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On spe
tral 
ontinuity of positive elementsbyS. Mouton (Stellenbos
h)Abstra
t. Let x be a positive element of an ordered Bana
h algebra. We prove arelationship between the spe
tra of x and of 
ertain positive elements y for whi
h either
xy ≤ yx or yx ≤ xy. Furthermore, we show that the spe
tral radius is 
ontinuous at x,
onsidered as an element of the set of all positive elements y ≥ x su
h that either xy ≤ yxor yx ≤ xy. We also show that the property ̺(x+y) ≤ ̺(x)+̺(y) of the spe
tral radius ̺
an be obtained for positive elements y whi
h satisfy at least one of the above inequalities.1. Introdu
tion. The subje
t of spe
tral 
ontinuity has been studiedfor more than �fty years, and several authors have 
ontributed; in parti
ular,by providing di�erent types of su�
ient 
onditions for spe
tral 
ontinuity.In her survey paper [2℄ of 1994, L. Burlando gave an extensive a

ount ofthese results, and supplied many useful referen
es.It is well known that if A is a non
ommutative Bana
h algebra, thenthe spe
trum and spe
tral radius fun
tions are only upper semi
ontinuouson A, while if A is a 
ommutative Bana
h algebra, then these fun
tions areuniformly 
ontinuous on A. More generally, if x ∈ A, then Sp(y) ⊂ Sp(x) +
̺(x− y) for all y ∈ {x}c (see [1, Theorem 3.4.1℄), and hen
e |̺(y)− ̺(x)| ≤
̺(x − y) for all y ∈ {x}c (where Sp denotes the spe
trum, ̺ the spe
tralradius and {x}c the 
ommutant {y ∈ A : yx = xy} of x), so that thespe
tral radius is 
ontinuous at x, 
onsidered as an element of {x}c.In this paper we investigate 
ertain spe
tral 
ontinuity properties of pos-itive elements. Some spe
tral theory of positive elements in ordered Bana
halgebras was developed in [8℄ and [7℄, and later in [4℄�[6℄. We re
all some ofthis information in Se
tion 3. In Se
tion 4 we show that if x is a positiveelement of an ordered Bana
h algebra, then the results mentioned above 
anbe obtained under the weaker 
ondition that either xy ≤ yx or yx ≤ xy,provided that x ≤ y and (for some results) one of a number of additionalspe
tral properties is assumed. In Se
tion 5 we give examples to show thatthese spe
tral properties are quite natural.2000 Mathemati
s Subje
t Classi�
ation: 46H05, 47A10, 47B65, 06F25.Key words and phrases: ordered Bana
h algebra, positive element, spe
trum.[75℄



76 S. MoutonAnother well known spe
tral property is that if x and y 
ommute, then
̺(x + y) ≤ ̺(x) + ̺(y) and ̺(xy) ≤ ̺(x)̺(y). It is already known (see [8,Proposition 4.4℄) that the latter inequality 
an still be obtained for positiveelements x and y if, instead of 
ommuting, they satisfy at least one of theinequalities xy ≤ yx and yx ≤ xy. The problem of �nding 
onditions underwhi
h ̺(x+y) ≤ ̺(x)+̺(y) will hold, for positive elements x and y satisfyingat least one of the inequalities xy ≤ yx and yx ≤ xy, was investigated in[3℄ and in [10℄, where x and y were bounded linear operators on a partiallyordered Bana
h spa
e and on a Bana
h latti
e, respe
tively. Furthermore,in [11℄, the same problem was studied for the lo
al spe
tral radius (insteadof the spe
tral radius) of a bounded linear operator. We show (in Se
tion 4)that if either xy ≤ yx or yx ≤ xy with x and y positive, then ̺(x + y) ≤
̺(x) + ̺(y) always holds, provided that the algebra 
one is normal. Theresult is appli
able, for instan
e, in the 
ase of the bounded linear operatorson the Bana
h latti
e lp (any p)�see Example 5.2.2. Preliminaries. Throughout, A will be a 
omplex Bana
h algebrawith unit 1. The spe
trum of an element x in A will be denoted by Sp(x),the spe
tral radius of x in A by ̺(x), and the distan
e d(0, Sp(x)) from 0 tothe spe
trum of x by δ(x). We re
all that if α 6∈ Sp(x), then d(α, Sp(x)) =
1/̺((α1 − x)−1) ([1, Theorem 3.3.5℄). If K is a 
ompa
t set in C and r > 0,then K + r denotes the set {z ∈ C : d(z, K) ≤ r}, and C(0, r) the 
ir
le inthe 
omplex plane with 
entre 0 and radius r. If r = 0, then C(0, r) denotesthe one-point set {0}. Finally, we need the following lemma:Lemma 2.1 ([1, proof of Corollary 3.2.10℄). Let a and b be elements of aBana
h algebra A, and let λ, µ ∈ C and n ∈ N ∪ {0}. Then:(1) ∥

