge for all n > N, say. Since o(x,) = |A,| for some A\, € Sp(zy),
it follows that o(x) — e < o(zn) < o(z) + ¢, ie. |o(z) — o(z,)| < € for all
n>N.n

To continue the discussion, define, for each = € C,

Bzx)={ye A:z <y, zy < yzor yx < zy,

and (al —2)~! € C for all a € Sp(y)\ Sp(z)}.

Then x € B(z), B(x) C C and B(0) = {y € C : al € C for all @ € Sp(y)}
if C' is inverse-closed. As in the case of A(x) we have the following theorem:

THEOREM 4.12. Let (A,C) be an OBA with C normal, and let x € C.
Then Sp(y) C Sp(z) + o(z —y) for all y € B(x).
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Proof. Let y € B(x). Suppose there exists an a € Sp(y) such that
d(a, Sp(z)) > o(x — y). Then
(4.13) o((al —z) Ho(z —y) < 1.

If 2y < yx, then (y—2)(al—2) < (al—z)(y—=), so that (al—z) " (y—=z) <
(y — z)(al — )7, by Lemma 3.1. Since y € B(z), we have y —z € C
and (al —x)~! € O, so Theorem 3.5 shows that o((al — z)71(y — ) <
o((al —z) Y o(y — ). A similar argument yields the result in case yz < zy.
This together with (4.13) implies o((al — x)~!(y — x)) < 1. By Lemma 4.1,
a ¢ Sp(y), which is a contradiction, and hence the result follows. m

Finally, for each z € C set
Ex)={ye A:x <y, zy <yx or yx < xy,
and = < al for all a € Sp(y)\ Sp(x)}.
Then z € E(x) and E(z) C C. Furthermore, F(0) = {y € C': al € C for all

a € Sp(y)}, and if C is inverse-closed, then E(x) = B(x).
In conclusion, we have the following corollary:

COROLLARY 4.14. Let (A,C) be an OBA with C normal, and let x € C.
If either C is inverse-closed or E(x) C B(z), then Sp(y) C Sp(z) + o(z — y)
for ally € E(x).

5. Examples. As mentioned before, the results in Section 4 are known
to hold for elements commuting with z. Therefore, to show that these results
are indeed applicable, we supply some examples showing that the sets defined
in Section 4 contain elements which do not commute with x.

EXAMPLE 5.1. Let A be the set of upper triangular 2 X 2 complex matri-
ces, [°(A) the set

{z = (x1,29,...) i 2, € A for all i € N and ||z;||a < K, for all i € N},
and C the set
{(c1,¢2,...) €1°(A) : ¢; has only nonnegative entries for all i € N}.

Then (I°°(A), C) is an (infinite-dimensional) OBA, C is closed and normal,
and for at least some x € C' the sets E(x), B(z) and A(z) contain elements
which do not commute with x.

Proof. A proof of the fact that (I°°(A),C) is an OBA with C normal was
given in [4, Example 4.16]. Closedness of C' follows easily from the definition

RN T
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Then x € C and Sp(z) = {0,1}. Let

(1))

Then 2 <y and Sp(y) = {1,2}. Since

2= (o o) Lo o)) = ((55) (5 0))

we have yz < zy. The only element of Sp(y)\ Sp(z) is 2, and

(((1) 1(/)2 )(é 132 )) cc

Therefore y € B(z). In fact, x < 2-1, so that y € E(x). Moreover, although
C' is not inverse-closed, F(x) = B(x).

Since d(o(y),Sp(z)) = 1 and {d(e,Sp(z)) : @ € Sp(y)} = {0,1}, it
follows that y € A(x) as well. Furthermore, it is easily checked that z +y €
A(z) N E(x) C B(z). =

Consequently, the following results apply to (I°°(A),C): Theorem 4.2,
Corollaries 4.4, 4.5 and 4.6, Theorem 4.7, Corollaries 4.8 and 4.9, Theorem
4.12 and Corollary 4.14. (Alternatively, for [*°(A), Corollaries 4.6 and 4.9
follow directly from the fact that the spectrum of every element of [°°(A) is
totally disconnected. This is Newburgh’s Theorem [1, Corollary 3.4.5].)

(2-1—z)7t

EXAMPLE 5.2. Consider, for any p with 1 < p < oo, the complexr Banach
lattice IP, and let A = L(IP), C ={z € P : 2 = |z|} and K = {T € L(IP) :
TC c C}. Then (A,K) is an OBA with K closed and normal, and for
some S € K such that Sp(S) = C(0, o(S5)), the sets D(S) and A(S) contain

elements which do not commute with S.

Proof. The first statement follows from Example 3.8. Let S(&1,&2,...)
= (0,&1/1,&2/2,...). Then S € K and Sp(S) = {0} = C(0,0(S)). Let
T(&,&,...) = (0,6,&,...). Then S < T and Sp(T) = D(0,1), so that
0(T) = 0 = o(S). Since we have (ST)(&1,&2,...) = (0,0,&1/2,&/3,...)
and (T'S)(&1,&2,...) = (0,0,&1/1,&2/2,...), it follows that ST < T'S, and
therefore T € D(S). In addition, clearly S+7 € D(S). (Hence, also T' € A(S)
and S+T € A(S).) m

In the case of (A, K) of the above example, the applicable results are:
Theorem 4.2, Corollaries 4.4, 4.5 and 4.6, Theorem 4.7 and Corollaries 4.8,
4.9 and 4.10.

Acknowledgements. The author thanks one of the referees for suggest-
ing the existence of the stronger versions (Theorem 4.7 and Corollaries 4.8
and 4.9) of Corollaries 4.4, 4.5 and 4.6.
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