∥

∥

∥

n
∑

k=0

(

n

k

)

(λa)n−k(µb)k

∥

∥

∥

∥

1/n

≤ (λ + µ)
(

max
0≤k≤n

‖an−k‖ ‖bk‖
)1/n.(2) If ̺(a) < 1, ̺(b) < 1 and γn = max{‖a2n−k‖ ‖bk‖ : 0 ≤ k ≤ 2n}, thenthere exists an N ∈ N su
h that (γn) is de
reasing for n ≥ N .3. Ordered Bana
h algebras. In [8, Se
tion 3℄ we de�ned an algebra
one C of a Bana
h algebra A and showed that C indu
ed on A an orderingwhi
h was 
ompatible with the algebrai
 stru
ture of A. Su
h a Bana
halgebra is 
alled an ordered Bana
h algebra. We now re
all those de�nitionsand also the additional properties that C may have.Let A be a 
omplex Bana
h algebra with unit 1. Suppose that A 
ontainsa subset C with the following properties:(1) C + C ⊆ C,(2) λC ⊆ C for all λ ≥ 0,
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tral 
ontinuity of positive elements 77(3) C · C ⊆ C,(4) 1 ∈ C.Then C is 
alled an algebra 
one of A, and A, or more spe
i�
ally (A, C),is 
alled an ordered Bana
h algebra (OBA). We say that A is ordered by thealgebra 
one C. If, in addition, C ∩ −C = {0}, then C is 
alled proper.An algebra 
one C of A indu
es an ordering �≤� on A in the followingway:
x ≤ y if and only if y − x ∈ C(x, y ∈ A). This ordering is re�exive and transitive. Furthermore, C is properif and only if the ordering has the additional property of being antisymmetri
.Considering the ordering that C indu
es we �nd that C = {x ∈ A : x ≥ 0}and therefore we 
all the elements of C positive.An algebra 
one C of A is 
alled 
losed if it is a 
losed subset of A.Furthermore, C is said to be normal if there exists a 
onstant α > 0 su
hthat it follows from 0 ≤ x ≤ y in A that ‖x‖ ≤ α‖y‖. It is well known thatif C is normal, then C is proper. Moreover, C is said to be inverse-
losed ifit has the property that if x ∈ C and x is invertible, then x−1 ∈ C.The following lemma is immediate:Lemma 3.1. Let (A, C) be an OBA, and let x, y ∈ A be su
h that xy ≤ yx.(1) If x is invertible with x−1 ∈ C, then yx−1 ≤ x−1y.(2) If y is invertible with y−1 ∈ C, then y−1x ≤ xy−1.The next result follows by indu
tion:Lemma 3.2. Let (A, C) be an OBA, and let x, y ∈ C. If yx ≤ xy, then

(x + y)n ≤
n

∑

k=0

(

n

k

)

xn−kyk

for every n ∈ N ∪ {0}.Proof. Clearly the statement is true for n = 0 (and n = 1). So supposethat (x + y)m ≤
∑m

k=0

(m
k

)

xm−kyk, where m ≥ 1. Then, sin
e yx ≤ xyimplies yxm−kyk ≤ xm−kyk+1, it follows that
(x + y)m+1 ≤ (x + y)

m
∑

k=0

(

m

k

)

xm−kyk

≤
m

∑

k=0

(

m

k

)

xm+1−kyk +
m

∑

k=0

(

m

k

)

xm−kyk+1
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= xm+1 +

m
∑

k=1

[(

m

k

)

+

(

m

k − 1

)]

xm+1−kyk + ym+1

=
m+1
∑

k=0

(

m + 1

k

)

xm+1−kyk.We will also need the following results:Theorem 3.3 ([8, Theorem 4.1(1)℄). Let (A, C) be an OBA with C nor-mal. If x, y ∈ A are su
h that 0 ≤ x ≤ y, then ̺(x) ≤ ̺(y).We refer to the above property by saying that the spe
tral radius ismonotone.Theorem 3.4 ([8, Proposition 5.1℄). Let (A, C) be an OBA with C 
losedand normal. If x ∈ C, then ̺(x) ∈ Sp(x).Theorem 3.5 ([8, Proposition 4.4℄). Let (A, C) be an OBA with Cnormal. If x, y ∈ C are su
h that xy ≤ yx, then ̺(xy) ≤ ̺(x)̺(y) and
̺(yx) ≤ ̺(x)̺(y).Proposition 3.6 ([5, Proposition 4.6)℄). Let (A, C) be an OBA with C
losed. If x ∈ C and λ > ̺(x), then (λ1 − x)−1 ≥ 0.Finally, the following lemma follows from Theorem 3.4:Lemma 3.7. Let (A, C) be an OBA with C 
losed and normal. If x ∈ Cand α ∈ R

+, then ̺(x + α1) = ̺(x) + α.We 
on
lude this se
tion with an important example. Let L(X) denotethe Bana
h algebra of all bounded linear operators on a Bana
h spa
e X.Example 3.8. Let E be a 
omplex Bana
h latti
e and let C := {x ∈ E :
x = |x|}. If K := {T ∈ L(E) : TC ⊂ C}, then K is a 
losed , normal algebra
one of L(E). Therefore (L(E), K) is an OBA.The nontrivial part of the above example follows from [9, Lemma 3℄.4. Spe
tral 
ontinuity. Let (A, C) be an OBA. De�ne, for ea
h x ∈ C,

A(x) = {y ∈ A : x ≤ y, xy ≤ yx or yx ≤ xy,

and d(̺(y), Sp(x)) ≥ d(α, Sp(x)) for all α ∈ Sp(y)}.Then x ∈ A(x), A(x) ⊂ C and A(0) = C. In fa
t, it follows from Lemma 3.7that if C is 
losed and normal, then A(α1) = C + α1 for all α ∈ R
+.It is well known that if x is any element of a Bana
h algebra, then Sp(y) ⊂

Sp(x) + ̺(x − y) for all y in the 
ommutant {x}c of x ([1, Theorem 3.4.1℄).Theorem 4.2 shows that this in
lusion 
ontinues to hold for positive elements
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x of an OBA, if y is an element of the set A(x) rather than of {x}c. We needthe following lemma:Lemma 4.1. Let A be a Bana
h algebra, x, y ∈ A and α ∈ C. If α1 − xis invertible and ̺((α1 − x)−1(x − y)) < 1, then α1 − y is invertible.Proof. If ̺((α1−x)−1(x−y)) < 1, then 1+(α1−x)−1(x−y) is invertible,and sin
e α1 − y = (α1 − x)[1 + (α1 − x)−1(x − y)], the result follows.Theorem 4.2. Let (A, C) be an OBA with C 
losed and normal , andlet x ∈ C. Then Sp(y) ⊂ Sp(x) + ̺(x − y) for all y ∈ A(x).Proof. Let y ∈ A(x). Then 0 ≤ x ≤ y, so that ̺(x) ≤ ̺(y), by Theo-rem 3.3. If ̺(x) = ̺(y), then d(̺(y), Sp(x)) = 0, by Theorem 3.4, so that,by the assumption, d(α, Sp(x)) = 0 for all α ∈ Sp(y). This implies that
d(α, Sp(x)) ≤ ̺(x − y) for all α ∈ Sp(y), so that Sp(y) ⊂ Sp(x) + ̺(x − y).So suppose that ̺(x) < ̺(y), and suppose there exists an α ∈ Sp(y) su
hthat d(α, Sp(x)) > ̺(x − y). By Theorem 3.4, ̺(y) ∈ Sp(y) and hen
e, bythe assumption, we may take α ∈ R

+ with α > ̺(x). Therefore(4.3) ̺((α1 − x)−1)̺(x − y) < 1,with α ∈ R
+ and α > ̺(x). It follows from Proposition 3.6 that (α1 − x)−1

∈ C.If xy ≤ yx, then (y−x)(α1−x) ≤ (α1−x)(y−x), so (α1−x)−1(y−x) ≤
(y − x)(α1 − x)−1, by Lemma 3.1. It now follows from Theorem 3.5 that
̺((α1−x)−1(y−x)) ≤ ̺((α1−x)−1)̺(y−x). A similar argument yields theresult in 
ase yx ≤ xy.This together with 4.3 implies ̺((α1 − x)−1(y − x)) < 1. It follows fromLemma 4.1 that α 6∈ Sp(y), a 
ontradi
tion. Therefore d(α, Sp(x)) ≤ ̺(x−y)for all α ∈ Sp(y), so that Sp(y) ⊂ Sp(x) + ̺(x − y).If x and y are 
ommuting elements of a Bana
h algebra, then ̺(x+ y) ≤
̺(x) + ̺(y). In an OBA we have the following result:Corollary 4.4. Let (A, C) be an OBA with C 
losed and normal , andlet x ∈ C. Then ̺(x+ y) ≤ ̺(x)+̺(y) for all y ∈ A su
h that x+ y ∈ A(x).Proof. If λ ∈ Sp(x+y), then d(λ, Sp(x)) = |λ−µλ| for some µλ ∈ Sp(x).It follows from Theorem 4.2 that |λ| ≤ |λ − µλ| + |µλ| ≤ ̺(y) + ̺(x) for all
λ ∈ Sp(x + y), so that the result follows.Note that x + y ∈ A(x) if and only if y ∈ C, xy ≤ yx or yx ≤ xy and
d(̺(x + y), Sp(x)) ≥ d(α, Sp(x)) for all α ∈ Sp(x + y).Corollary 4.5. Let (A, C) be an OBA with C 
losed and normal , andlet x ∈ C. Then ̺(y) ≤ ̺(x) + ̺(y − x) for all y ∈ A(x).



80 S. MoutonCorollary 4.6. Let (A, C) be an OBA with C 
losed and normal , andlet x ∈ C. Then the spe
tral radius is 
ontinuous at x, 
onsidered as anelement of A(x).Proof. If y ∈ A(x), then ̺(x) ≤ ̺(y), so that it follows from Corollary 4.5that |̺(y) − ̺(x)| ≤ ̺(y − x) ≤ ‖y − x‖.The previous three 
orollaries 
an be strengthened. In fa
t, the followingtheorem illustrates that Corollary 4.4 
ontinues to hold under omission ofthe spe
tral inequality in the de�nition of the set A(x).Theorem 4.7. Let (A, C) be an OBA with C normal , and let x, y ∈ Cbe su
h that either xy ≤ yx or yx ≤ xy. Then ̺(x + y) ≤ ̺(x) + ̺(y).Proof. Let a = λ−1x and b = µ−1y, where λ > ̺(x) and µ > ̺(y). Then
̺(a) < 1 and ̺(b) < 1. Hen
e, by Lemma 3.2,

0 ≤ (x + y)2
n

≤
2n

∑

k=0

(

2n

k

)

z2n−kwk,with z = x and w = y or vi
e versa. Sin
e C is normal, there exists an α > 0su
h that
‖(x + y)2

n

‖ ≤ α

∥

∥

∥

∥

2n

∑

k=0

(

2n

k

)

z2n−kwk

∥

∥

∥

∥

,and hen
e
‖(x + y)2

n

‖1/2n

≤ α1/2n

∥

∥

∥

∥

2n

∑

k=0

(

2n

k

)

z2n−kwk

∥

∥

∥

∥

1/2n

.It follows from Lemma 2.1(1) that
‖(x + y)2

n

‖1/2n

≤ α1/2n

(λ + µ)γ1/2n

n ,where γn = max{‖a2n−k‖ ‖bk‖ : 0 ≤ k ≤ 2n}. By Lemma 2.1(2) there existsan N ∈ N su
h that γ
1/2n

n ≤ γ
1/2n

N for all n ≥ N . Therefore
̺(x + y) = lim

n→∞
‖(x + y)2

n

‖1/2n

≤ lim
n→∞

(α1/2n

(λ + µ)γ
1/2n

N ) = λ + µ.Sin
e this holds for every λ > ̺(x) and µ > ̺(y), the result follows.Corollary 4.8. Let (A, C) be an OBA with C normal , and let x, y ∈ Cbe su
h that x ≤ y and either xy ≤ yx or yx ≤ xy. Then ̺(y) ≤ ̺(x) +
̺(y − x).Proof. The 
ondition xy ≤ yx or yx ≤ xy implies that x(y−x) ≤ (y−x)xor (y − x)x ≤ x(y− x). Hen
e ̺(y) = ̺(x+ (y −x)) ≤ ̺(x) + ̺(y −x), sin
e
y − x ∈ C.



Spe
tral 
ontinuity of positive elements 81Corollary 4.9. Let (A, C) be an OBA with C normal , and let x ∈ C.Then the spe
tral radius is 
ontinuous at x, 
onsidered as an element of theset
{y ∈ A : x ≤ y, and xy ≤ yx or yx ≤ xy}.Unlike for the spe
tral radius fun
tion, 
ontinuity of the spe
trum fun
-tion Sp : A → K(C) (where K(C) denotes the set of 
ompa
t subsets of C)does not follow from Theorem 4.2, sin
e x and y 
annot be inter
hanged inthis theorem. In order to obtain 
ontinuity of the spe
trum, further spe
tral
onditions need to be imposed. This problem will not be investigated in thepresent note.For ea
h x ∈ C, 
onsider the set

D(x) = {y ∈ A : x ≤ y, xy ≤ yx or yx ≤ xy, and δ(y) ≥ ̺(x)}.Then D(x) ⊂ C, but x ∈ D(x) if and only if Sp(x) ⊂ C(0, ̺(x)). Fur-thermore, D(0) = C, and if x ∈ C is su
h that C(0, ̺(x)) ⊂ Sp(x), then
D(x) ⊂ A(x). We thus have the following 
orollary:Corollary 4.10. Let (A, C) be an OBA with C 
losed and normal , andlet x ∈ C be su
h that C(0, ̺(x)) ⊂ Sp(x). Then:(1) Sp(y) ⊂ Sp(x) + ̺(x − y) for all y ∈ D(x).(2) ̺(x + y) ≤ ̺(x) + ̺(y) for all y ∈ A su
h that x + y ∈ D(x).(3) ̺(y) ≤ ̺(x) + ̺(y − x) for all y ∈ D(x).(4) If C(0, ̺(x)) = Sp(x), then the spe
tral radius is 
ontinuous at x,
onsidered as an element of D(x).However, besides being in
luded in Corollary 4.9, Corollary 4.10(4) isalso a 
onsequen
e of the following property:Proposition 4.11. Let A be a Bana
h algebra and let x ∈ A be su
hthat Sp(x) ⊂ C(0, ̺(x)). Then the spe
tral radius is 
ontinuous at x.Proof. Let ε > 0, and Gε = {λ ∈ C : ̺(x) − ε < |λ| < ̺(x) + ε}. Then
Sp(x) ⊂ Gε. If xn → x, then by the upper semi
ontinuity of the spe
trum,
Sp(xn) ⊂ Gε for all n ≥ N , say. Sin
e ̺(xn) = |λn| for some λn ∈ Sp(xn),it follows that ̺(x) − ε < ̺(xn) < ̺(x) + ε, i.e. |̺(x) − ̺(xn)| < ε for all
n ≥ N .To 
ontinue the dis
ussion, de�ne, for ea
h x ∈ C,

B(x) = {y ∈ A : x ≤ y, xy ≤ yx or yx ≤ xy,and (α1 − x)−1 ∈ C for all α ∈ Sp(y)\Sp(x)}.Then x ∈ B(x), B(x) ⊂ C and B(0) = {y ∈ C : α1 ∈ C for all α ∈ Sp(y)}if C is inverse-
losed. As in the 
ase of A(x) we have the following theorem:Theorem 4.12. Let (A, C) be an OBA with C normal , and let x ∈ C.Then Sp(y) ⊂ Sp(x) + ̺(x − y) for all y ∈ B(x).



82 S. MoutonProof. Let y ∈ B(x). Suppose there exists an α ∈ Sp(y) su
h that
d(α, Sp(x)) > ̺(x − y). Then(4.13) ̺((α1 − x)−1)̺(x − y) < 1.If xy ≤ yx, then (y−x)(α1−x) ≤ (α1−x)(y−x), so that (α1−x)−1(y−x) ≤
(y − x)(α1 − x)−1, by Lemma 3.1. Sin
e y ∈ B(x), we have y − x ∈ Cand (α1 − x)−1 ∈ C, so Theorem 3.5 shows that ̺((α1 − x)−1(y − x)) ≤
̺((α1−x)−1)̺(y−x). A similar argument yields the result in 
ase yx ≤ xy.This together with (4.13) implies ̺((α1− x)−1(y − x)) < 1. By Lemma 4.1,
α 6∈ Sp(y), whi
h is a 
ontradi
tion, and hen
e the result follows.Finally, for ea
h x ∈ C set

E(x) = {y ∈ A : x ≤ y, xy ≤ yx or yx ≤ xy,and x ≤ α1 for all α ∈ Sp(y)\Sp(x)}.Then x ∈ E(x) and E(x) ⊂ C. Furthermore, E(0) = {y ∈ C : α1 ∈ C for all
α ∈ Sp(y)}, and if C is inverse-
losed, then E(x) = B(x).In 
on
lusion, we have the following 
orollary:Corollary 4.14. Let (A, C) be an OBA with C normal , and let x ∈ C.If either C is inverse-
losed or E(x) ⊂ B(x), then Sp(y) ⊂ Sp(x) + ̺(x− y)for all y ∈ E(x).5. Examples. As mentioned before, the results in Se
tion 4 are knownto hold for elements 
ommuting with x. Therefore, to show that these resultsare indeed appli
able, we supply some examples showing that the sets de�nedin Se
tion 4 
ontain elements whi
h do not 
ommute with x.Example 5.1. Let A be the set of upper triangular 2× 2 
omplex matri-
es, l∞(A) the set

{x = (x1, x2, . . .) : xi ∈ A for all i ∈ N and ‖xi‖A ≤ Kx for all i ∈ N},and C the set
{(c1, c2, . . .) ∈ l∞(A) : ci has only nonnegative entries for all i ∈ N}.Then (l∞(A), C) is an (in�nite-dimensional) OBA, C is 
losed and normal ,and for at least some x ∈ C the sets E(x), B(x) and A(x) 
ontain elementswhi
h do not 
ommute with x.Proof. A proof of the fa
t that (l∞(A), C) is an OBA with C normal wasgiven in [4, Example 4.16℄. Closedness of C follows easily from the de�nitionof C. Let

x =

((

1 0

0 0

)

,

(

1 0

0 0

)

, . . .

)

.



Spe
tral 
ontinuity of positive elements 83Then x ∈ C and Sp(x) = {0, 1}. Let
y =

((

1 1

0 2

)

,

(

1 1

0 2

)

, . . .

)

.Then x ≤ y and Sp(y) = {1, 2}. Sin
e
xy =

((

1 1

0 0

)

,

(

1 1

0 0

)

, . . .

)

, yx =

((

1 0

0 0

)

,

(

1 0

0 0

)

, . . .

)

,we have yx ≤ xy. The only element of Sp(y)\Sp(x) is 2, and
(2 · 1 − x)−1 =

((

1 0

0 1/2

)

,

(

1 0

0 1/2

)

, . . .

)

∈ C.Therefore y ∈ B(x). In fa
t, x ≤ 2 · 1, so that y ∈ E(x). Moreover, although
C is not inverse-
losed, E(x) = B(x).Sin
e d(̺(y), Sp(x)) = 1 and {d(α, Sp(x)) : α ∈ Sp(y)} = {0, 1}, itfollows that y ∈ A(x) as well. Furthermore, it is easily 
he
ked that x + y ∈
A(x) ∩ E(x) ⊂ B(x).Consequently, the following results apply to (l∞(A), C): Theorem 4.2,Corollaries 4.4, 4.5 and 4.6, Theorem 4.7, Corollaries 4.8 and 4.9, Theorem4.12 and Corollary 4.14. (Alternatively, for l∞(A), Corollaries 4.6 and 4.9follow dire
tly from the fa
t that the spe
trum of every element of l∞(A) istotally dis
onne
ted. This is Newburgh's Theorem [1, Corollary 3.4.5℄.)Example 5.2. Consider , for any p with 1 ≤ p ≤ ∞, the 
omplex Bana
hlatti
e lp, and let A = L(lp), C = {x ∈ lp : x = |x|} and K = {T ∈ L(lp) :
TC ⊂ C}. Then (A, K) is an OBA with K 
losed and normal , and forsome S ∈ K su
h that Sp(S) = C(0, ̺(S)), the sets D(S) and A(S) 
ontainelements whi
h do not 
ommute with S.Proof. The �rst statement follows from Example 3.8. Let S(ξ1, ξ2, . . .)
= (0, ξ1/1, ξ2/2, . . .). Then S ∈ K and Sp(S) = {0} = C(0, ̺(S)). Let
T (ξ1, ξ2, . . .) = (0, ξ1, ξ2, . . .). Then S ≤ T and Sp(T ) = D(0, 1), so that
δ(T ) = 0 = ̺(S). Sin
e we have (ST )(ξ1, ξ2, . . .) = (0, 0, ξ1/2, ξ2/3, . . .)and (TS)(ξ1, ξ2, . . .) = (0, 0, ξ1/1, ξ2/2, . . .), it follows that ST ≤ TS, andtherefore T ∈ D(S). In addition, 
learly S+T ∈ D(S). (Hen
e, also T ∈ A(S)and S + T ∈ A(S).)In the 
ase of (A, K) of the above example, the appli
able results are:Theorem 4.2, Corollaries 4.4, 4.5 and 4.6, Theorem 4.7 and Corollaries 4.8,4.9 and 4.10.A
knowledgements. The author thanks one of the referees for suggest-ing the existen
e of the stronger versions (Theorem 4.7 and Corollaries 4.8and 4.9) of Corollaries 4.4, 4.5 and 4.6.
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